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Abstract

We consider G = T' x S with T' being a finite group, for which the complete Euler ring
structure in U(G) is described. The multiplication tables for I' = Dg, Ss and As are provided
in the Appendix. The equivariant degree for G-orthogonal maps is constructed using the
primary equivariant degree with one free parameter. We show that the G-orthogonal degree
extends the degree for G-gradiernt maps (in the case G = I' x S*) introduced by K. Geba in
[19]. The obtained computational results are applied to a I-symmetric autonomous Newtonian
system for which we study the existence of 27-periodic solutions. For some concrete cases, we
present the symmetric classification of the solution set for the considered systems.

1 Introduction

Various versions of the equivariant degree (cf. [14, 16, 18, 19, 21, 27], see also [2, 8, 15, 24, 28, 29,
30, 31, 34]), which are important tools of the equivariant analysis, provide an effective alternative
to such methods as Conley index, Morse theory, minimax techniques and singularity theory. The
main difficulty related to the usage of the equivariant degree seems to be its complicated construc-
tion relying on the notions from the equivariant topology, homotopy theory and algebraic topology.
However, as it was shown in [2], certain equivariant degree —- the so-called primary equivariant
degree, can be fully described by a set of azioms, allowing its usage outside the context of its theo-
retical roots. In addition, many elaborated algebraic computations are completely computerized®,
making this method even more efficient.

The objective of this paper is to establish an underlying relation between the equivariant degree
for gradient maps and the primary equivariant degree, and then by means of the equivariant degree
theory, to study the existence problem for a system of variational ordinary differential equations
in the presence of symmetries.

More precisely, suppose that V is an orthogonal I-representation and let ¢ € C?(V;R) be a
I'-invariant function such that

(a) (Ve)~1(0) = {0}, and

(b) V() = Bz + o(||z||) as ||z|| — oo, where B is a I'-equivariant linear operator.
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We are interested in the existence of non-trivial periodic solutions, their multiplicity and sym-
metry properties, to the following system of ODEs

&= —-Vp(z). (1.1)

It should be pointed out that in the non-symmetric case (i.e. T' = {e}), the problem (1.1)
was studied in [17] using the S'-equivariant degree for gradient maps (see also [1, 10]). Here, we
extend the definition for G = I' x S'-equivariant degree for gradient maps using primary equivariant
degree (cf. [2]-[5],[8, 24]). In this way, we can use all the computational techniques developed for
the primary I' x S'-equivariant degree, to fully compute the ' x S'-equivariant degree for gradient
maps.

2 Euler Ring U(G) and Its Computations

2.1 Notations

Hereafter, G is a compact Lie group. For a closed subgroup H of G, we write H C G. Denote by
(H) the conjugacy class of H in G, N(H) — the normalizer of H in G, and W(H) = N(H)/H -
the Weyl group of H in G. Put

®(G):={(H) : HCG},

which admits a natural partial order: (L) < (H) if L is conjugate to a subgroup of H.
Let X be a G-invariant set and x € X. We adopt the following notations:

Gy ={9€G : gr =z},
G(z) = {go : g€ G},

X" .={zxeX : HcCG,},

Xp:={reX : H=G,},
X = c(x™), X =G(Xn),
J(X)={(H)e®(G) : IJxre€ X st. H=G,}.

Let V be an orthogonal G-representation. For r > 0, denote by
B.(V):={veV : ||v]|<r}

and write B(V') := By (V) for the unit ball in V. Similar notations will also be used for an isometric
Banach G-representation W.

2.2  Numbers n(L, H)

The following number n(L, H) (cf. [2]) is needed for the computations of the Euler ring multipli-
cation via recurrence formulas (cf. (2.3.1.1)-(2.3.2.2) in Subsection 2.3):

Definition 2.2.1. Let (L), (H) € ®(G) be such that (L) < (H). Define the set
N(L, H) = {g €G:LcC gHg-l},

and

n(L,H) := [N (L, H)/N(H)],
where the symbol |Y'| stands for the cardinality of the set Y.



Remark 2.2.1. (i) Notice that the value of the number n(L, H) does not depend on the choice
of representatives in the conjugacy classes (L) and (H). Therefore, we assume that the
number n(L, H) is determined for representatives L and H such that L C H.

(ii) In the case (L) and (H) are not comparable with respect to the partial order “<”, we simply
put n(L,H) = 0.

(iii) In general, it is possible that n(L, H) = co. However, in the case dim W (L) = dim W (H),
n(L, H) is finite and has a very simple geometric interpretation (cf. [2]).

Lemma 2.2.1. Let L, H C G be such that (L) < (H) and dim W (H) = dim W (L). Then, n(L, H)
represents the number of different subgroups H in the conjugacy class (H) such that L C H. In
particular, if V is an orthogonal G-representation such that (L), (H) € J(V), then VXNV is
a disjoint union of exactly m = n(L, H) sets Vi, j = 1,2,...,m, satisfying (H;) = (H).

2.3 Euler Ring U(G)

The degree for gradient G-maps, which is defined later in Section 3, takes value in the Euler ring
U(G) (cf. [32)).

Definition 2.3.1. Given a compact Lie group G, the Euler ring U(G) is the free Z-module
generated by ®(G), i.e. U(G) = Z[®(G)], with the multiplication x : U(G) x U(G) — U(G)
defined on the generators by the formula

(H)x(K)=Y_ ng-(L), (2.3.1)

(L)e®(G)

where ny, = Xc( (G/H x G/K),, /W(L)) with x. standing for the Euler characteristic in Alexander-
Spanier cohomology with compact support (cf. [26]).

Throughout the rest of Section 2, we assume that I is a finite group and G =T x S*.

Notation 2.3.1. For k = 0,1, denote ®4x(G) := {(H) € ®(G) : dimW(H) = k}, Ax(G) :=
Z[®(G)]. Notice that dim G = 1 clearly implies dim W (H) = dim N(H) —dim H € {0,1}, so we
have

P(G) = Po(G) U D1(G),

and
U(G) = Ao(G) ® A1(G).

Remark 2.3.1. Notice that A(G) := Ao(G) C U(G) is the so-called Burnside ring of G (cf.
[4, 32, 33]), which can be identified with the Burnside ring A(T') of I". Indeed, the map ¥ :
®y(G) — @(T'), defined by

U [(HxSY] = (H) (2.3.2)

induces a ring isomorphism from A(G) to A(T).



2.3.1 Multiplication *‘AO(G)XAO(G) : Ao(G) X Ao(G) — Ao(G)

By Remark 2.3.1, the Euler ring multiplication %, when restricted to Ag(G) x Ag(G), can be com-
pletely described by the Burnside ring multiplication on A(T"). Therefore, based on the description
of the A(T")-multiplication formula obtained in [4], we have the following computational formula,
defined on the generators (H), (K) € ®(T),

(HxSHY*x(KxS)y= > ng-(LxSY), (2.3.1.1)
(L)ed ()
where
1 ~ ~
"= G n(L,H) - [(Wr(H)|-n(L,K) - [We(K)| = > n(L,L)-nz - [Wr(L)]|, (2.3.1.2)

(£)>(£)

(here Wr (L) means the Weyl group of £ is taken in T').

2.3.2 Multiplication *‘AO(G)XAl(G) : Ao(G) X Al(G) — Al(G)

By using the identification Ay(G) ~ A(T') (cf. Remark 2.3.1), one can describe the U(G)-
multiplication  restricted to Ag(G)x A1 (G), as the A(T")-module structure on A, (G) (cf. [2, 8, 24]).

More specifically, the elements in ®;(G) are the conjugacy classes of the so-called -twisted
l-folded (I € N) subgroups in G, i.e. the subgroups of the type

MO i={(7,2) € H X ST p(n) = 2}
where H C T is a subgroup and ¢ : H — S! is a group homomorphism. Then (cf. [24]),

Theorem 2.3.2.1. Suppose that G = T x S', where T is a finite group. Then A1(G) is an
Ao(G)-module with the multiplication * : Ag(G) x A1(G) — Ai1(G) defined on the generators
(K x SY) € Ag(G) and (H#') € A1(G) by

(KxSY* MY = > ng- (L2, (2.3.2.1)

(L)e®(T)
where the coefficients ny = ’(G//C x St x G/H“”Z)N,l /W(D"’l)‘ can be computed by the recur-
rence formula

1

WCD/5T] [n(L,K) - [Wr(K)| - (L9t HOY) - [ W (HS) /S

ne =

(2.3.2.2)
= Y e LY ng - [W(ER)S
(£)>(£)
2.3.3 Multiplication *‘AI(G)XAl(G) : Al(G) X A1 (G) — Al(G)
We have the following result

Proposition 2.3.3.1. For G = T' x S' with T being a finite group, the multiplication in U(G),
when restricted to A1 (G) x A1(Q), is trivial, i.e. for any (H¥vW), (K#2!2) € ®1(G), we have

(HWlJl) * (;Csaz,lz) —0.



Proof: Put (H) := (H¥h), (K) := (K¥*2), X := G/H x G/K. According to (2.3.1), it is
sufficient to show that ny = x. (XL/W(L)) = 0 for all (L) € ®(G). Notice that (g1 H, g2 K) €
Xy, if and only if L = ¢g1Hg;' N gaKgy'. In particular, X; # () implies that dim W (L) =
dim W (g1Hgy ' Ng2K g5 ") > min{dim W (H),dim W (K)} = 1. On the other hand, it is clear
that dim W (L) < 1. Consequently, X7, # () only if dim W (L) = 1. Thus, without loss of generality,
we assume (L) € ®1(G).

Claim 1. xe (XL/W(L)) = 0 for all (L) € 1(G).

Clearly, X- = (G/H)" x (G/K)" is a closed 2-dimensional submanifold of G/H x G/K. We
will show that each connected component of X has exactly one orbit type under the W (L)-action.

Take x := (g1 H,goK) € X* (ie. L C g1Hgy ' NgaKgy'). Write g1 = (71, 21), 92 = (72, 22) €
I' x S'. Consider the T? = S x S'-action on X’ given by

(whwz)(ng, 92K) = ((fyl,wlzl)H, (727111222)}()’ w = (w1, ws) € T?, g1, 92 € G.
By direct verification,
(whw2)(g1H,gzK) =(H, oK) +—= wi=1uw}=1,

ie. T2 =17, x Zy,, for all x € XL. In other words, every orbit in X has precisely one orbit type
(Zy, x Zi,), thus by the existence of differentiable structure on the orbit space (cf. Theorem 4.18,
[22]), X¥/T? is a smooth manifold of dimension dim X% — dim 7, which in our case, is a finite
set. So we can describe X as a union of finitely many orbits T?(x) ~ T2, i.e.

Xt=xtuxftu...uxt,

where X} ~ T? is the i-th connected component of X~.

It is clear that two elements z, y in X” belong to the same connected component if and only
if there exists 2 € T? such that y = zz. In addition, for z € X%, W(L), = (G, N N(L)) /L.
Thus, to show that every connected component of X% has exactly one orbit type, it is sufficient
to show that for any € X%, z € T?, we have G, = G.,. Indeed, assume = = (g1 H, g2 K) with
g1 = (71,21), 92 = (72, 22). Take (Y5, w,) € T x S, then

(Yo, wo) € Gz = (Yo, wo)(91H, 92K) = (91 H, g2 K)
= ((Yov1,woz1) H, (Yoy2, wo22) K) = ((71,21)H, (72, 22) K)
= N enH=H, 7 '"7rK=K.
Since the above condition of (v,,w,) € G, does not depend on the choice of z1, 23, we have
G, =G, forall x € XL and z € T2.
Denote by (L;) (i =1,2,...,k) the W(L)-orbit types of X*. Then, we can write X’ as
L L L L

By a similar argument (cf. Theorem 4.18, [22]), each X(LLi)/W(L) is a smooth manifold, and each
L; is a finite subgroup in G. Thus,

dim (X(LLi)/W(L)) = dim (X(LLi)/N(L)) —2-140=1, i=12...,k



Therefore, combined with (2.3.3.1),
dim (X*/W(L)) =1,

i.e. XL/W(L) is a 1-dimensional compact manifold, and therefore, x.. (XL/N(L)> =0.
On the other hand, it is well-known that (for example, see [32])

e (XE/WL)) = 30 x5 /W(D)).

