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ABSTRACT

The thesis mainly consists of three parts: theoretical preparations, applications

and computational results. The theoretical part primarily addresses the basic

properties and computational scheme of various equivariant degrees, including

the general equivariant degree, the primary equivariant degree, the twisted

primary degree, the S1-degree and the equivariant gradient degree (cf. Part

I). The second part contains two types of applications of equivariant degree

methods in the area of equivariant nonlinear analysis: the symmetric Hopf

bifurcations and the existence of periodic solutions in autonomous symmetric

systems (cf. Part II). The last part presents the appendix of Sobolev spaces

and a catalogue for several groups (their subgroups, irreducible representations

and basic degrees), multiplication tables and computational results obtained

throughout the thesis (cf. Part III).
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1

Introduction

1.1 Motivation

The concept of symmetry, though as vague as the notion of harmony, and
as simple as the impression evoked by regular geometric shapes, substantially
contributes as a fundamental central theme to the ultimate design of nature.
This has long been one idea that human beings have tried to comprehend in the

pursuit of order, beauty and perfection (cf. [178, 166]). The idea of symmetry
has been absorbed heuristically across human history, from architecture, to
visual art, to psychology, to education science, to musicology and sociology, not
to mention the interplay between arts and sciences (cf. [45, 151] and references

therein).

In a sense, symmetry itself has been instrumental in the development of

modern sciences. Some of the most profound results of modern physics have
been underlined by symmetries. The duality between mass and energy, as well
as between space and time, brought into light the special theory of relativity.
As the drama of physics moved from the classical to the quantum act, symme-

try was thrust into the limelight more than ever (cf. [186]). The mechanism of
symmetry breaking embodies one of the most powerful ideas of modern theo-
retical physics. It provides a basis for most of the recent achievements in the
description of phase transitions in statistical mechanics as well as of collective

phenomena in solid state physics (cf. [148, 167, 183]). It has also made possi-
ble the understanding of the unification of weak, electromagnetic, and strong
interactions in elementary particle physics (cf. [167, 184]).

Beyond the scope of modern physics, the presence of symmetry and its
consequences have been extensively observed in chemistry, neurophysics, com-

puter science, evolutionary ecology, sociology, and cognitive science (cf. [32, 56,
70, 82, 86, 161, 163, 171]). As the human perception naturally favors regular
structure, elegant designs or artistic forms, symmetry has left traces in a large
variety of dynamical systems (cf. [57, 76, 78] and references therein). While the

symmetry may very well satisfy our expression of beauty and perfection, very
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little is known about the impact of symmetry on the performance of dynamical

systems.

Nevertheless, there is inevitably a struggle in each symmetry with tendency

towards its breaking. The paradox resides in the failure of the symmetric laws
of nature to establish a unified world. The observable phenomena exhibit over-
whelmingly asymmetric diversity, which makes us believe that the natural pro-
cesses are driven by a prize fight between the unified symmetry and diversified

broken symmetries.

Examples of a win on the breaking side include the earthquake resistance

failure of buildings, the occurrence of fluctuation in electrical circuits, crashes
in electricity transmission networks, or environmental break-down in ecology
models (cf. [13, 14, 15, 16, 77, 79, 81, 83]).

1.2 Area and Subject

Facing the enormous range of symmetry and the multitude of its impact, one
seeks for a general understanding of the phenomena through a systematic and

formal study. The mathematical treatment of symmetry is put forward in the
language of the group theory. Symmetry is understood as an intrinsic property
of a mathematical object which causes it to remain invariant under certain
groups of transformations, such as translation, rotation, reflection, inversion,

or more abstract operations. A handful of Hermann Weyl’s scientific works un-
derscored group theory and its application in symmetry, including The Theory
of Groups and Quantum Mechanics, Classical Groups: Their Invariants and
Representations, and Symmetry (cf. [176, 177, 178]). As the struggle of sym-

metry persists, the process of mathematical abstraction of symmetry develops
further, hoping to finally lead us to a mathematical understanding of great
generality (cf. [174, 48, 91, 58]).

Behind the seemingly chaotic and overwhelmingly asymmetric natural phe-
nomena, equivariant nonlinear analysis provides us with a kaleidoscope to
the chromatic manifestation of symmetry. Equivariant dynamical systems are

mathematical formalizations for a set of relations describing time-dependent
processes of natural phenomena, which exhibit certain symmetric properties
(cf. [34, 38, 78, 81, 159]). The equivariant nonlinear analysis serves for the

study of equivariant dynamical systems, and deals with the impact of sym-
metry on the existence, multiplicity, stability and topological structure of the
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solution set of nonlinear equations, bifurcation phenomena, the applicability

of different kinds of approximation schemes, etc (cf. [7, 15, 57, 77, 78]).