(L)>(L)

Hence, by Claim 1, we obtain

= xe(Xo/W(L)+ D xe(Xz/W(L))
(L)>(L)
=np+ Y. Xe(Xz/W(L)). (2.3.3.2)
(L)>(L)

In the case (L) is a maximal orbit type in X, we have X;/W(L) = X%/W(L), so ny =
Xe (XL/W(L)) = X(XL/N(L)) = 0. Otherwise, by applying the induction over the orbit types

in X according to the partial order, it follows from (2.3.3.2) that np = x.(X5/W (L)) = 0 for all
(L) € &1(G). O

In this way we obtain:

Theorem 2.3.3.1. Let G =T x S with T being a finite group. Then the multiplication table for
the Euler ring U(T x SY) is given by

| | A0(G) | A1(G) |
‘ Ao(G) ‘ A(T)-multiplication ‘ A(T)-module A;(G) multiplication ‘
| A1(G) | A(T)-module A;(G) multiplication | 0 |

Table 1: Multiplication Table for U(I" x S!)

where we identify Ao(G) with the Burnside ring A(T') (see Remark 2.3.1).

As examples, we present in the Appendix the multiplication tables for U(T' x S!) in the case
I' takes value of the dihedral group Dg, the octahedral group Sy and the icosahedral group As.
These tables are established by using a special Maple© routines*.

* The equivariant degree Maple® Library package is available at http://krawcewicz.net/degree or
http://www.math.ualberta.ca/~wkrawcew/degree.



3 Equivariant Degree for Gradient G-Maps

In this section, we follow the construction of the G-equivariant degree for gradient G-maps intro-
duced by K. Geba in [18] (which we will denote by V-deg). Based on the properties of V-deg,
we derive an axiomatic definition of the degree for gradient G-maps.

Let G be a compact Lie group and V be an orthogonal G-representation. Consider a C'-
differentiable G-invariant function ¢ : V' — R. Then the gradient V¢ : V' — V is a G-equivariant
continuous map.

Definition 3.1. (i) A map f:V — V is called a gradient G-map if there exists a G-invariant
function ¢ : V' — R of class C! such that f = V. Similarly, we say amap h: [0,1] xV — V
is a gradient G-homotopy if there exists a G-invariant C!-function 1 : [0,1] x V' — R such
that hy = Vb, where hy(z) := h(t, x), () = (¢, z) for all (¢,2) € [0,1] x V.

(ii) Let 2 C V be an open bounded G-invariant subset and f : V — V a continuous map. The
pair (f,Q) is called a Vg-admissible pair, if f is a gradient G-map satisfying f(z) # 0 for
all x € 9Q. Two Vg-admissible pairs (fo, Q) and (f1,Q) are Vg-homotopic, if there exists a
gradient G-homotopy h : [0,1] x V' — V such that h(0,-) = fo, h(1,-) = f1 with (h(t,-),Q)
being Vg-admissible for all ¢t € (0, 1).

Take x € V, put H := G, and consider the orthogonal decomposition of V'

where 7M denotes the tangent bundle of M, W, := 7, Vi) © 7.G(x) and v, := (TmV(H))L.
Suppose [ : V — V is a gradient G-map being differentiable at  and f(x) = 0. The derivative
Df(x) has a block-matrix form with respect to (3.1) (see [18] for more details)

0 0 0
Df@) =|0 Kf) o |, (3.2)
0 0 Lf(z)

where K f(z) := Df(z)|w, and Lf(x):= Df(x)l,,.

Definition 3.2. (i) An orbit G(z) is called a regular zero orbit of f, if f(z) = 0 and K f(z) :
W, — W, (provided by (3.2)) is an isomorphism. Let E_(x) C W, denote the gen-
eralized eigenspace of K f(x) corresponding to the negative spectrum of K f(x). Then
Ky :=dim E_(z) is called the Morse index of the regular zero orbit G(z). Put

i(G(x)) = (~1)"@, (3-3)

or equivalently,
i(G(x)) :=det K f(x) =det Df(z)|w,.

(ii) For an open G-invariant subset U of V(g such that UcC Vim), and a small* ¢ > 0, put
NUye)={yeV : y=z+v,zcUnv LnVu),|v| <e},

and call it a tubular neighborhood of type (H). A gradient G-map f : V — V, f := Vo
is called (H)-normal, if there exists a tubular neiborhood N (U, ¢) of type (H) such that
S7H0) N Qg CN(U,e) and for y e N(U,e), y =z +v, z € U,v L Vi,

oly) = p(@) + 3 ol

* ¢ is assumed to be sufficiently small that the representation y = = + v in N'(U, €) is unique.



or equivalently,

fly) = f(x) +o.

The following notion of Vg-generic pair plays an essential role in the construction of the
equivariant degree for G-maps presented in [18].

Definition 3.3. A Vg-admissible pair (f, ) is Vg-generic if there exists an open G-invariant
subset €2, C Q such that

(i) fla, is of class C;

(ii) (0)NQ C Qs

(iii) (0) N Q, is composed of regular zero orbits;

(iv) For each (H) with f=(0) N Qg # 0, there exists a tubular neighborhood N (U, ¢) such that
f is (H)-normal on N (U, ¢).

ffl
f—l

Theorem 3.1. (GENERIC APPROXIMATION THEOREM, cf. [18]) For any Vg-admissible pair
(f,Q) there exists a Vg-generic pair (fo,,$) such that (f,Q) and (f,, Q) are Vg-homotopic.

Define the equivariant degree for a Vg-admissible pair (f, ) by

Vo-deg (/,2) i= Vardeg (fo ) = 3 - (H), (3.4)
(H)e®(G)
where (f,, ) is the Vg-generic approximation pair of (f,2) provided by Theorem 3.1 and
ngo= Y i(Glw), (3.5)

with G(z;)’s being the disjoint orbits of type (H) in f,1(0) N €.

We refer to [18] for the verification that Vg-deg (f, ) is well-defined and satisfies the standard
properties expected from a degree.

Now, we are in a position to formulate an alternative axiomatic definition of the degree for
gradient G-maps.

Theorem 3.2. Let G be a compact Lie group, Q@ C V be an open bounded G-invariant subset
and f:V — V be a gradient G-map. There ezists a unique function Vg-deg associating to each
V a-admissible pair (f,Q) an element Vg-deg (f,2) € U(G) such that the following properties are
satisfied:

(P1) (EXISTENCE) If Vg-deg (f,Q) = Y ngy(H), is such that ng, # 0 for some (H,) € ®(G),
(H)
then there exists x, € Q with f(x,) =0 and H, C G,.

(P2) (ADDITIVITY) Suppose that 1 and Qo are two disjoint open G-invariant subsets of Q0 such
that f~1(0)NQ C Q1 UQy. Then

VG'deg (fa Q) - VG'deg (fa Ql) + VG'deg (f7 QQ)
(P3) (HoMOTOPY) If h:[0,1] x V — V is a Vg-admissible homotopy, then
V-deg (ht, Q) = constant,

where hy(+) := h(t,-) fort € [0,1].



(P4) (MULTIPLICATIVITY) Let V' and W be two orthogonal G-representations, (f,€2) and (f. Q)
two V g-admissible pairs, where Q CV and Q C W. Then

Ve-deg (f x f,Q x (NZ) = Vg-deg (f,Q) x Vg-deg (f, ﬁ),
where the multiplication %’ is taken in the Euler ring U(G).

(P5) (NORMALIZATION) Suppose (f,Q) is a Vg-generic pair such that f~1(0) N Q = G(z,), for
some x, € Q with H, := G,. Let N(U,€) be a tubular neighborhood provided by Definition
3.3(iv) and i(G(z,)) be defined by (3.3). Then

V-deg (f, N(U,¢)) = i(G(x,))(Ho).

(P6) (SUSPENSION) Suppose that W is another orthogonal G-representation and let O be an open
bounded G-invariant neighborhood of 0 in W. Then

Ve-deg (f xId,Q x O) = Vg-deg (f, Q).

Proof:  Euistence. The existence of Vg-deg satisfying (P1)-(P5) is guaranteed by its construc-
tion as shown in [18]. The suspension property (P6) is a direct consequence of (P4) and (P5).
Indeed, by (P4), we have

Ve-deg (f xId,Q x O) = Vg-deg (f,2) * Vg-deg (Id, O).
Since (Id, Q) is Vg-generic, by (P5),
Vg-deg(Id, 0) =i({0}) (G) = (G),

which is a trivial element in U(G), thus (P6) follows.

Uniqueness. The uniqueness of Vg-deg (f,2) is provided by (P5), which leads to its analytic

definition (see (3.4)—(3.5)). O
In what follows we will be interested in the case G = I' x S with I being a finite group, for

which we will show that one can pass the computations of Vg-deg (f, ) onto the computations of

the primary equivariant degree for an associated map FF: RV — V.

4 Degree for Equivariant Orthogonal Maps

In this section, using the primary degree (cf. [2]), we define the equivariant degree for G-orthogonal
maps, for G = I' x S! with ' being a finite group. This extented definition (following the result
in [27] for G = S1) turns out to coincide with the equivariant degree Vg-deg for gradient G-maps
discussed in Section 3. In this way, one can take advantage of all the computational bases estab-
lished for the primary degree (cf. [2]-[7]) to effectively compute for Vs-deg and study symmetric
variational problems.

4.1 (G-Orthogonal Maps

Definition 4.1.1. A G-equivariant map f : V — V is called G-orthogonal on a set Q C V if f is
continuous and for all v € Q the vector f(v) is orthogonal to the orbit G(v) at v. A pair (f,Q) is
called a G-orthogonal admissible pair, if f is G-orthogonal on 2 and f(x) # 0 for all z € 9Q2. Two
G-orthogonal admissible pairs (fo,2) and (f1,Q) are G-orthogonally homotopic, if there exists a
G-equivariant [0, 1] x Q-admissible map h : [0,1] x V' — V such that h(0,-) = fo, h(1,:) = f1 and
hy == h(t,-) : V — V is a G-orthogonal map for all ¢ € (0,1). Such a map h is called G-orthogonal
homotopy.



Throughout the rest of this section, we assume that G =T x S!, for some finite group T
In this case, the definition of G-orthogonality can be represented in a simple way. Consider
v € V and the map ¢, : G — G(v) given by

ou(9) =gv, geq.

Clearly ¢, is smooth and Dp,(1) : 71(G) = 71(S*) — 7,(G(v)). Since the total space of the
tangent bundle to S can be written as

7(SY) ={(2,7) €Cx S': 2 Ly} ={(2,7) € Cx S : 2z = ity, t € R},

a tangent vector to the orbit G(v) can be represented by

T@yzp%ﬂxnzggik%—ﬂ. (4.1.1)

Notice that for any v € VSl, we have 7(v) = 0. Thus, by using the decomposition
V=vSaV, V.=V (4.1.2)
we have that a G-equivariant map f : V — V is G-orthogonal, if and only if
(f (@, ), (0,7(u))) =0,

for every v = (z,u) e V=V5 @ V"

Example 4.1.1. Let ¢ : V — R be a continuously differentiable G-invariant function, i.e. ¥(gv) =
Y(v) for all g € G and v € V. Then, by the chain rule, f := V¢ : V — V is G-equivariant. In
addition, we have for every v = (z,u) € VS @ V',

d ' d ,

—d(em)| = —(zeu)| = (VY(z,u),(0,7(u))) = 0.
dt o dt =0

Consequently, every G-gradient map f is G-orthogonal.

It should be pointed out that G-equivariant gradient maps do not exhaust the set of all G-
orthogonal maps, as the following simple example shows.

Example 4.1.2. Let G = S! act on V := R® C by e (z,2) = (z,e - 2), e € S, 2 € R, z € C,
and let f:V — V be defined by
f(xvz) = ($|Z‘272)

By direct computation, f is G-orthogonal. However, since the derivative D f(z, z) is not symmetric,
in general, f is not a gradient map.

The following remark indicates that the standard linearization procedure is applicable to G-
orthogonal C''-maps.

Remark 4.1.1. Suppose that f: V — V is a G-orthogonal map of C' class and v, € V. Then,
the derivative D f(v,) : V — V is a linear G-orthogonal map. Indeed, since f is G-orthogonal, for
allveVand h e R, h #£0,

0= <f(vo + hv)’ T(Uo + h’U)> = <hf<v0 + hv)7 T(U»’ and <f(vo)> T(U» =0,

thus
(D (v, 7(0) = Jim = [{ (v + ho), 7(0)) — (F(wo), ()] = 0.
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4.2 S'-Normality Condition

Given a G-orthogonal 2-admissible map f : V — V| we would like to associate to f a G-equivariant
map F : R®V — V such that: (i) F~1(0) = {0} x f~1(0), and (ii) the equivariant homotopy
properties of F' are “close” to those of f. Such an association would allow us to take advantage of
the developed computational techniques of the primary G-equivariant degree of F'.

Observe that introducing a new dimension, in general, results in a larger set of zeros. In
addition, the equivariance usually gets in conflict with the transversality. Nevertheless, in the
case of G-orthogonal maps from V to V for v ¢ V* 1, the specific character of G-orthogonal maps
suggests a natural candidate for F, namely:

F(t,v) = f(v) +tr(v), teR, vg VS, (4.2.1)

However, in the case v € VS| F defined by (4.2.1) fails to satisfy (i) on VS', which forces us
to consider the map f on VS and V! = (Ve 1)L respectively. To this end, we need the so-called
S1-normality condition for orthogonal maps.

Definition 4.2.1. A G-orthogonal map f:V — V is called S*-normal (on Q) if
550 Vyeqst Yy pst |l <d = flz+u) = f(z)+u. (4.2.2)
Similarly, we say that a G-orthogonal homotopy h : [0,1] x V' — V is S'-normal (on ) if
3550 Vipwyepoayxast Vurvst llul <6 = h(t,z +u) = h(t,z) + u. (4.2.3)

We call § appearing in (4.2.2) and/or (4.2.3) the S*-normality constant.

The following result provides us with S'-normal approximations of G-orthogonal maps and
G-orthogonal homotopies.

Theorem 4.2.1. Suppose that (f,Q) is a G-orthogonal admissible pair. Then, for every e > 0
there exists a G-orthogonal S*-normal Q-admissible map f, : V — V such that

Voen [f(v) = fo(v)]| <e. (4.2.4)

Moreover, if h : [0,1] x V. — V is a G-orthogonal homotopy, then for every € > 0 there exists a
G-orthogonal and S*-normal Q-admissible map h, : [0,1] x V. — V such that

Vi mepixa (G v) = ho(t,v)|| <e. (4.2.5)

In addition, if h(0,-) =: fo and h(1,-) =: f1 are St-normal (on Q), then the homotopy h, can be
constructed in such a way that ho(0,-) = fo and ho(1,-) = fi.

Proof:  Consider the decomposition (4.1.2) of V. For v € V, we write v = (x, u), where x € Vs
and u € V'. Given § > 0, define the function 15 : R — R by

0 if p <9,
ns(p) == "%‘5 if § <p<?29,
1 if p > 20,
(see Figure 4.2).
Next, define the map f, : V — V by
fo(v) = folz,u) := f(x,ns([[ull)u) + (1 — ns([[ul]))u. (4.2.6)

11
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)
Figure 1: Bump function s

By construction, f, is G-orthogonal and S*-normal on Q (with § as the S'-normality constant).
€o

Put ¢, = 1€%f9{||f(v)||} By the Q-admissibility of f, ¢, > 0. We can assume ¢ < 5.

Otherwise, replace ¢ with min{e, 5 }. We claim that for every such 0 < ¢ < %, there exists a
proper 6 > 0, such that the map f, defined by (4.2.6) satisfies (4.2.4). Since for any v = (z,u) € V
with |lul| > 24, fo(v) = f(z,u) = f(v), it is sufficient to show (4.2.4) for v = (z,u) € Q with
lul| < 246.

By the uniform continuity of f on €2, there exists §; > 0 such that

o=l <8 = [f(v) = f@)] < =

vv,v’eﬁ ‘ 2

Choose ¢ := min{%, £} > 0, thus for all v = (z,u) € Q with |Ju|| < 25(< d1),

1f(w) = o)l = [If (@, u) = folz, u)|
= 1f (@, u) = fz,ns(llul)w) = (1 = ns([lul))ul
< Nf (@ w) = f (@, ms((lulhw)l] + (1= ns((lul))[u]
€ e €
< 5 +6 < 5 + 5 =E€.
By the assumption € < 5,

Voer I/(0) = fo(v)| <e< =
Thus, for all v € 09,
[fo@)I = [If @)l = [[f(v) = fo(v)]l

>e,— 2 =% 50,
=Gy T 7

Consequently, f, is 2-admissible.
Define the homotopy h : [0,1] x V — V by

h(t,v) = [z, tu+ (1= Ons((|ull)w) + (1 = )1 =ns([[u]))w,
where ¢ € [0, 1]. It is clear that h(0,-) = f, and h(1,-) = f. Notice that for v € V with ||u|| > 20,
h(t,v) = f(xz,u) = f(v). To check the Q-admissibility of h(t,-), it is enough to show that for all
(t,v) € [0,1] x O with |Ju| < 2§, we have ||h(t,v)] > 0. Indeed,
1At 0) = F)l < [f (s tw + (1 = t)ns([[ul)w) = [z, v
+ 1=t = ns(llull))ull
<iiful<i4i=c<
2 2 2 T2
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thus
1at, )l 2 If )] = 1h(t,v) = fF)I| > g0 = 5 = 5 > 0.
Consequently, k is an Q-admissible homotopy. In order to verify that h is G-orthogonal on ), we
notice that for (¢,v) = (¢t,z,u) € [0,1] x Q,
(h(t,z,u), (0,7(u))) = (f(z, (¢t + (1 = t)ns([lul))u), (0,7(u)))
+ (L =)L = ns([[ul})){u, (0,7(u)))) = 0.

The proof of the second part of Theorem 4.2.1 (for G-orthogonal homotopies) is similar. O

4.3 Construction

Let (f,Q) be a G-orthogonal admissible pair. By Theorem 4.2.1, there exists an S'-normal ap-
proximation map f, such that

Yyew I170) — folo)l < <= ¢ int (7). (43.1)
Denote by ¢ the S'-normality constant of f,, and put
Us={(tw) e (L) xQ:v=a+u, 2V, ueV’, |u|>d} (4.3.2)
Define F, :R®V — V by
Fo(t,v) :== fo(v) +tr(v), (t,v) EeRDV, (4.3.3)

where 7(v) is the tangent vector to the orbit G(v) (cf. (4.1.1)). It is clear that F), is G-equivariant
and Us-admissible. Also, fol, st : VSt L VS s I'-equivariant and Q° "_admissible.

Therefore, we can define the orthogonal G-equivariant degree G-Deg®(f,Q) of the pair (f, Q)
to be the element in Ag(G) ® A1(G) ~ A(T) ® A1(G) ~ U(G) given by

G-Deg (£,2) := (Degd(f,9), Degi(£,2)), (4.3.4)

where Degp(f,2) is an element in A(T") defined by
Deg?(f,9) =T-Deg(folys1, 2%), (4.3.5)

and Degg (f, ) is an element in A;(G) defined by
Dege(f, Q) :== G-Deg (F,, Us), (4.3.6)

with G-Deg (F,, Us) standing for the primary G-degree of F, on Us (see [2] for more details).

We claim that the definition (4.3.4)-(4.3.6) is independent of the choice of a G-orthogonal S*-
normal approximation f,. Indeed, assume that f/ : V — V is another S!'-normal approximation
of f such that

Voeq 1f(v) = fo)ll <e. (4.3.7)
Let & be the Sl-normality constant of f/, and Us be given by (4.3.2). Define F, : RV — V by

Fl(t,v) = fl(v) + tT(v), (t,v) ERBV.
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Put § := min{6,§’'}, and define Us by (4.3.2). By the excision property of the primary degree, we
have
G-Deg (F,,Us) = G-Deg (F,, Us),

and

G_Deg (F(; US) = G_Deg (Fév U(5’)'
Also, by (4.3.1) and (4.3.7), we have that f, and f, are G-orthogonally homotopic on Q. In
particular, fo|,,s1 and f;|,s1 are I'-homotopic on QSI, thus, by the homotopy property of the
primary degree,

I-Deg(f,, Q%) = I-Deg([}, %),
Moreover, F, and F! are G-orthogonally homotopic on Uy, so by the homotopy property of the

primary degree, we have
G-Deg (Fy, Us) = G-Deg (F;, Uy).

Therefore,
G-Deg (F,,Us) = G-Deg (F,,Us').

Definition 4.3.1. (cf. [2]). Let V be an orthogonal G-representation, k € {0,1}, @ C R @V an
open bounded invariant set and f : R* ®V — V an Q-admissible G-equivariant map. We say that
f is regular normal in Q, if

(i) f is of class C;

(ii) for every (H) € ®x(G,Q) and = € f~1(0) N Qp, the following (H)-normality condition at
is satisfied: There exists 0, > 0 such that for all w € vy(Qy) with ||w|| < oy,

fl@+w) = fz) +w=w;

(iii) for every (H) € ®(G,Q), zero is a regular value of fy := fla, : Qg — VH.

Remark 4.3.1. In the case of G-equivariant maps, with or without free parameters, the so-
called regular normal approzimation theorem was established in [26], which states that every G-
equivariant map can be approximated (on a compact set) by a regular normal G-map. If (f,, Q)
is an admissible pair such that f, is G-gradient generic map in € then f,|,s1 is regular normal
(without free parameterrs) and the map F, corresponding to f, (defined by (26)) is also regular
normal (in this case it is a G-map with one free parameter).

Definition 4.3.2. Let V be an orthogonal G-representation, k& € {0,1} and f : RF @V — V
a regular normal map such that f(z,) = 0 with G,, = H and (H) € ®,(G). Let Ug(,,) be a
G-invariant tubular neighborhood around G(z,) such that f~'(0) N Ug(s,) = G(x,). Then f is
called a tubular map around G(z,). In addition, if S, is a positively oriented slice to W (H)(x,)
in R¥ @ VH (cf. [2]), then we call n,, = sign det Df# (z,)|s,, the local index of f at z, in Ug(s,)
(here f1 := flon).

In this way, we obtain the following

Theorem 4.3.1. To each G-orthogonal Q-admissible map f :'V — V', one can associate the or-
thogonal G-equivariant degree G-Deg?(f,Q) € U(G) (see formula (4.3.4)) satisfying the properties:

(P1) (EXISTENCE) If G-Deg®(f,§) = (Degp(f, ), Dege=(f,Q)) is such that

Degt(f,) = > ny-(H)#0

(H)EA(T)
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or

Degl,(f, Q)= > ny-(H)#0

(H)eA1(G)

i.e. ny, # 0 for some (H,) € ®(I") or ng, # 0 for some (H,) € ®1(G), then there exists
xo € 2 such that f(x,) =0 and

(a) G, D H, x St if (H,) € ®(T);
(b) G, O H, if (H,) € 1(G).

(P2) (ADDITIVITY) Suppose that Q1 and Qo are two disjoint open G-invariant subsets of Q such
that f~1(0)NQ C Q; UQy. Then

G-Deg?(f,Q) = G-Deg°(f, 1) + G-Deg°(f, Q2).

(P3) (Homotopry) If h:[0,1] x V. — V is a G-orthogonal Q-admissible homotopy, then
G-Deg°(hy, ) = constant,  for all t € 0,1],
where hy(-) :== h(t,-) fort € [0,1].

(P4) (MULTIPLICATIVITY) Let V' and W be two orthogonal G-representations, (f,€2) and (f. Q)
two V g-admissible pairs, where Q C V and Q C W. Then

G-Deg?(f x f,€Q x Q) = G-Deg°(f,Q) « G-Deg°(f, ),
where the multiplication %’ is taken in the Euler ring U(G).

(P5) (NORMALIZATION) Suppose f is a tubular map around G(z,), where (H) := (G,,) € ®r(G),
for some k € {0,1}. In particular, write H = H x S if k = 0. Denote by n,, the local index
of f at x, in a tubular neighborhood Ug, ). Then

o To H 70 if k= O’
G-Deg°(f,Ug(z,)) = {Eg’ ni ()H))) Zf k=1

(P6) (SUSPENSION) Let W be another orthogonal G-representation and O C W an open bounded
G-invariant neighborhood of 0 in W. Then

G-Deg®(f x Id,Q x O) = G-Deg°(f, Q).

Proof:  All the above properties are direct consequences of the corresponding properties of the
primary degree with one free parameter and primary degree without free parameter (cf. [2, 24]).
|

We have the following result

Theorem 4.3.2. Let G =T x St (with T being a finite group) and (f, ) be a Vg-admissible pair.
Then

G'Dego<f7 Q) = VG'deg <f7 Q)a
under the identification Ao(G) ~ A(T') (c¢f. (2.5.2)).
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Proof: By Theorem 3.1, we can assume that f is a Vg-generic map on ). Then, by definition,
F710) N Q is composed of several regular zero orbits, say G(zp) of type (H,), p = 0,1,...,r,
and for each G(zp), there is a tubular neighborhood N (U,,¢,) such that f(z) = f(u) + v for all
z=u+v€N{Upe), u€ Vi, vLlnVu, Pute=min,{e,} and Q, =, N(Up,e). Then,
Lf(z) =1d for all x € Q,. In particular, f is S*-normal on €,,.