Traditional methods used in equivariant nonlinear analysis include center

manifold and normal form reductions, Lyapunov-Schmidt reduction, algebraic
and geometric formalism of Lie group theory and transformation group meth-
ods (cf. [33, 34, 80, 121, 122, 123]), minimax methods for nonconvex function-
als, equivariant bifurcation theory, equivariant singularity theory, and theory

of critical orbits of invariant functionals (cf. [57, 76, 77, 79, 81, 140, 159]).

The topological degree theory, without considerations of symmetry, has a

long history which developed along successive steps of extensions and general-
izations. The oldest form of a degree is probably the degree of a smooth map f
from the unit circle S1 into itself, also known as the “winding number”, or the

“rotational number”, which counts the total number of times f travels coun-
terclockwise around the origin. The mapping degree theory or its equivalent,
the theory of rotation of vector fields, emerged in the studies of L. Kronecker
and H. Poincaré, and was further developed in the works of L. Brouwer and H.

Hopf for the finite-dimensional case, J. Leray and J. Schauder for completely
continuous vector fields in infinite dimensional space (cf. [28, 29, 75, 128, 125]).
It was however, M.A. Krasnosel’skii who indicated that knowing the mapping
degree provides the answers to the qualitative theory of nonlinear operator

equations (cf. [110]).

The degree theory of Brouwer and its infinite-dimensional extension — the

Leray-Schauder degree, showed their weaknesses in certain circumstances re-
lated to the presence of symmetry. In particular, the Leray-Schauder degree
often fails to detect periodic solutions in autonomous systems, due to the S1-
symmetry of periodic functions. A natural question arises: what is an adequate

theory of degree in the presence of symmetry?

In 1932, K. Borsuk observed for the first time that symmetries can lead to

restrictions on possible values of the degree, which then initiated a rigorous
study of the impact of symmetry on the homotopical properties of the maps
(cf. [24]). The subsequent developments were mainly due to P.A. Smith and
M.A. Krasnosel’skii (cf. [23, 65]). In the meantime, Krasnosel’skii revealed pro-

found connections between the degree of equivariant maps and the equivariant
extension problem (cf. [109]), which leads to a development of the so-called
“geometric approach” (cf. [120] for the most recent results, and [101] where
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the case of linear abelian group actions is studied in detail) applying the con-

cept of fundamental domains to reduce the problem of equivariant extensions
to the case of free G-actions (cf. [120]) or fundamental cells (cf. [101]).

In 1967, Fuller defined a special index being a rational number known as
the Fuller index, which was the first attempt to assign to an autonomous dy-
namical system an S1-equivariant homotopy invariant (cf. [67]). Though of its
theoretical importance, it is defined in an extended phase space, which makes

this invariant difficult to compute. In 1988, G. Dylawerski introduced a degree
theory for S1-equivariant maps between representation spheres (cf. [51]). For
a more general group of symmetries described by a compact Lie group G, a

degree theory of G-equivariant maps was introduced by J. Ize et al. in [97]
and rigorously studied in [101] for abelian groups. Independently, K. Gȩba et
al. constructed the S1-degree using the idea of normal approximations, where
connections between S1-degree and the Fuller index were also indicated (cf.

[52], see also [101]). Later, by applying similar constructions, a predecessor of
the so-called primary equivariant degree for a compact Lie group G was intro-
duced in [72]. Based on a result due to G. Peschke in [147], this primary degree
can be recognized as the “primary part” of the equivariant degree introduced

by Ize et al.

Contrary to the nonequivariant case, the homotopy structure of equivariant

gradient maps is essentially different from those of non-gradient maps (cf. [146]
for nonequivariant case and [41] for equivariant case). In 1985, motivated by the
study of bifurcations of periodic solutions in Hamiltonian systems, E.N. Dancer
introduced an invariant for S1-equivariant gradient maps (cf. [40]). His idea of

associating topological invariants to S1-equivariant gradient fields, was further
developed in several directions. In [44], E.N. Dancer and J.F. Toland introduced
a topological invariant for systems with first integrals. S. Rybicki defined the

S1-degree for equivariant orthogonal maps as an extension of gradient maps
in [153], which was generalized by J. Ize and A. Vignoli in [101] for abelian
compact Lie groups. The gradient equivariant degree in the case of a general
compact Lie group G, was introduced by K. Gȩba in [71]. This degree takes

values in the Euler ring U(G), which is a generalization of the Burnside ring
by T. tom Dieck (cf. [47]). This equivariant gradient degree contains implicitly
the Dancer invariant which was mentioned above.

In comparison with traditional methods in equivariant nonlinear analysis,
such as the equivariant Conley index, Morse-Floer complex, minimax theory
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(cf. [18, 19, 64, 134, 150, 172, 173]) and the equivariant singularity theory (cf.