Since f~1(0) N Q C Q,, by the excision property,

Vg-deg (f,9) = Va-deg (f,20) = Y V-deg (£, N (U, <)),
p

and
Ve-deg (f,N(Up,¢)) = i(G(xp))(Hp).
In the case (H,) € ®o(G), i.e. H, = H x S* for some H C S, z, € N(U,,e) C V5. Since f
is generic on 5, f is a regular normal map on N (U,,e). Thus,
I-Deg(flys1, N (Up, €)) = na, (H).
We need to show that n,, = i(G(zp)). Indeed, since
xSt
is a finite set, we have 7, (G(x,)) = {0}. Hence, the decomposition (3.1) reduces to
V= Tmp‘/(Hp) O vy,
and the block-matrix (3.2) reduces to
_ | Kf(zp) 0
Df(zp) - 0 Lf(ZCp) )
and Lf(z,) = 1Id. Also, notice that 7., Vig,) = 7a, Virxs1) C Vsl, SO
ng, = sign det(D f(zp)|y s1) = sign det(D f(zp)|r,, vy, ) = sign det K f(zp) = i(G(xp)).

In the case (H,) € ®1(G), i.e. H = H#! for some H C ', ¢ : H — S, 1 € N. Since f is
Sl-normal on 2, and generic on 2, by the construction of F: R@®V — V(cf. (4.3.3)), we have F'
is regular normal on Us (where § is the S'-normality constant for f). In particular, F is regular
normal on {0} x N'(Up,¢), i.e. F is a tubular map around G(z,). Thus,

G-Deg (F, {0} x N(Up,¢)) = ng,(Hp).

We need to show that n,, = i(G(x,)). Since v,, NV = {0}, we have DF(xp)|pgya, :
R @ VH» — VHr has the following form

DF(z,) = { (1) i KF*(:Bp) } 7

with respect to V7r = (1, (G(zp))NVHr)& (W, NVH7). Theslice S, is orthogonal to 7, (G(zy)),
thus DF(zp)|s,, : Sz, — Vs given by

PR = | 5 Kpiay) |
Therefore,
ng, = sign det(DF(z,)|s, ) = sign det(K f(zp)) = i(G(zp)).
Consequently, G-Deg °(f,2) = Vg-deg (f,Q). O
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5 Degree of Equivariant Gradient Linear Maps

In this section, we derive the computational formulas for the degree of G-equivariant gradient
linear maps. The standard linearization procedure allows us to accomplish computations of the
equivariant degrees for much more complicated gradient maps.

5.1 Computational Formula for Degree of GG-Gradient Linear Maps

Throughout this section, G = I' x S! for a finite group I' and V stands for an orthogonal G-
representation. Consider a symmetric G-equivariant linear isomorphism A : V. — V. Clearly,
(A,B(V)) is a Vg-admissible pair and Vg-deg (A, B(V)) is well defined. One can compute
V-deg (A, B(V)) using the so-called basic degrees and the multiplicativity property of degree.
Let V;, i = 0,1,...,r be the complete list of all real irreducible I'-representations, where 1,
denotes the trivial irreducible I'-representation. Then, we have the following I'-isotypical decom-
position of V'
V=VeVie ---aV,, (5.1.1)

where V; is modeled on the V; for i = 0,1,...,r. In particular, V; = V'. Let V¢ denote a
complexification of V' over R. Then V¢ has a natural structure of a complex I'-representation given
by 7(z ® x) = z ® yx, for z € C and x € V. Simialry, we consider a I-isotypical decomposition of
the complex representation V¢

Ve=Uyd U1 @ U, (5.1.2)
where Uy = (V¢)'' and U; is modeled on the complex irreducible I'-representation U; (cf. [12]).
For each complex I'-representation ¢, j = 0,1,...,s,and [ = 1,2,..., we can define a I' x St

action on U; by
(v,2)w =z (yw), (y,2) €T xS, wel,
where ‘- is the complex multiplication. This real I x S'-representation remains irreducible and is
denoted by V; ;.
Consider the decomposition (4.1.2) of V. Since A is a G-gradient linear isomorphism, we have
that A := Al o1 : V5 — VS and A’ := Aly : V! — V' are two G-gradient linear isomorphisms.
By the multiplicativity property of the degree for G-gradient maps,

V-deg (A, B(V)) = V-deg (4, B(VS")) x Vg-deg (A', B(V")).

To compute V-deg (A, B(VS")), denote by o_(A) the negative spectrum of A : VS — V5",
For every pu € o_(A), denote the corresponding eigenspace by E(u). Since E(u) C VS s T-
invariant, it has the following I'-isotypical decomposition

E(p) = Eo(p) ® Br(p) ® - - © B (p),

where the component F;(u) is modeled on the irreducible I'-representation V;, i = 0,1,...,r.
Define
m;(p) = dim E; () /dimV;, i=0,1,...,r,

which will be called the V;-multiplicity of the eigenvalue pu.
Define the basic degree for the irreducible I'-representation V; by

degy, := Vg-deg (—1d, B(V;)) € A(G). (5.1.3)
Then, again by the multiplicativity property, we obtain
Ve-deg (4, B(VS) = [ [(desy,) ™. (5.1.4)
p€o_(A)i=0
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Since A’ : V' — V' is symmetric, thus it is diagonalizable. Denote by o_(A") = {&1,&2,...,&}
(resp. o (A") = {&+1,&42,---,&m}) the negative (resp. positive) spectrum of A’; and for each
eigenvalue £ of A’ denote by F(€) the corresponding eigenspace in V'. Put

V= @ EE, and Vi:= P E©,
Eeo_(A) f€o i (AY)

ie. V! =V @ V], and define A" := A’|y» and A/, := A/|Vfr' Then, for s € [0,1], define the
operators
B, = (—sxd +(1-s)A,sld +(1—s)A’+) VeV -V ev.

Obviously, for any s € [0, 1], the linear isomorphism B’ : V' — V' is a symmetric G-equivariant
operator, thus it is a G-gradient linear map. Put B’ = Bj.
For each eigenspace E(§), £ € o_(A’), we consider the G-isotypical decomposition

E(€) =P E;u(9),
4.l

where the component E;;(§) is modelled on the irreducible G-representation V;;, and define the
V;.1-multiplicity of € by
my(€) = dim E;(€)/dim V; 1. (5.1.5)

Put Degy,  :=Vg-deg(—Id, B(V;;)) € U(G) and define deg,,. . by the identity
V],L Js VJ,Z
Degy, , = (G) + degy, .

One can directly verify that degy, , € A1 (G). We will call degy, , the basic degree for the irreducible
G-representation V; ;.
By the multiplicativity property of degree,

Vg-deg (A", B(V")) = H H (Degvﬂ)mj,m&).
Eeo_(AY) 4,

Since (G) is the neutral element with respect to x in U(G) and the multiplication x : A1 (G) X
A1(G) — U(G) is trivial (see Proposition 2.3.3.1),

Va-deg (A, BV')) = (@) + > Y mji(&)degy,,.
E€o_(AY) 4,1
In this way, we have the following

Proposition 5.1.1. Let A:V — V be a linear symmetric G-equivariant isomorphism. Then

V-deg (4, B(V)) = Vg-deg (4, B(VS")) + Va-deg (A4, BV ) > 3 myu(€)degy,,,

§€a_(A") 4l

where V g-deg (A,B(Vsl)) is given by (5.1.4).

By Theorem 4.3.2, we have

Corollary 5.1.1. Let A: V — V be a linear symmetric G-equivariant isomorphism and B(V) C V
be the unit ball. Then

G-Deg®(A, B(V)) = (Degp(A, B(V)), Deg;(A, B(V))),
where Degp (A, B(V)) is given by (5.1.4) and Degt:(A, B(V)) = Degp(A,B(V))x >, > mj,l(f)degvjvl.

Eeo_(A")j,l
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For convenience, we list the values of the basic degrees deg,, and degv in the case I' =
Dg, Sy, As, which can be obtained from a special Maple© routines* (see the Appendix for the
explanation of the used notations).

Example 5.1.1. T' = Dy

There are six real irreducible representations of Dg: the trivial representation Vy, two 2-
dimensional representations V; and Vs, a 1-dimensional representation Vs induced by ¢ : Dg — D5
with ker ¢ = Zg, and another two 1-dimensional representations V; and V, induced by ¢ : Dg — Zo
with ker ¢ = D3 and ker ¢ = D3 respectively.

The values of deg,, are

degy,, = —(Ds x sh,

degy, = (Dg x SY) — (D1 x SY) — (D1 x SY) + (Z1 x SY),
degy, = (Dg x S') —2(Dy x §") + (Zy x S"),

degy,, = (Dg x St ) — (Zg x St ),

degy, = (Dg x S') — (D3 x S*),

degy, = (Dg x S*) — (D3 x S).

Example 5.1.2. T' = 54:

There are five real irreducible representations of Sy: the trivial representation V,, the one-
dimensional representation V; corresponding to the homomorphism ¢ : Sy — Zy C O(1), where
ker ¢ = Ay, the two-dimensional representation Vs, corresponding to the homomorphism v : Sy —
S4/Vy = S3 = D3 C O(2), and two different three-dimensional representations of S4, one of them
being the natural representation V3 of S4, while the other V, being the tensor product V; ® V5 of
the natural three-dimensional representation with the non-trivial one-dimensional representation.

The values of deg,,, are

degy,, = — (54 x Sl),

degy, = (S4 x ') — (A4 x SY),
degy, = (S1x S) —2(Dy x ')+ (Va x S,
degy, = (S4 x S') —2(D3 x S') — (D2 x §') +3(D1 x §) — (Z1 x "),
degy, = (Sa x S) — (Zy x S*) — (D1 x S*) = (Z3 x S*) + (Z1 x S*).
Example 5.1.3. G = A5 x S*
There are five irreducible representations of As: Vy — the trivial representation, V; — the

natural 4-dimensional representation of As, Vo — the 5-dimensional representation of A5, and two
3-dimensional representations Vs and V.
The values of deg,, are
degy, = —(A45 x S")
degy, = (A5 x §') —2(As x §') —2(D3 x S*) +3(Zy x S*) +3(Z3 x S*) —2(Z1 x S)
degy, = (A5 x S') —2(D5 x S') —2(D3 x §') + 3(Zy x S') — (Zy x S")
degy,, = degy, = (A5 x S') = (Zs x S*) — (Z3 x §*) — (Zo x S*) + (Zy x S*)

* The equivariant degree Maple®© Library package is available at http://krawcewicz.net/degree or
http://www.math.ualberta.ca/~wkrawcew/degree.
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Example 5.1.4. G = Dg x S!

There are six irreducible G-representations, V; 1, j = 0,1,2,3,4,5, obtained by taking com-

plexifications of each real irreducible Dg-representation.
The values of deg,, | are

degvg : (Dg)
degy, , = (Z§) + (DF) + (DF) — (Z3)
degy, , = (Z&) + (D3) + (D2) — (Zs)
degv3 1 (Dezs)
degv“ (Dg)
degy, , = (DY).

For I > 1, deg), , = ©y[degy, |, where ©; : A;(G) — A;(G) is defined on generators by

O[(H# )] == (H#1).

Example 5.1.5. G = Sy x S*

(5.1.6)

The irreducible representations V; ; are obtained from the complexifications of V;, j = 0,1, 2,3, 4.

The values of deg,, , are

degy, , = (S4)

degy, , = (S;)

degy, , = (A4) + (D4) + (D) — (Va)

degy, , = (Z5) + (DY) + (D§) + (Ds3) + (Z5) — (Z3) — (D1)
degy, , = (Z5) + (D7) + (D%) + (D3) + (2%) — (Z3) — (D7)

Example 5.1.6. G = A5 x S!

Again, by taking complexifications of V;, we obtain the G-representations, V; 1, 7 =0,1,2,3,4.

The values of deg,, , are

degy, , = (45)

degy, | = (A4) + (D3) + (D3) + (Vi) + (%) + (Z8") + (Z8) — (Z2) — (Z3) — (Z3)
degy, , = (Ds) + (Ds) + (A7) + (A?) + (V) + (Z8) + (Z&) — 2(Zs)

degy, , = (D) + (Vi) + (D3) + (Zg') + (Z5) — 2(Zy)

degy, , = (DZ) + (V) + (D3) + (Zg*) + (Z5) — 2(Z3)

6 Symmetric Autonomous Newtonian System

Let V be an orthogonal I'-representation, consider a C?-differentiable I'-invariant function ¢ : V' —
R. Then the gradient Vi : V — V is a I'-equivariant C*-differentiable map. We will assume that

(A1) Vo) =0 < x=0.
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We are interested in finding non-zero solutions to the following system of ODEs:
& =-Ve(r), z(t) eV, 6.1)
2(0) = =(27), &(0) = (2n), '

where z is twice weakly differentiable with respect to ¢.
Suppose that A, B: V — V are two symmetric I'-equivariant linear isomorphisms such that

(A2)  VZ?p(0) = A.
(A3)  Vep(z) = Bz + o(||z|]) as ||z|| — oo, i.e.
V() - Bzl

[l ]| —oc0 |||

0.