[57, 76, 77, 79, 81], see also [7, 15] and references therein), the equivariant
degree theory has the following advantages (cf. [5, 6, 10, 12, 13, 14, 17, 53, 55,
181, 118])

(a) Usage of the standard settings allowing efficient treatment of a large class
of differential equations with arbitrarily large symmetry groups;

(b) Transparent computational formulae translating the equivariant spectral
information of a linearized system into a topological invariant;

(c) Effective computerization of algebraic computations, and creation of a
database for classical symmetry groups collecting their subgroups, irre-
ducible representations and multiplication tables;

(d) Comprehensive form of the topological invariant, which contains full topo-

logical information about the solution set of considered systems.

1.3 Two Examples

To demonstrate the mechanism of equivariant degree methods included in the
thesis, we provide two examples of its application in equivariant nonlinear anal-

ysis. One looks into the Hopf bifurcation in a symmetric system of predator-
prey equations; the other investigates the existence of periodic solutions in a
symmetric Newtonian system.

1.3.1 Predation and Migration

Consider an ecosystem composed of 6 spatially symmetrically distributed
subcommunities represented in Figure 1.1. Each subcommunity involves a
predator-prey interaction between 2 species modeled by the Lotka-Volterra
equations (with a slight modification), while the ecosystem is organized by a

mild migration between every 2 adjacent subcommunities.

Recall that the Lotka-Volterra equations, proposed independently by Alfred

J. Lotka in 1925 and Vito Volterra in 1926, describe a predation dynamics
{
ẋ = x(α − βy),

ẏ = −y(γ − δx),
(1.1)

where x = x(t) stands for the prey density and y = y(t) for the predator
density. The quantities α and γ corresponds to the intrinsic growth rate of
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the prey and the diminishing rate of the predator respectively; β and δ reflect

the predation impact factors on the growth rate of the prey and the predator
respectively. All the quantities α, γ, β, δ are assumed to be positive.

Assume that the predator-prey interaction in each subcommunity can be
modeled by a modified version of (1.1) (cf. [158, 66])

{
ẋ = x(α+ cx− βy),

ẏ = −y(γ − δx− dy),
(1.2)

where c and d are parameters of returns. The case where c and d are both

positive corresponds to the case of increasing returns, whereas the case where
both are negative corresponds to diminishing returns. The case where c and
d have opposite signs corresponds to semi-increasing returns. Biologically, in-
creasing (resp. diminishing) returns in either species means that to the second

order, the growth of that species is enhanced (resp. hindered) by increasing
the species density.

To carry out a mathematical analysis to the system (1.2), we first introduce
the following shorthand notations

A = αδ + γc, B = βγ − αd, C := δβ + dc.

For simplicity, assume that A, B and C > 0. Then, the system (1.2) has the
following equilibria

(0, 0),
(
− α

c
, 0
)
,
(
0,
γ

d

)
,
(B
C
,
A

C

)
,

among which the last one is called the interior equilibrium. We are interested

in the phenomenon of the Hopf bifurcation taking place in the neighborhood
of the interior equilibrium

(
xo(α), yo(α)

)
=
(B
C
,
A

C

)
,

where α is the parameter of bifurcation. To obtain the characteristic roots of
(1.2), we carry out the standard linearization of (1.2) at (xo(α), yo(α)) given

by {
ẋ = cB

C
x− βB

C
y,

ẏ = δA
C
x+ dA

C
y.

(1.3)
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Denote by

Mo :=

[
cB
C

−βB
C

δA
C

dA
C

]
. (1.4)

Then, the characteristic roots of (1.2) are precisely the eigenvalues of Mo. By

the implicit function theorem, a necessary condition for an occurrence of Hopf
bifurcation at (xo(α), yo(α)) is that (1.2) has a purely imaginary characteristic
root. The corresponding value α is called a bifurcation center. It can be verified
that under the assumption (dA + cB)2 < 4ABC, Mo has a pair of complex

eigenvalues λ(α) = u(α) ± iv(α) for

u(α) =
dA+ cB

2C
, v(α) =

√
4ABC − (dA+ cB)2

2C
. (1.5)

Solving u(α) = 0 for α, we obtain the bifurcation center of (1.2) at (xo(α), yo(α))

αo :=
γc(β + d)

d(c− δ)
.

We are now in a position to analyze the ecosystem composed of 6 subcom-
munities located in spatially symmetrically distributed habitats (cf. Figure
1.1). Assume that each subcommunity Ci undergoes a predator-prey inter-
action described by the modified Lotka-Volterra equations (1.2) with (x, y)

replaced by (xi, yi), for i = 1, 2, . . . , 6. The ecosystem supports a mild migra-
tion between every 2 adjacent subcommunities, with the migration rate given
by ν > 0. Hardly any communities in ecology are identical, residing in exact

symmetrically distributed locations, however, when dealing with a model with
accuracy-limited data, such model of ecosystem allows us to explore the sym-
metry aspect of the dynamics, including its impact on the occurrence of Hopf
bifurcations in the system.

The mathematical description of this symmetric configuration is a symme-
try with respect to the dihedral group D6

∗. For a population density vector
w = (x1, y1, x2, y2, . . . , x6, y6)

T ∈ R12, each element of D6 acts as a linear
transformation of w. More precisely,

{
µ(x1, y1, x2, y2, . . . , x6, y6) = (x6, y6, x1, y1, . . . , x5, y5),

κ(x1, y1, x2, y2, . . . , x6, y6) = (x6, y6, x5, y5, . . . , x1, y1).

∗ The group D6 is composed of 6 rotations 1, µ, µ2, µ3, µ4, µ5, for µ = ei π
3 of complex plane,

and 6 reflections κ, κµ, κµ2, κµ3, κµ4, κµ5, where κ is the complex conjugation (cf. Appendix
A2.1.2 for more details).
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C1

C2C3

C5 C6

C4
b

bb

b

b b

Fig. 1.1. Dihedral configuration of the ecosystem, where Ci = (xi(t), yi(t)) is the i-th community.

Therefore, we consider an ecosystem of D6-symmetrically located subcom-
munities of predator-prey interactions, which is modeled by
{
ẋi = xi(α+ cxi − βyi) + ν(xi+1 − xi) + ν(xi−1 − xi),

ẏi = −yi(γ − δxi − dyi) + ν(yi+1 − yi) + ν(yi−1 − yi),
i = 1, 2, . . . , 6,

(1.6)
where xi, yi are the respective population density of the prey and predator in
the i-th subcommunity, and i ≡ i+6 for i = 1, 2, . . . , 6 . It can be verified that

the system (1.6) is invariant under the action of the dihedral group D6, which
is called D6-symmetric system. Our aim is to present a symmetric analysis of
the Hopf bifurcation phenomena occurring in the system (1.6) at its interior
equilibrium wo(α), where

wo(α) := (xo(α), yo(α), xo(α), yo(α), . . . , xo(α), yo(α))T ∈ R12,

and α is the parameter of bifurcation.

The linearization of the system (1.6) at wo(α) can be written as

ẇ = Mw + νCw, (1.7)

where w = (x1, y1, x2, y2, . . . , x6, y6)
T is the population density vector, the ma-

trix M represents the initial predation in subcommunities and the matrix C
stands for the interaction relation between adjacent subcommunities

M :=




Mo 0 0 0 0 0
0 Mo 0 0 0 0
0 0 Mo 0 0 0
0 0 0 Mo 0 0
0 0 0 0 Mo 0
0 0 0 0 0 Mo



, C :=




−2I I 0 0 0 I
I −2I I 0 0 0
0 I −2I I 0 0
0 0 I −2I I 0
0 0 0 I −2I I
I 0 0 0 I −2I



,
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for Mo defined by (1.4) and I being the 2 × 2 identity matrix. Let σ(C) be

the spectrum of C, which contains 4 elements ξ0 := 0, ξ1 := −1, ξ2 := −3 and
ξ4 := −4. Denote by E(ξk) the eigenspace of ξk for k = 0, 1, 2, 4. Since C is a
symmetric matrix, there exists an orthogonal linear transformation matrix P

such that

C = P




ξ0I2×2 0 0 0
0 ξ1I4×4 0 0
0 0 ξ2I4×4 0
0 0 0 ξ4I2×2


P

T .

Moreover, the eigenspaces of C span the whole phase space

R12 = E(ξ0) ⊕ E(ξ1) ⊕ E(ξ2) ⊕ E(ξ4).

Since each E(ξk) is invariant under the D6-action, it is isomorphic to a sum of
several copies of irreducible representations of D6 (cf. Appendix A2.2.4 for a
list). One can verify, in our case, we have E(ξk) ' Vk ⊕ Vk, where Vk stands
for the k-th irreducible representation of D6, for k = 0, 1, 2, 4. In particular,

the Vl-multiplicity of ξk is

ml(ξk) = 2δl,k =

{
2, if l = k

0, otherwise
, l, k ∈ {0, 1, 2, 4}.

By a change of coordinates q := P Tw, the system (1.7) is transformed to

q̇ = M̃q, (1.8)

where

M̃ :=




Mo + νξ0I 0 0 0 0 0
0 Mo + νξ1I 0 0 0 0
0 0 Mo + νξ1I 0 0 0
0 0 0 Mo + νξ2I 0 0
0 0 0 0 Mo + νξ2I 0
0 0 0 0 0 Mo + νξ4I



.