Remark 6.1. Notice that the conditions (A1)—(A3) imply that
I -Deg(—A, B(V)) = [-Deg(~ B, B(V)). (6.2)

Indeed, one can use the standard linearization argument to show that, by (A2), there exists
€ > 0 such that

I'-Deg(—A, B(V)) =I'-Deg(—A, B-(V)) = I'-Deg(—V, B.(V)).
On the other hand, for R > 0 being sufficiently large number, we have, by (A3),
I'-Deg(—B, B(V)) = I'-Deg(—B, Br(V)) = I'-Deg(—V, Br(V)).
Since (A1) implies —V¢~1(0) = {0}, by the excision property of the I'-equivariant degree,
[-Deg(—=Ve, B:(V)) = I'-Deg(=Vp, Br(V)),
o (6.2) follows.
Denote by o(A) (resp. o(B)) the spectrum of A (resp. the spectrum of B). We assume
(Ad)  (c(A)Uo(B)N{k? : k=0,1,2,...} =0.
Remark 6.2. Suppose that C' : V — V is a symmetric linear operator such that o(C) N {k?
k=0,1,2,...} =0, then the system
{:'i =Cz, z(t)evV,
2(0) = z(27), 4(0) =z(2m)
has no non-zero solutions. Therefore, the condition (A4) can be translated as a requirement that
the linearization of (6.1) at z = 0 and x = co have no non-zero solutions.

Example 6.1. One can easily construct an example of a I'-invariant function ¢ : V' — R satisfying
the assumptions (A1)—(A4). For instance, let 7 : R — R be a C2-differentiable function such that
7' (t) > 0 for all ¢ € R and tlim 7' (t) = b > 0. Also, assume that 2n/(0),2b ¢ {k* : k=0,1,2,...}.

Then, ¢(z) := n(||z||?) is T-invariant and the gradient Vo (z) = 2n/(||z||?)z, satisfies (A1) and
clearly V(0)h = 21/(0)h.
On the other hand,

IVeo(z) —2bx| _ 120 (l2]]*) = 20)]]

]| —o0 [l || =00 [Eal
= lim [25/(||z]*) — 20 = 0,
2| —o0

so (A2) and (A3) are clearly satisfied with A =27'(0) Id, B=2b1d.
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6.1 Functional Setting

In order to reformulate the problem (6.1) as a variational problem, consider the Sobolev space
W = H'(S'; V). It is a natural G-representation for G = I" x S1, where the G-action is defined
by

(v, eMu) (t) :==~u(t+7), v€T, TER, ueWw.

Moreover, W is a Hilbert G-representation with the inner product

(11, 0) ::/0 "la(), (1) + (u(t), o())dt, w,v € W,

We will denote by || - ||g: the induced norm by (-,-) g1 on W.
Define ¥ : W — R by

Wm%=4%<QW@2—wwm0du

(where || - || stands for the L?-norm). Clearly, the functional ¥ is G-invariant and C?-differentiable.
Indeed, one can easily verify that

DU(u)(v) = /0 w<it(t),i)(t)> — (Ve(u(t)), v(t)) dt.

Notice that if DU (u) = 0 for some u € W, then u € H?(S'; V) and u is a solution to (6.1).
Consequently, the problem (6.1) can be reformulated as

VU(u) =0. (6.1.1)
To determine an explicit formula for VW, we represent ¥ as
1 9 ~
() = gl ~ B(w), we W,
where
27 _ _ 1 9
B) = [ Bl F0) = o)+ A% heV.

Clearly, VU (u) = u — V®(u).
Introduce the following maps:

L:H*(SY V) — L2(SY; V), Lu = —ii + u, (6.1.2)
j:H*(SYH V) — HY(SY V), ju = u,
Nyg : C(S, V) — L2(SY V), Nyg(u) = Vg(u) = Ve(u) + 1d.

Since the equation N N
(VO (u),v) 1 = D2(u)(v),

translates to

/:ﬂ (<iv5(u)(t),iz(t)> + <v$(u)(t),v(t)>) dt = /:”Wg;(u(t))’v(t» .
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for all v € H(S': V), we obtain that V®(u) is a weak solution y to the system

y(0) = y(2m), §(0) = y(2m).
Therefore, one obtains B
Vo(u) =joL ' oNyz(u), ueW,

which leads to
VU(u)=u—j0L 'oNyz(u), ueW.

Put §:= V¥ : W — W. Then, (cf. (6.1.1))
x is asolution to (6.1) <= F(x)=0, zeW.

Notice that since j is a compact inclusion, § is a completely continuous G-equivariant field on W.
In particular, § is a G-orthogonal map, since § is a gradient G-map.

By (A2)—(A4), for sufficiently small € > 0 (resp. sufficiently large R > 0) the map § is B.(W)-
admissible (resp. Br(W)-admissible). Thus, one can define the orthogonal G-equivariant degrees of
§on B, (W) (resp. on Br(W)), which is denoted by G-Deg °(F, B:(W)) (resp. G-Deg °(§, Br(W))).
Observe  that, by the excision property of the orthogonal degree, if
G-Deg°(§, BR(W)) — G-Deg °(F, B,e(W)) # 0, then there is a solution (6.1.1) (or equivalently, to
the system (6.1)) in Br(W) \ B:(W) (cf. [17]).

6.2 Existence Result
Define the G-orthogonal isomorphisms A, B: W — W by

A:=1d —joL ' o(A+1d), B:=Id —joL 'o(B+1Id). (6.2.1)
By (A2)—(A3) and using the standard linearization argument, we have

G-Deg’(§, B:(W)) = G-Deg°(A, B.(W)) = G-Deg°(A, B(W)), (6.2.2)
G-Deg®(§, Br(W)) = G-Deg *(B, Br(W)) = G-Deg®(B, B(W)),

which leads to the following existence result for the system (6.1):

Theorem 6.2.1. Let ¢ : V — R be a I-equivariant C?-differentiable function satisfying the
assumptions (A1)-(A4), and suppose the maps A and B are given by (6.2.1) with

G-Deg (A, B(W)) — G-Deg (B, B(W)) = (deg,,deg;) € A(T) x AL(G). (6.2.4)

Then degy, = 0 and if
deg; =Y ny - (H) #0
(H)

i.e. ng, # 0, for some orbit type (H,) in W', then there exists a non-constant periodic solution
z, to (6.1) satisfying G, D H,. In addition, if H, = KY* (for some subgroup K, C T' and
homomorphism ¢ : K, — S') is such that (K¥'') is a dominating* orbit type in W, then there
exist at least |T'/K,| different non-constant periodic solutions with the orbit type at least (KY**).

* We call (H%1) a dominating orbit type in W if it is a maximal orbit type among all the 1-folded orbit types
in W (cf. [4]).
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Proof: Recall that by the definition of the orthogonal degree (cf. (4.3.4)-(4.3.6)),
degy = Degr (A, B(W)) — Degp (B, B(W)),
where

Degp (A, B(W)) = I'-Deg(Aly;s1, O1),
Degr (B, B(W)) = I'-Deg(B|yys1, O1),

(O stands for the unit ball in WS"). Observe that WS ~ V, thus by (6.1.2), we have Llys =1d,
which implies Al s1 = —A and B|,s1 = —B (cf. (6.2.1)), i.e

Degr (A, B(W)) = I'-Deg(=4, 01)
Degp (B, B(W)) = I'-Deg(—B, O1).

Combined with (6.2), we conclude deg, = 0.
By (6.2.2)—(6.2.3) and the excision property of the orthogonal degree, if

G-Deg?(A, B(W)) — G-Deg*(B, B(W)) # 0,

then there exists a solution to the system (6.1) in Br(W) \ B.(W). Moreover, by (Al), x =0 is
the only constant solution to (6.1). Therefore, there exists a non-constant solution to the system
(6.1) in BR(W) \ B(W).

Suppose that ng, # 0, where (H,) = (K¥*¥) and (K¥!) is a dominating orbit type in W. Then,
by the existence property of the orthogonal degree, there exists a solution u € Br(W) \ B:(W)
to the system (6.1) such that G, > H,. Due to (Al), we have that (Gy) = (KJE) for some K
with K, C K C " and a homomorphism ¥ K — S! with WK =1, k > k. Since (KY1)is a
maximal orbit type in the set of all 1-folded twisted orbit types in W, thus (K% kz is a maximal

orbit type in the set of all k-folded twisted orbit types in W. Consequently, (K¥*) = (K$F).
Therefore, there exist at least |T'/K,| different non-constant periodic solutions with the ezact orbit

type (K, (’f%) In other words, there exist at least |I'/K,| different non-constant periodic solutions
with the orbit type at least (KZ*F). O

6.3 Computation of deg,

For simplicity, assume that*
(A5) the operators A and B have only positive eigenvalues.
For the I'-isotypical decomposition of V¢ given by (5.1.2), put
m; = dim U, /dim U;. (6.3.1)

Consider the “complexified” operator A : V¢ — V¢ given by A(z ® v) := 2z ® Av (for which the
same notation is used). For each u € o(A), denote by E(u) the eigenspace of p considered in V¢

and call B
ﬁl('u) _ dim Ej(,U) _ dim (E(,LL) n UJ)
J ' dlmUJ ' dlmL{J ’

(6.3.2)

* In the case A and B have negative eigenvalues, the argument remains valid for the “positive” parts of o(A)
and o(B).
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the U;-multiplicity of p.
Put A7 := Aly, and

ok(A) ={pea(A) : K <p<(k+1)%},
thus by the assumption (A4),

o(A)) = U Jf(A).

k=0

Recall A" := A|y/, W := (W5 ). The definition of A (cf. (6.2.1)) clearly implies that

1
G(A’)={1—;§:1 :p € o(A), l:1,2,...}
+1

:{1—1’;+1 e ok(A), j=0,1,...,5, k:0,1,...,l:1,2,...}.

Consequently, the negative spectrum o_(A’) of A’ can be described by

1
(A’)z{ l’;:l : ueaf(A),jzo,L...,s,k:o,l,...,zzl,...,k}. (6.3.3)

Moreover, for an eigenvalue 1 — l’;‘j_ll of A'lw, : W; — W, we have (cf. (5.1.5))

w41 ~
le (1 — M) = mJ<M), = 1727 N (6.34)

Therefore, by (6.3.3)—(6.3.4), the second component of G-Deg°(A, B(W)) equals to (cf. Corol-
lary 5.1.1)

Deg% (A, B(W)) = Degl (A, B(W))+ > mju(&)degy,,
Ee€o_ (A’)

= Degp (A, B(W ZZZ Z myj(1 12+1)degv

J=0k=01=1€5"(A)
= Deg (A, B(W ZZ > )Zdegvj‘l. (6.3.5)
J=0k=0pucok (A) 1=1
On the other hand, A7 : U; — U; is completely diagonalizable, thus (cf. (6.3.1))
=y ) =) Y (k). (6.3.6)
peo (A7) k=0peok(A)

Now, by putting

AEA) = Y sa),

neak(A)

we can simplify (6.3.5) to the following form:

k
Deg¢. (A, B(W)) = Degp (A, B(W ZZm )Z degy, .
=1

j=0k=0
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Notice that (cf. (6.3.6))
o0
m; =Y mk(A).
k=0
Following the same lines for the operator B, by assumption (A5), one obtains
s oo k
Degg; (B, B(W)) = Deg.(B, BW)) x> > m}(B)) _ degy,,
j=0k=0 =1
and -
m; =y mk(B),
k=0

where
mi(B) = > m;n),

neak(B)

with m;(n) being the U;-isotypical multiplicity of n (cf. (6.3.2)).
By Theorem 6.2.1, deg, = 0, thus Degp (A, B(W)) = Degp (B, B(W)). Put

Degp := Degp(A, B(W)) = Degp(B, B(W)).
Therefore, by (6.2.4),
deg, = Degg (A, B(W)) — Degg (B, B(W))

S o0 k
= Degp * ZZ ((ﬁf(A) - mf(B))Z deng,z)
=1

j=0k=0
T s o0 k
= II II@egy)™®x> > (‘“?Zdegw»l)’
pneo_ (A)i=0 j=0k=0 =1

where

m¥ .= m¥(A) — m5(B).

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6.3.11)

Definition 6.3.1. We call the number m? given by (6.3.11) the k-th U -isotypical compartmental

defect number for the map §, for j =0,1,...,;sand k=0,1,....