(1.9)
Then, the characteristic roots of the system (1.6) at wo(α) correspond to

the eigenvalues of M̃ , which can be determined by

µk(α) := λ(α) + νξk,

= u(α) + νξk ± iv(α) k = 0, 1, 2, 4, (1.10)
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where u(α) and v(α) are defined by (1.5). Clearly, ml(µk(α)) = ml(ξk) = δl,k.

For each ξk ∈ σ(C), by letting u(α)+νξk = 0, we obtain a bifurcation center

αk :=
γc(β + d) + 2νξkC

d(c− δ)
, k = 0, 1, 2, 4.

Denote by iβk the purely imaginary characteristic root of (1.6) at α = αk. To
detect the occurrence of possible Hopf bifurcations around αk, we associate

to each pair (αk, βk) a bifurcation invariant ω(αk, βk) in terms of a twisted
equivariant degree for a completely continuous field.

More precisely∗, by introducing an additional parameter of the unknown
period of possible bifurcating branches, we transform the system (1.6) to an
equivalent problem of finding 2π-periodic solutions to a normalized system.

Based on this normalization, we can choose an appropriate functional space
W , which is an invariant space under the D6 × S1-action, where S1 ' R/2πZ
represents the temporal symmetries of 2π-periodic functions in W . Thereby,
we reformulate the normalized system to a D6 × S1-equivariant fixed-point

problem of a completely continuous map F : R2 ⊕W → W , i.e. the problem
of finding x such that x = F(α, β, x). Finally, by introducing an auxiliary
function ς : R2 ⊕W → R, we are able to restrain the bifurcating branches in
a neighborhood Ω of (α, β) so to carry out a local analysis of a one-parameter

map F : R2 ⊕W → R ⊕W composed by ς and F . Define

ω(αk, βk) :=D6×S1-Deg(F, Ω).

The computation of the bifurcation invariants is based on

I a continuous deformation of F to a product map of F : R12 → R12 and
Fo : R2 ⊕Wo → R ⊕Wo, where Wo := W 	 R12;

I the multiplicativity property of the twisted equivariant degree, which

implies (cf. Proposition 4.2.6)

ω(αk, βk) =D6×S1-Deg(F, Ω) ◦D6×S1-Deg(Fo, Ωo), (1.11)

where Ω := Ω∩R12,Ωo := Ω∩(R2⊕Wo) and ◦ stands for the A(D6)-module

multiplication in At(D6 × S1) (cf. Appendix A3.14);

∗ For a concise presentation, here we only provide a brief description of this standard degree-
theoretical treatment to a symmetric Hopf bifurcation problem. For more technical details and
precise formulations, we refer to Chapter 6.
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I the concept of basic degrees deg Vi
(of no parameters) associated with

the i-th irreducible representation Vi of D6, combined with the negative
spectrum σ− of F, gives rise to (cf. Subsection 4.1.3)

D6×S1-Deg(F, Ω) =
∏

µ∈σ−

∏

i

(deg Vi
)mi(µ), (1.12)

where mi(µ) is the Vi-multiplicity of µ;
I the concept of twisted basic degrees deg Vj,l

associated with the irreducible

representation Vj,l of D6 × S1, combined with the notion of the crossing
numbers tj,l(αk, βk), gives rise to (cf. Subsection 4.2.4 and Lemma 3.3.4)

D6×S1-Deg(Fo, Ωo) =
∑

j,l

tj,l(αk, βk) deg Vj,l
. (1.13)

Based on the computational formulae (1.11)—(1.13), we provide a compu-
tational example of the Hopf bifurcation problem for the system (1.6). Take

the sample quantities

γ = 0.50, β = 1.00, δ = 0.50, c = 0.20, d = −0.30, ν = 0.01.

In this case, we have the following bifurcation centers

α0 = 0.78, α1 = 0.68, α2 = 0.48, α4 = 0.38,

with the corresponding purely imaginary roots iβk

β0 = 79.44, β1 = 73.83, β2 = 62.29, β4 = 56.28.

The crossing numbers tj,l(αk, βk) are

t0,1(α0, β0) = t1,1(α1, β1) = t2,1(α2, β2) = t4,1(α4, β4) = 2.

Consequently, we have the values of bifurcation invariants ω(αk, βk) = 2deg Vk,1

for k = 0, 1, 2, 4. Calling the Maple c© routine command showdegree[D6], we
obtain
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ω(α0, β0) = showdegree[D6](0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0)

= 2(D6),

ω(α1, β1) = showdegree[D6](0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0)

= 2(Zt1
6 ) + 2(Dd

2) + 2(Dd̂
2) − 2(Z−

2 )

ω(α2, β2) = showdegree[D6](0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0)

= 2(Zt2
6 ) + 2(Dz

2) + 2(D2) − 2(Z2)

ω(α4, β4) = showdegree[D6](0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0)

= 2(Dd
6),

where each (Hδ,m) refers to the conjugacy class of the subgroup Hδ,m ⊂ D6×S1

(cf. Example A2.1.1, Appendix A2) and the highlighted terms are related to the

concept of dominating orbit types, which satisfy certain maximality condition
according to the conjugation relation.