The following lemma describes the possible combinations of the U;-isotypical compartmental

defect numbers m¥, k = 0,2, ..., subject to conditions (6.3.7)-(6.3.8):

Lemma 6.3.1. Let a, N be positive integers, (ny)h_, and (mg)i_, be two N-part partitions of a,

i.€.
a=niy+ng+---+ny=my+mg+---+my,
where ny’s and my’s are non-negative integers. Put
by :=ng —my, k=1,2,...,N,

bUi= > by b= by,

b >0 b <0

where a sum over the empty set is assumed to be 0.
Then (bk)gzl is a partition of 0 with 0 < bT < a and —a < b~ < 0.
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Proof:  Assume that (ng))_, and (mg)d_, are partitions of a, i.e.
a=ny+ng+---+ny=mg+mg+---+my.

Then, clearly, (bx)N_; = (nx — my)y_, is a partition of 0 and, by definition, b* > 0, b~ < 0.
Moreover, since ng > 0 and my > 0 for all k,

N
b*szk: Z (N —my) < Z nkéznkza
k=1

b >0 nE>myg nE>mg
N
=Y Y moz Y m)z - Yom= e
b, <0 nE<mg nE<mg k=1
which concludes the proof. O

6.4 Concrete Existence Results for Selected Symmetries

We present here the computational results for several I'-representations, which were described
previously in Section 5.1. We use the same notations as in Section 5.1.
We introduce the following condition which is specific to all examples considered later:

Condition 6.4.1. (i) Decomposition (5.1.1) contains isotypical components modelled only on
irreducible representations of real type (in particular, r = s).

(ii) For each p € o(A) there exists a single isotypical component V; = V; in (5.1.1) which
(completely) contains the eigenspace E(u).

By Condition 6.4.1(ii),

(i) = {dimRE(p)/dimRVi i =iy, 641

0 i+i,.
Also notice that (degy,)? = (G) for all i (cf. (5.1.3)). Put

€ = Z m;, (1)  mod 2.
Thus,

=0

Consequently, the computational formula (6.3.10) reduces to

T

. s oo k
deg, = H (degvi) % ZZ (mfz degvj’l> . (6.4.2)
=1

i=0 §=0k=0

Consider the system (6.1) assuming that (A1)—(A5) and Condition 6.4.1 are satisfied. As the
symmetry group I', take the dihedral groups D4, Ds*, Dg, the octahedral group S; and the
icosahedral group As. More specifically, assume that V := R™ is an orthogonal I'-representation,

In a similar way, the multiplication tables and the lists of basic degrees can be obtained in the case I' = Dy, D5
by using the special Maple®© routines, where the notations used are also explained.
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= Dna

., Up) € V by permuting its coordinates. Moreover, for T’

(uy,us, . .

assume that C' is of the type

where I' acts on u

N O

S o

o

O

O3

Sy, C' is of the type

For I"

d 0d 0 d 00

c
d

d 00 0 dO

c
d
d 0 d

d 0 0 0 d

c

d 0 0 0

c

c d 0 d

0 0 0 d

0
d
c

d
c

C

d 0 0 0 d

0 d 00 0 d

0 0d 0dO d

As, C is of the type

For I

COO0O0O0O0O0OO0O0OO0O0OOVWOOTVOOT
CO0O0O0O0O0OO0OoOOTVWOOOOOOTWOUT
OO0 O0OOTVWOOOOOOOTV LVUTWO
COO0O0O0OO0OTVWOOOOOOOOTVW LUTWOO
COO0O0O0O0O0OO0OO0O0OO0COoOOTVWUTOOTT
COO0O0OTVWOOOOOOOTVUTVTWOOOO
COO0OTVWOOOO0OOOO0OOTVUTVWOOOOO
OO0 OTVWLULTWOOOOOTT
COTVWOOOOOO0OOOTVWUTOOOOOOO
COO0O0O0O0CO0OO0OVWUTOOOOOOTVO
OCTVWOOODOCOOVUTVOOOOOOOOO
CO0O0O0OO0COTVWUTVWOOOOOOOTVWOO
MWMOOOO0OO TV UTVWOOOODOOOOOOO
CO0O0OTVUTOOOOOOOOTVOOO
CO0OTVUTVOOOOOOOTVWOOOOO
MWMOO VWUV OOOODODODDODODODODODODOOOOO
OOV UTVWOOOOOO0OO0OOTVOOOOOO
OV UTVWOOOOOODOTVOOOOOOOO
WM OUTVWOOO0OODODOTVOOODOOOOOOO

VUV OO TVWOOTVWOOOOOODOOOOOOCO

|
O

For definiteness, let ¢ = 4.5, d = 1 for the matrix A, and ¢ = 9.5, d = 1 for the matrix B.

Vo ® V1 & V3, to which we

= Dy, we have V =

In the case I

Dihedral Symmetries D,.

3
3

7.5}. Thus, we have the following non-zero ﬁlf ’s for A and B:

1
1

0
0

2.5}, o(B) =

{€) = 6.5,¢] = 45,63 =

(1,1,1) and o(A)

9.5,63 =

1
1

associate the sequence (50,51,53)

{60 =11.5,¢

mg(B)= 1,

my(A) =1,

m}(B)=1,

mi(A) =1,

ma(B)= 1.

(4) =1,

Consequently, we have the non-zero isotypical defect numbers
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Hence,

Zi <m?é degv,-,z>

7=0k=0
=1 (degvm1 +degvoyz) +(-1)- (degvoy1 +degy, , +degv013)
1. (degym + degvl’z) +(=1)- (degvlvl +degy, , + degvm)

+1- degV3,1 Jr(*l) ’ (degV3,1 Jrdengg)

=— dengY3 — deng3 — degvg’2 .
Finally,
deg; = O3 [showdegree[D4] (1,1,0,1,0,—1,-1,0,0,0)]
+ O [showdegree[D4] (1,1,0,1,0,0,0,0,—1,0)],

where O is as described by (5.1.6) and showdegree[I'] is a special Maple© procedure available at

http://krawcewicz.net/degree. _
The dominating orbit types in W are (Dy), (Z4) := (ZY'), (D$), (D$) and (D). The value of
deg, is listed in Table 2.

Dihedral Symmetries D5. In the case I' = D5, we have V = Vy®V; @ Vs, to which we associate
the sequence (e9,¢1,62) = (1,1,1) and o(A) = {&) = 6.5,£] = 4.5 + ‘/52’1,53 =45 — @},
o(B)={& =115, =9.5+ ‘/52*1,53 =95— @} Thus, we have the following non-zero m#’s
for A and B:

ma(A) =1, my(B)=1,
mi(A) =1, mi(B)=1,
my(A) =1, m3(B)=1
Consequently, we have the non-zero isotypical defect numbers
mi=1 mi=-1, mi=1, mi=-1, mi=1, mj=—1
Hence,
s oo k
ZZ <mfz degVﬂ)
j=0k=0 1=1
=1- <degvm1 ereng) +(-1)- (degvo)1 +degy, , ereng)
+1- (degvm +degv172) +(-1)- (degvm +degy, , +degv1,3)
+1- degv2,1 +(-1)- (degvl1 —I—degvu)
= —degy, , —degy, , —degy, , .
Finally,

deg, = ©3 [showdegree[D5] (1,1,1,0,—1,—1,0,0)]
+ O [showdegree [D5] (1,1,1,0,0,0,—1,0)].

The dominating orbit types in W are (Ds), (Z&), (Z2) and (D5). The value of deg; is listed
in Table 2.
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‘ r ‘ degy ‘ # Sols ‘

Dy (D3) + (2°) — (D3?) + (D5®) — (D3) 8

—(Z5%) + (D}?) = (D}?) + 2(D}) — 2(DY)

+(D§?) = (D3) — (D}?) + (DY)

Ds (D3) + (25%) + (D) + (D3) (Z?) 10

+(Zg%) + (D}?) + (DY) — (7})

Dg (D§?) + (Z¢g" 3) (D3) —3(D3?) — (D5
—(Z5®) +2(D7%) + (D3) + (DY) + 2(Z5 %)

11

~2Z3) + (DE2) + (Z2%) - (DF) — (D5?)
—2(D3?) — (D2) — (Z§°) + 2(D7?) + (D)
+(D}) + (Z5%) + (Z3) — 2(Z3)

Sy (S3) — (A}) + (DT*) — 3(D3) — (Dy°) 32
—2(D3) — (2°) — (23 °) — (Zi) 78]
—(Z5%) + (Z3) + 3(D3) + (Z5°) + 2(23)

—(Z3) + (S;°%) — (A} + (D}*) - 3(D5®)
—(D3?) = 2(D3?) — (25%) — (Z;%) — (23)
— (V%) = (257) (+ (Z3) +3(D7?) + (Z5%)

(

. +2(23) — (23

As (A2) + (A%) + (A2°) + (43) — (DZ?) 66

—3(D3) — 2(D3°) — 4(D3) — 3(Z8°) — 2(Z°)

+3(Vy %) — 6(25°) — (Z3) — 3(Z3°) + 5(Z3)
(A3) — (D2?) — 2(D5?) — (D?) — (2£7)

—2(Z2?%) +2(V, %) — 2(24%) — (Z3) — (23 7°)

—2(23) + 3(22)

Table 2: Existence results for the system (6.1) with symmetry group I'.
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Dihedral Symmetries Dg. In the case I' = Dg, we have V=V, ® V1 @ Vo & V4, to which we
associate the sequence (eq,¢€1,€2,64) = (1,1,1,1) and o(A) = {£) = 6.5,&F = 5.5,£2 = 3.5,£; =
2.5}, o(B) = {3 = 11.5,£} = 10.5,£2 = 8.5,&1 = 7.5}. Thus, we have the following non-zero mf’s
for A and B:

mg(A) =1, my(B)=1,
mi(A) =1, mi(B)=1,
my(A) =1, m3(B)=1,
mi(A) =1, m3(B)=1

Consequently, we have the non-zero isotypical defect numbers

mg frd ]_7 mg frng —1’ m% frng ]_7 mz{) = —]_7
mi=1, mi=-1, mj=1, mi=—1
Hence,
s oo k
35 (i3 s, |
j=0k=0 1=1
=1 (degVo,l +degVo,2) + (_]‘) ’ (degvo,l +degvo,2 +d6gvo,3>
- L (dengl +degvlw2) + (71> ’ (degvl’l +degv1’2 +degv1’3)
+1- degVQJ +(_1) . (degVZl +d€gv2,2>
+1- degV4,1 +(_]‘) : (degV4,1 + degV4,2>
= - degVUYS - degVLS - degVQYQ - degV4,2 .
Finally,

deg, = O3 [showdegree[D6] (1,1,1,0,1,0,—1,—1,0,0,0,0)]
+ O3 [showdegree[D6] (1,1,1,0,1,0,0,0,—1,0,—1,0)].

The dominating orbit types in W are (Dg), (D3), (Z§'), (Zg), (Dg) and (D3). The value of
deg, is listed in Table 2.

Octahedral Symmetries S;. For the octahedral group S, we consider the representation V =
R®, which has the isotypical decomposition V = Vy @ V; @ V3 @ V,, to which we associate the
sequence (g9,€1,€3,€4) = (1,1,1,1), and o(A) = {£) = 7.5,61 = 1.5,£3 = 5.5,£3 = 3.5}, 0(B) =
{€0 =12.5,¢ = 6.5,£5 = 10.5,£5 = 8.5}. Thus, we have the following non-zero ﬁzf’s for A and B:

ma(A) =1, my(B)=1,

mi(A) =1, mi(B)=1,

m3(A) =1, m3(B)=1,

my(A) =1, mi(B)=1.

Consequently, we have the non-zero isotypical defect numbers
mi=1 mi=-1, mi=1 m?=-1,
mi=1, mij=-1, mj=1, m?=—1.
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Hence,

j=0k=0

=1 (degVU,l +degV0,2> - (_1) ' (degVUJ +degV(J,2 —|—deg\}013>
+1- degV1,1 +<_1) ' (degVLl +degvl,2)
+1- (degv3,1 + degVS,Z) + (_1) ’ (degV3,1 + deng,z + dEgvs,g)

+1- degV4‘1 +(_1) ) (degV&l +degV4,2)

= - degvo,g - degV1,2 - degV3,3 - degv4,2 .

Finally,

deg, = O3 [showdegree[S4] (1,1,0,1,1,—1,0,0,—1,0)]
+ O3 [showdegree[s4] (1,1,0,1,1,0,—1,0,0,—1)].

The dominating orbit types in W are (Sy), (S;), (DY), (D$), (Z$) = (ZL}), (Z4) = (Z}') and
(D%). The value of deg; is listed in Table 2.

Icosahedral Symmetries As;. Finally, we consider the system (6.1) with the group of symme-
tries G = As x S', where As denotes the icosahedral group. The As-representation V = R?° has

the following isotypical decomposition
V=Vo@ Vi ®V1) DV V3D Vy,

to which we associate the sequence (eq,¢1,¢62,€3,€4) = (1,0,1,1,1), and o(A) = {£) = 7.5,¢] =
45,65 =2.5,62 =55, =45+ 5,68 =45 -5}, o(B) = {{&0 = 12,5, = 9.5,60 = 7.5,62 =
10.5,£8 = 9.5+ v/5,&4 = 9.5 — v/5}}. Thus, we have the following non-zero m%’s for A and B:

mo(A) =1, my(B)=1,
mi(A) =1, mi(B)=1,
mi(A) =1, mi(B)=1,
m5(A) =1, m3(B)=1,
m3(A) =1, m3(B)=1,
my(A) =1, m3(B)=1



Hence,

Zi (mﬁé degvj.l>

j=0k=0

=1 (degy, , +desy, ) + (1) - (degy,, +dogy, , +degy, )
+1- deng1 +(-1) - (degvl,1 —l—deng2 —&-degvm)

+1- (degvz1 +degv2’2) +(-1)- (degvm +degy, , +degv2)3)
+1- (deng + deng) +(-1)- (degvg,l +degy, , + degvs,a)
+1- degv4,1 +(-1) - (degv&1 —I—degvu)

= degVo,s - degVsz - deng,s - degV’z,s - deng,s - degV4,2 :

Finally,

deg, = O3 [showdegree[A5] (1,0,1,1,1,—1,—-1,—1,—1,0)]
+ O3 [showdegree[A5] (1,0,1,1,1,0,—1,0,0,—1)].

The dominating orbit types: (As), (D3), (Vy), (Z§), (Z2), (A}), (A?) and (D). The value of
deg, is listed in Table 2.

Appendix

Example 1. Let I" be the dihedral group Dg of order 12, as the group of rotations 1, p, TR
u*, 1® of the complex plane (where y is the multiplication by e%) plus the reflections r, xu, K2,
k3, kut, ku® with k£ being the operator of complex conjugation. The subgroups in Dg, up to the
conjugacy class, are listed below:

Do = {1, pu, p® 1, i, 1 5, kg, p® k™ i kp®

Dy = {1,4% p*, iy, wp®, 5%y, Dy = {1, 1% i 5, wp?, k),
Zg = {1, p, 1%, i, p*, 1}

Dy ={1,-1,k,—k},

Zs = {1,117, u*},

Dy = {1,ku}, Dy ={1,k},

Zo={1,-1}, Z,={1).
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The non-trivial* twisted one-folded subgroups in Dg x S, up to the conjugacy class are:

Di = {(1,1), (. 1), (1%, 1), (%, 1), (', 1), (u°, 1), (, —1),
(kg —1), (mpi?, = 1), (p®, 1), (v, 1), (e, 1)},
D = {(1,1), (1, —1), (12, 1), (4%, —1), (1", 1), (1°, —1), (s, —1),
(kp, 1), (kp®, 1), (5, 1), (e, =1), (5, 1)},
D = {(1,1), (1, ~1), (12, 1), (1%, =1), (", 1), (1%, —1). (5, 1),
(kp, 1), (K, 1), (k® ,*1),(w4,1) (kp®, —1)},
)
(

Z§ = {(1,1), (u, —1), (4, 1), (1*, =) (", 1), (1°, = 1)},
Zg = {(1,1), (s ), (122, %), (1 3) i), (1% 5)},
Zg ={(,1), (1), (%, 1), (2, D) (s 12), (6, 1)},
Dj = {(1,1), (42, 1), (u*, 1), (kps, —1), (rps®, — 1)( °, -1},
D; ={(1,1), (¢, 1), (u*, 1), (5, =1), (rpe®, 1), (mp*, —1)},
D3 ={(1,1),(-1,1), (s, -1), (=, - 1)},

D3 ={(1,1),(-1,-1), (x,1), (=5, =1)},

Df = {(1,1),(~1,-1), (5, ~1), (=x, 1)},

Zl = {(1, 1), (2, 1%), (u*, 1)},

D5 = {(L,1), (s, 1)}, DF = {(1,1), (s, 1)},

Zy ={(1,1),(-1,-1)}

We present the U(Dg x S') multiplication table in Table 3, where only the one-folded twisted
subgroups are included**

Example 2. Consider the permutation group I' = Sy of four symbols {1, 2, 3,4}, which is isomor-
phic to the octahedral group of symmetries, preserving orientation of a regular cube. The subgoups
of Sy, up to the conjugacy classes, are

S1=1{(1),(12), (13), (14), (23), (24), (34), (123), (132), (124),
(142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23),

(1234), (1243), (1324), (1342), (1423), (1432)},

As = {(1), (12)(34), (123), (132), (13)(24), (142),
(124), (14)(23), (134), (143), (243), (234)},

Dy = {(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24) },
D3 ={(1), (123), (132), (12),(23), (13)},
D2 = {(1), (12)(34), (12), (34)},
= {(1), (12)(34), (13)(24), (14)(23)},
= {(1), (1324), (12)(34), (1423)},
= {(1),(123),(132)},  Z2 = {(1),(12)(34)},
={(1),(12)}, Z, ={)}.

* BEvery subgroup H C T', which can be naturally identified with H x {1} C T' x S, is a (trivailly) twisted
one-folded subgroup given by the homomorphism ¢ : H — {1}.
** For [-folded twisted subgroups, where [ > 1, the multiplication table can be extended systematically.

34



The following lists the non-trivial twisted one-folded subgroups in Sy x S* (up to the conjugacy):

-~
~—
—
- - - - _
- g ' —~ - -
~ o -~ -~ — , -
— Py —~ ~~ - -
_\|H4\IN @ — [ ] ”A\ -
4 N < N | <t < = —_
~ 3 a3 — R e} ™ ~ —
M(.l/l\(/l\( ~— \4, ~— ~— — 1_. ~ -
PC = ™ = = | L=~
— = = = = ‘I_A 1,. = m.O/‘I_AZ
= -
z I | == . 2 ™ S ~4 |
L e e e m =S = _- - a==g - .
~~ —~ —~ —~ — AN I -~ _ O O = —
- N M M -~ ~— - A e ~— 433
YRR = SN\ BTG ~ I = 9«
~ o = = X 214\./4 - . - —
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As be the alternating group of order 60, i.e. Ay is the group of even permu-
35

tations of five symbols {1,2,3,4,5}, which is isomorphic to the icosahedral group of symmetries
of a regular dodecahedron. Up to the conjugacy, the subgroups in As are listed below (besides As

e’3 . We present the multiplication table for U(S; x S*) in Table 4.

2w

Example 3. Let I'

where



and Zl)I

={(1), (12)(34), (13)(24), (14)(23), (123), (132),
(124), (142), (134), (143), (234), (243)},

{(1), (12345), (13524), (14253), (15432), (12)(35),
(13)(54), (14)(23), (15)(24), (25)(34)},

{(1), (123), (132), (12)(45), (13)(45), (23)(45)},
{(1), (12345), (13524), (14253), (15432)},

{(1), (12)(34), (13)(24), (23)(14)},
{(1),(123), (132)},

{(1), (12)(34)},

|| Il ||
AA\_//—\

3
5
4
3
2

The non-trivial twisted one-folded subgroups in A5 x S! are (up to the conjugacy):

Al = {((1) 1), ((12)(34),1), ((13)(24),1), ((14)(23),1), ((123),7), ((132),?),
((124),7%), ((142),7), ((134),7), ((143),7%), ((234),~%), ((243),7)

AR = {((1)71) ((12)(34),1), ((13)(24),1), ((14)(23),1), ((123) %), ((132),7),
((124),7), ((142),7%), ((134),~°), ((143),7), ((234),7), ((243), }
D;:{((1),1), ((12345),1), ((13524),1), ((15432),1), (14253), ) ((12)(35), —1),

((13)(45), 1), ((14)(28), =1), ((15)(24), ~1), ((25)(34), 1) }
D5 = {((1,1), ((128),1), ((132),1), ((12)(45), 1), (13)(45), ~1). ((23)(45), 1) }
Z?:{((l),l) ((12345),¢), ((13524),¢7), ((14253),£%), ((15432), 4)}
Zg :{((1) 1), ((12345),€%), ((13524),&%), ((14253 €), ((15432),¢ 3)}
Vi = {((0,1), (12)(34),-1), ((13)24), 1), (23)(14),1) }
7L = {((1),1), ((123),7), ((132),72)}
Z; = {((1)7 1), ((12)(34),-1) }
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(D3 x SY)  (DyxSY)  (Zgx SY) (Ds x S (Z3 x 8Y) (Dy x S (D; x SY) (Zyx 8Y)  (Zyx SY)

(Dyx SY)  (Dyx SY)  (Z x ST (D3 x S (Z3 x 8Y) (Dy x S%) (D; x SY) (Zyx 8Y)  (Zyx SY)

2(Dy x St (Zz x SY)  (Zz x SY) (Dy x SY) 3(Zs x SY) 2(D; x S1) (Zy x SY) (Zy x S 2(Zy x SY)
(ZgXSl) 2(D3><Sl) (ZgXSl) (Dl XSI) 2(Z3 XSI) (Zl ><Sl) 2(D1 ><Sl) (Zl XSI) Q(Zl ><S1)
(Zy xS (ZzxS")  2(Zs xS (Zy x St) 2Zsx S (Zix S (Zy x S*) 2(Zy x ST 2(Zy x SY)
(Dyx8Y) (D1 xS  (ZoxS) (DaxS)+(Zax8) (ZyxS) (DixS)+(Zix8) (Dyx8)+(Zx8Y) 3(ZyxSY) 3(Z x5
2Ly x S')  2(ZzxSY) 2ZzxSY)  (ZixSY) 4Z3 x St) _ 2(Zix SY) 2(Zy x SY) 2(Zy x St 4(Zy x SY)
2Dy xSV (Zyx SY)  (Zyx SV (D1 xSY)+(Zy x SY) 27y x SY)  2(Dy x §1) + (Zy x SY) 3(Zy x SY) 3(Zy x SY)  6(Zy x SY)
(Zl XSl) Q(Dl XSl) (Zl XSl) (Dl X51)+(Zl XSI) 2(21 XSl) S(Zl XSI) Q(Dl XSl)+(Zl XSl) 3(21 ><Sl) 6(Z1 ><S1)
(Zy x ST (Z1 x SY)  2(Zox SY) 3(Zy x SY) 2(Zy x SY) 3(Zy x SY) 3(Zy x SY) 6(Zy x SY)  6(Z1 x SY)
2(Z; x SV 2(Zy x SY)  2(Zy x SY) 3(Z1 x SY) 4(Zy x SY) 6(Z; x SY) 6(Z; x S') 6(Z1 x SY)  12(Zy x S1)

) D (Ds) (Ds) (Zo) (D2) (Z3) (D1) (D1) (Z2) (Z4)

) (D 2(Ds) (Z3) (Z3) (D1) 3(Zs) 2(Dy) (Z41) (Z1) 2(Z1)

) (D (Z3) 2(Ds) (Z3) (D1) 2(Zs) (Zy1) 2(D1) (Zy) 2(21)

5) (Ze (Z3) (Z3) 2(Zs) (Z2) 2(Zs) _(Zv) (Z1) 2(Z2) 2(24)

) (D2 (D1) (D1) (Z2) (D2) + (Z2) (Zy) (D1) + (Z4) (D1) + (Z1) 3(Z2) 3(2y)

3) (Z3 2(Z3) 2(Zs) 2(2s3) _(Z) 4(Zs) 2(Zy) 2(Zy) 2(Zy) 4(Zy)

) (Dr 2(D1) (Z1) (Z4) (D1) + (2) 2(Z1) 2(D1) + (Z1) 3(Z1) 3(21) 6(Z1)