Conclusion. There exists at least 1 bifurcating branch of periodic solutions
at (αo, βo) with the least symmetry (D6); there exist at least 5 bifurcating
branches of periodic solutions at (α1, β1) with 2 having the least symmetry
(Zt1

6 ) and 3 having the least symmetry (Dd̂
2); there exist at least 5 bifurcating

branches of periodic solutions at (α2, β2) with 2 having the least symmetry
(Zt2

6 ) and 3 having the least symmetry (Dz
2); there exists at least 1 bifurcating

branch of periodic solutions at (α4, β4) with the least symmetry (Dd
6).

Evidently, when α crosses the bifurcation centers αk for k = 0, 1, 2, 4, the
total symmetry D6 × S1 of the trivial solution w ≡ 0 breaks down to different
subsymmetries (D6), (Zt1

6 ), (Dd̂
2), (Zt2

6 ), (Dz
2), (Dd

6) of nonzero solutions. The

broken symmetries captured by the invariants ω(αk, βk), in turn, entail the
appearance of nontrivial periodic solutions bifurcating from α = αk.

1.3.2 Newtonian Motions

Consider a system of 6 unit point masses Pi (for i = 1, 2, . . . , 6) trajecting in
R6, whose time-dependent position function x : R → R6 satisfies the second
Newton’s law of motion, which states that the time rate of change of the

velocity function is proportional to a net force function F : R6 → R6 applied
on the particles. Suppose that the system is autonomous and symmetric with
respect to the dihedral group D6-action on R6. More precisely, F is assumed

to commute with the D6-action on R6, i.e. F (gx) = gF (x) for g ∈ D6 and
x ∈ R6.
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An example of such autonomous Newtonian system can be described by




−ẍ1 = 4x1 + x2 + x6 + a(x)(5x1 + x2 + x6),

−ẍ2 = x1 + 4x2 + x3 + a(x)(x1 + 5x2 + x3),

−ẍ3 = x2 + 4x3 + x4 + a(x)(x2 + 5x3 + x4),

−ẍ4 = x3 + 4x4 + x5 + a(x)(x3 + 5x4 + x5),

−ẍ5 = x4 + 4x5 + x6 + a(x)(x4 + 5x5 + x6),

−ẍ6 = x5 + 4x6 + x1 + a(x)(x5 + 5x6 + x1),

(1.14)

where a : R6 → R is given by a(x) =
(
5(x2

1 +x2
2 +x2

3 +x2
4 +x2

5 +x2
6) +2(x1x2 +

x2x3 + x3x4 + x4x5 + x5x6 + x6x1) + 1
)− 3

2 .

We are interested in finding non-constant 2π-periodic solutions to (1.14),

which can be formulated precisely as finding nontrivial solutions to
{
−ẍ = F (x),

x(0) = x(2π), ẋ(0) = ẋ(2π),
(1.15)

where the force function F : R6 → R6 is represented by the righthand side of
(1.14). Notice that F behaves asymptotically linear at ∞, meaning that there
exists a linear map A∞ such that F (x) = A∞x + o(x) as ‖x‖ → ∞. Put
A0 := DF (0). We have

A0 =




9 2 0 0 0 2
2 9 2 0 0 0
0 2 9 2 0 0
0 0 2 9 2 0
0 0 0 2 9 2
2 0 0 0 2 9



, A∞ =




4 1 0 0 0 1
1 4 1 0 0 0
0 1 4 1 0 0
0 0 1 4 1 0
0 0 0 1 4 1
1 0 0 0 1 4



,

which represent the linearized maps of F at 0 and ∞ respectively. Further,
one verifies that (σ(A0) ∪ σ(A∞))∩ {k2 : k = 0, 1, . . . } = ∅, which eliminates
the possibility of the linearized systems of (1.15) at 0 and ∞ having non-zero

solutions. Therefore, it provides an admissible setting to detect a nontrivial so-
lution to (1.15) by inspecting the topological difference between the linearized
systems of (1.15) at 0 and at ∞.

More precisely∗, choose an appropriate functional space W , where the solu-
tions to (1.15) inhabit, and reformulate (1.15) as a D6 ×S1-equivariant varia-

∗ We only provide a concise description of the degree-theoretical treatment to a symmetric
variational problem. For more technical details and precise formulations, we refer to Chapter 10.
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tional problem of finding critical points of certain associated energy functional

Φ : W → R, where S1 ' R/2πZ represents the temporal symmetries of the
2π-periodicity of functions in W . Thus, we have

x is a solution to (1.15) ⇐⇒ ∇Φ(x) = 0, x ∈ W.