) (D (zy) 2(Dy) (zy) (D1) + (Z4) 2(zy) 3(zy) 2(Dy) + (Zy) 3(Zy) 6(2Z4)
(Z) (Z2 (Z4) (Z4) 2(Z2) 3(Z2) 2(Z1) 3(Zy1) 3(Z4) 6(Z2) 6(Z1)
(Zy) (Z4 2(Z1) 2(Zy) 2(Z) 3(Z1) 4(Z) 6(Z1) 6(Z1) 6(Z1) 12(Z)
(Dg) (D (D3) (D3) (Zo) (D3) (Z3) (D7) (D7) (Z2) (Z4)
(Dg) (Dg (Ds) (D3) (Zg) (Dg) (Z3) (D1) (D7) Ezfgi %%;
(Dg) (Dg (D3) (Ds) (Z§) (D3) (Z3) (D7) (Dy) Zy Zy
(zg) (z§ (Z3) (Zs3) 2(2§) (Z5) 3(Zs) (Z1) (Z1) 2(25) 2(2y)
(Zg') (Zg (25) (25) 22g) (Z3) 2(25) (Zr) (Z1) 22y ) 2(Z1)
(Zg) (Zg (Z%) (Z%) 2(Zg’) (Z») 2(z) (1) (Z4) 2(22) 2(2y1)
(D3) (D3 2(D3) (Z3) (Z3) (D7) 2(2Zs) 2(D7) (Z4) (Z4) 2(2Zy)
(D3) (D3 (Z3) 2(D3) (Z3) (D7) 2(Zs) _(Z) 2(D7) (Zy) 2(21)
(D3) (D3 (D7) (D7) (Z2) (D3) + (Z2) (Z41) (Df) + (Z41) (Df) + (Z1) 3(Z2) 3(Z1)
(D5) (D¢ (D7) (D1) (Z3) (DF) + (23) (Z4) (D7) + (21) (D1) + (24) 3(23) 3(Z1)
(Dg) (Dg (D1) (D7) (Z5) (D) +(Zy) (Z1) (D1) + (Z1) (D) +(Z) 3(Zy) 3(Z1)
(z%) (z4 2(z}) 2(z%) 2(zf) _ (Z) 4(Z5) _2(Za) 2(Zy) 2(Z1) 4(Zy)
(D7) (Df 2(D3) (Z4) (Z1) (D) + (Z1) 2(Z1) 2(D7) + 2(Z1) 3(Zy1) 3(Zy1) 6(Z1)
(Df) (Df (Z1) 2(D7) (Z1) (DY) + (Z1) 2(Zy) 3(2Zy1) 2(D7) +2(Za) 3(2Zy1) 6(Z1)
(Zy) (Zy (Z41) (Z41) 2(Zy) 3(Zy) 2(Zy) 3(Zy1) 3(Zy) 6(Z;) 6(Z1)

Table 3: Multiplication Table for U(Dg x S*)
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| (aaxsh (Dax S1) (Dy x §1) (D2 x §1) (Vi x S1) (Zax SY) (Zs x SY) (2 x SY)
(A4 x 8Y) || 2(As x S") (Vax S") (Zs x 8" (22 x S") 2(Va x 8 (22 x 8" 2(Z3 x S) 2(Zs x S)
(Dax SY) || (VaxSY)  (DaxS")+(Vax S (D1 x 8) (Dy x 8') + (Zo x S*)  3(VaxS8')  (Zax ')+ (Zox S") (Z1 x 8%) 3(Zy % S)
(D3 x SY) || (Zy x SY) (Dy x S1) (D3 x SY) + (D1 x S1) 2(Dy x S1) (Zy x SY) (Zy x SY) (Zy x S*) + (Zy x ") 2(Zy x S1)
(Dax SY) | (ZaxSY)  (Dax )+ (Za x S 2Dy x 51 2Dy x §1) + (Zy x §1)  3(Zax §Y)  (Zo x §V) + (Zy x ) 2(Zy x S1) 2Zy x ST) +2(Zy x V)
(Vax SY) || 2(vax SY) 3(Vy x Sh) (Zy x SY) 3(Zy x SY) 6(Vy x St) 3(Zy x SY) 2(Zy x SY) 6(Zy x S1)
(Zy x S || 2(Zy x SY)  (Zy x SY) + (Zy x ST) (Zy x SY) (Zg x SY) 4 (Zy x 8Y)  3(Zy x SY)  2(Zy x SY) + (Zy x SY) 2(Zy x S") 2(Zy x SY) +2(Zy x S)
(Zs % 8Y) || 2(Zs x ") (21 x 81 (Zs x S*) + (Zy x S*) 2(Z1 x S') 2(Z1 x S') 2(Z1 x S') 2(Z x S') +2(Z1 x S) 42y x S")
(Zs x 1) || 2(Zs x 1) 3(Zs x S1) 22y x S1) AZo x SV) +2(Zn x SV 6(Zs x SY)  2(Za x SV) +2(Zy x S1) A(Zy x ) A(Zs x SY) +4(Zy x SY)
(Dy x SY) || (Zy x SY) (D1 x SY) +(Zy x SY)  2(Dy x SY) 4+ (Zy x S*)  2(Dy x SY) +2(Zy x S*)  3(Zy x SY) 3(Zy x SY) A(Zy x SY) 6(Zy x S1)
(Zy x S*) || 2(Zy x SY) 3(Z1 x S1) 4(Zy x SY) 6(Zy x S') 6(Zy x S') 6(Zy x S') 8(Zy x SY) 12(Zy x S*)
(Aq) 2(Ay) (Vi) (Z3) (Z2) 2(Va) (Z2) 2(Zs) 2(Z)
(D4) (Va) (D4) + (Va) (D1) (D2) + (Z2) 3(Va) (Z4) + (Z2) (Z1) 3(Z2)
(Ds) (Z3) (D) (Ds) + (D1) 2(Dy) (Z4) (Zy1) (Z3) + (Z1) 2(Zy)
(D2) (Z>) (D2) + (Z2) 2(Dy) 2(D2) + (Z1) 3(Zo) (Z2) + (21) 2(Zy) 2(Z2) +2(Z1)
(Va 2(Va) 3(Va) (Zy) 3(Z2) 6(Va) 3(Z2) 2(24) 6(Z2)
(Z4) (Z>) (Z4) + (Z2) (Z1) (Z2) + (2.1) 3(Z2) 2(Z4) + (Z1) 2(Z1) 2(Z) + 2(21)
(2s) 2(Z3) (Z1) (Z3) + (Z.1) 2(Zq) 2(Zq) 2(Z) 2(Zs) + 2(Zr) 4(21)
(Z) 2(Zs) 3(Z) 2(Z1) 2(Z2) + 2(Zyr) 6(Z2) 2(Z2) + 2(Zyr) 4(2Zy) 4(Z2) + 4(Z1)
(D1) (Zy1) (D1) + (Z1) 2(D1) + (Z1) 2(D1) + 2(Z1) 3(Z1) 3(Z1) 4(Zy) 6(Z1)
(Zy1) 2(Zy) 3(Z1) 4(Zy) 6(Z1) 6(Z1) 6(Z1) 8(Z1) 12(Zy)
(55) (Ag) (Df) (D3) (D3) (V) (2y) (Z3) (Z2)
(A%) 2(A%) (Va) (z%) (Z,) 2(Va) (Z>) 2(zk) 2(Z2)
(D) (Vi) (Di)+ (Vi) (D7) (D3) + (Z3) 3(Vy) (Z4) +(Z3) (Zy) (Z2) +2(Zy)
(DY) Vi) (D) + (Vi) (D1) (D2) + (Z3) 3(Vi) ;) + (Zy) (Z1) (Z2) +2(Z5)
(D9) (Va) (DY) + (V) (D7) (D3) + (Z2) 3(Va) (Zy) + (22) (Zy1) 3(Z)
(D3) (Z3) (D) (D3) + (D7) 2(D7) (Zy) (Z41) (Z3) + (Z1) 2(Zy)
(D3) (Z2) (D3) + (Z2) 2(Df) 2(D3) + (Z1) 3(Z2) (Z2) + (Z4) 2(Zy) 2(Z2) + 2(Z1)
(D) (Z3) (D§) + (Z3) (D1) + (D7) 2(D3) + (Z1) 3(Zy) (Zy) + (Z1) 2(Zq) 2(Zy ) +2(Zr)
(Vi) 2(Vy) 3(Vi) (Z4) (Z2) +2(Z5) 6(Vy) (Z2) +2(Z5) 2(21) 2(Zy) + 42y )
(Zy) (Z (27) + (22) (Z1) (Z2) + (Z4) 3(Z2) 2(Zy ) + (Z1) 2(Zy) 2(Z2) +2(Z1)
(Z5) 2(Zy) (25) + (Z3) (Z1) (Z3) + (1) 3(2y) 2(Z5) + (21) 2(Z1) 2(Zy) +2(2Zy)
(z§) 2(25) (Z1) (2§) + (Z1) 2(Z1) 2(Zq) 2(Z1) 2(2Z%) + 2(Z1) 4(Zq)
(Zy) 2(Zy) 3(Zy) 2(Zy) 2(Zy ) +2(Zy) 6(Zy) 2(Zy ) +2(Zy) 4(Z1) 4(Zy) +4(Zq)
(D7) (Z41) (D7) + (Z1) 2(Df) + (21) 2(D7) +2(Zy) 3(Z1) 3(Z1) 4(Zy) 6(Z1)

Table 4: Multiplication Table for U(S; x S!)
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(45 x 51) (D5 % 5") (D5 x 8") (Zs < 5") (Vi< 5)) (Zs x &

(Ag x Sh) (D5 x SY) (D3 x S*) (Z5 x S*) (Vax SY) (Z3 x S*

(Ag x SY) + (Z3 x SY) (Zy x SY) (Z3 x SY) + (Zy x S*) (Zy x S*) (Vax SY) 4+ (Zy x SY)  2(Z3 x SY) + (2

(Zy x SY) (D5 x SY) + (Za x ST) 2(Zy x S1) (Zs x SY) + (Zy x S*) 3(Zy x SY) 2(Zy x S

(Zs x SY) + (Zy x SY) 2(Zy x SY) (D3 x SY) + (Zy x SY) + (Z1 x SY) 22y x SV 3(Zo x SY) + (Zy x SY)  (Zs x SY) +3(2

(Zy x S1) (Zs x SY) + (Zy x SY) 2(Zy x St) 2(Zs x SY) +2(Zy x S1) 3(Zy x S1) A(Zy x S

(Vi x SY) + (Zy x SY) 3(Zy x SY) 3(Zy x SY) + (Zy x SY) 3(Zy x S1) 3(Vy x S1) 4+ 3(Zy x S) 5(Zy x S

2(Zs x SY) + (Zy x SY) 2(Zy x SY) (Zg x SY) + 3(Zy x ST) 4(Zy x SY) 5(Zy x S1) 2(Zs x S) + 6(

(Zy x SY) +2(Zy x SY)  2(Zy x SY) +2(Zy x SY) 2(Zy x SY) +4(Zy x ST) 6(Zy x S1) 3(Zy x SY) +6(Zy x SY) 10(Zy x S

5(Z1 x S1) 6(Z1 x S1) 10(Zy x S1) 12(Zy x S*t) 15(Zy1 x St) 20(Zy X S
: : (4) (Ds) (Dy) (Z5) ) (5)

&) a8 w8, i R
D D. ; 5) + (Z: : + 3(Z |

(D3) (Dy) () + (22) 2z (Dy) + (Za) + (1) o) 3(22) + (1) (Z) + 31
(Zs5) (2Zs5) (Z4) (Zs5) + (Z1) 2(Z1) 2(Zs) +2(Z1) 3(Z1) 4(Zy
(Va) (V1) (Va) + (Z4) 3(Z2) 3(Zs) + (Z1) 3(2Z1) 3(Va) +3(Z41) 5(Z1)

(Z3) (Z3) 2(Zs) + (Z1) 2(2Zy) (Z3) + 3(Zy) HZy) 5(Zy) 2(Zs) + 6(
(Z) (Z2) (Z2) +2(Zy) 2(Z2) +2(Z1) 2(Z2) + 4(Z1) 6(Z1) 3(Zs) + 6(Z1) 10(Z1)
(Zy) (Zy) 5(2Z1) 6(Z1) 10(Z1) 12(Zy) 15(Z1) 20(Z1)

(AR (A (AR + (zh) (Z2) (Z2) + (Zh) (Zy1) (Va) + (21) 2(Z4) + (2

oy | B e 09 £ 25) e @)t o) Vo) )

D3 D 3 2+ (Zg 2Z5 5+ -

o) | @ (o) + (25) z;) (D§) + (23) + (Z2) o) 32;) + (2) (Za) + 31
(Z&) (Z&) (Z1) (Z&) + (z]; QEZI; ZEZ?; + 2221; 32215 42215
(ZL2) (zL2) (Z) (Z2)+(Z 2(Zy 2(Z2) +2(2, 3(Z, 4(Z,
v | v Vi) + (@ 225) + (22) 225) + (7o) + (22) "S2) 3V7) +3(20) 5(24)
(%) (%) 2(Z8) + (Zn) 2(Z1) (Z%) +3(2Z1) 6(Z1) 5(Z1) 2(Z) + 6
(Z3) (Z3) (Zy) +2(Z41) 2(Zy ) +2(Zy) 2Zy) +4(Zy) 6(Z1) 3(Zy) +6(Zy) 10(Z1)

Table 5: Multiplication Table for U(As x S1).
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