By a compactness argument, ∇Φ is a D6×S1-equivariant completely continuous
field, to which the equivariant degree theory applies. By the spectral properties

of A0 and A∞, combined with the implicit function theorem, there exists a
small ball Bε and a large ball BR in W such that ∇Φ(x) 6= 0 for any boundary
points x ∈ (∂Bε∪∂BR). By means of the gradient equivariant degree ∇D6×S1-deg,
we can associate to the system (1.15) two elements ∇D6×S1-deg(∇Φ,Bε) and

∇G-deg (∇Φ,BR) in a ring called the Euler ring U(D6×S1). Roughly speaking,
in the context of the ring, one is allowed to multiply two gradient equivariant
degrees. Therefore, the difference

deg ∞ − deg 0 := ∇D6×S1-deg(∇Φ,BR) −∇D6×S1-deg(∇Φ,Bε)

is a topological invariant capturing the existence of solutions to (1.15) in be-

tween Bε and BR.

Computational techniques used for deg ∞ − deg 0 are based on

I the linearization argument, which relays the computations of deg p to the
computations of a linear isomorphism Ap on W by

deg p = ∇D6×S1-deg(Ap, B1(W )),

where B1(W ) denotes the unit ball in W and Ap : W → W is defined
through Ap, for p ∈ {0,∞};

I the reduction to the basic gradient degrees, denoted by

Deg W := ∇D6×S1-deg(−Id , B1(W )),

for an irreducible representation W of D6 × S1. Observe that Deg W ’s rep-
resent the gradient equivariant degrees of the simplest possible maps being
topologically nontrivial (cf. Definition 5.2.7);

(iii) the multiplicity property of the gradient equivariant degree (inherited from

the ring multiplication in the Euler ring U(D6 × S1)), induces a product
formula (cf. Subsection 5.2.2)
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deg p =
∏

ξ∈σ−(Ap)

∏

k

(Deg Wk
)mk(ξ), (1.16)

where σ−(Ap) stands for the negative spectrum of Ap, Wk runs through a

catalogue of irreducibleD6×S1-representations and mk(ξ) is the multiplicity
of ξ with respect to Wk. Notice that the product in (1.16) is only essential
over finitely many terms, since Ap is a compact perturbation of Id , there

exist only finitely many ξ ∈ σ−(Ap) each of which has a finite multiplicity.

By calling the Maple c© routine command showdegree[D6] , we obtain

deg ∞ − deg 0 = −(Dd,3
6 ) − (Zt1,3

6 ) + (D3
3) + 3(Dd,3

2 ) + (Dd̂,3
2 ) + (Zt,3

3 )

− 2(D̃z,3
1 ) − (D̃3

1) − (D3
1) − 2(Z−,3

2 ) + 2(Z3
1) − (Dd,2

6 )

− (Zt2,2
6 ) + (D2

3) + (Dz,2
2 ) + 2(Dd,2

2 ) + (D2
2) + (Zt,2

3 )

− 2(D̃z,2
1 ) − (D̃2

1) − (D2
1) − (Z−,2

2 ) + 2(Z2
1), (1.17)

where each (Hδ,m) refers to the conjugacy class of the subgroup Hδ,m ⊂ D6×S1

(cf. Example A2.1.1, Appendix A2) and the highlighted terms are related to the

concept of dominating orbit types, which satisfy certain maximality condition
according to the conjugation relation.

Conclusion.

Based on the value of the invariant provided by (1.17), we conclude that there
exist 11 nonconstant periodic solutions to (1.15), include 1 nonconstant so-

lution of symmetry at least (Dd,3
6 ), 2 nonconstant solutions of symmetry at

least (Zt1,3
6 ), 3 nonconstant solutions of symmetry at least (Dd̂,3

2 ), 2 noncon-

stant solutions of symmetry at least (Zt2,2
6 ), and 3 nonconstant solutions of

symmetry at least (Dz,2
2 ).

Eminently, the initial symmetry D6 × S1 of the stationary solution breaks
down to several subsymmetries of other physical states (nonconstant periodic

solutions), namely (Dd,3
6 ), (Zt1,3

6 ), (Dd̂,3
2 ), (Zt2 ,2

6 ) and (Dz,2
2 ), being captured by

deg ∞ − deg 0.

1.4 Overview and Contribution

There are several different names of equivariant degrees appearing in the thesis:
general equivariant degree, primary equivariant degree, S1-equivariant degree,
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twisted primary degree, equivariant gradient degree and orthogonal degree.

Belonging to the same family of equivariant degrees, they are interconnected
to each other.

Let G be the compact Lie group of symmetries. The general equivariant
degree, usually denoted by degG, produces the primary equivariant degree as
its truncated part, which is written as G-Deg . In turn, the twisted primary
degree G-Deg t, is included as a twisted part of the primary degree, in the case

G = Γ × S1 with Γ being a compact Lie group. The S1-equivariant degree is
a special case of the twisted degree for G = S1, and often written as S1-Deg .
On the other hand, the equivariant gradient degree denoted by ∇G-deg , is an

equivariant degree specially designed for gradient maps. It should be pointed
out that ∇G-deg generally differs from deg G, which is due to the fact that con-
trary to the non-equivariant case, the homotopy classes of gradient equivariant
maps do not coincide with those of general equivariant maps. However, in the

case of G being a one-dimensional bi-orientable compact Lie group, there ex-
ists a passage from ∇G-deg to G-Deg , through yet another equivariant degree,
namely the orthogonal degree G-Deg o.

The equivariant degree introduced in [97], though of great importance in
theory, provides no generous hints of its computations in practice. Contrarily,
the primary equivariant degree (with n-free parameters) shows a more efficient

aspect in its computational perspective.

In Chapter 3, we propose an axiomatic definition of the primary equivariant

degree, which lays a convenient pavement for the usage of the primary degree
outside the context of its topological origins (cf. Proposition 3.2.5). In par-
ticular, the primary equivariant degree with one free parameter proves to be
completely computable. Based on an axiomatic definition of the S1-equivariant

degree (cf. Theorem 3.4.4) and a recurrence formula (cf. Proposition 3.5.3), the
computations of primary G-equivariant degree (with one-free parameter) can
be systematically reduced to those of related S1-equivariant degrees.

Motivated by the study of symmetric Hopf bifurcation problems and the
existence of periodic solutions in symmetric autonomous systems, we explore
further properties of the primary equivariant degree for G = Γ ×S1, where the

compact Lie group Γ describes the spatial symmetry in considered dynamical
systems.
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There are two types of subgroups in Γ × S1: the non-twisted subgroups

K × S1, and the twisted subgroups Kϕ,l, where K ⊂ Γ (cf. Definition 4.2.1).
As nontrivial periodic functions only admit twisted subgroups of symmetries,
it is natural to introduce the twisted primary degree as the twisted part of the

primary equivariant degree, so to capture the presence of nontrivial periodic
solutions to the dynamical systems (cf. Chapter 4).

The twisted primary degree stands out as the most efficient topological tool

above others, contributing to the computerization of the equivariant degree
method. Several Maple c© routines∗ have been developed to enhance the speed
and accuracy of the computations. The computability of the twisted equiv-

ariant degree highly depends on its multiplicativity property, which is related
to certain module structure on its range (cf. Proposition 4.2.6). Examples of
multiplication tables for several groups are included in Appendix A3. By the
multiplicity property, the computations of the twisted primary degree can be

significantly reduced to the evaluations of the twisted basic degrees (cf. Defini-
tion 4.2.8). In Appendix A2, we prepare a catalogue of selected groups, their
irreducible representations and corresponding twisted basic degrees.

The equivariant gradient degree introduced by K. Gȩba, is an equivariant
degree theory specially designed for variational problems (cf. [71]). In Chap-
ter 5, our discussion starts with the range of the equivariant gradient degrees,

namely, the Euler ring. Though the gradient degree inherits a natural mul-
tiplicativity property from the ring structure, it is generally difficult to be
determined due to the complexity of the Euler ring multiplicative structure.
However, as proved in Subsection 5.1.1, there exists a close relation between

the Euler ring and the module structures arising from the primary degree the-
ory (cf. Remark 5.1.13). Therefore, we speculate a possibility to construct a
passage from the gradient degree to the primary degree, in order to make the

computational resources available for the computations of the gradient degree.
It turns out that in the case G is a one-dimensional bi-orientable compact Lie
group (cf. [147]), such a passage is possible through a construction of the equiv-
ariant orthogonal degree. Consequently, we establish computational formulae

of equivariant gradient degrees based on the linkage (cf. Subsection 5.2.4).

∗ Current routines are available for quaternionic group Q8, dihedral groups DN , for
N = 3, 4, 5, 6, 8, 10, 12, the tetrahedral group A4, octahedral group S4 and icosahedral
group A5. The most recent version is available at http://krawcewicz.net/degree or
http://www.math.ualberta.ca/∼wkrawcew/degree.
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In Chapter 6 — Chapter 8, we apply the twisted primary degree method

to the study of Hopf bifurcations in equivariant dynamical systems. Roughly
speaking, a Hopf bifurcation is the phenomenon occuring around a stationary
solution x = xo to the system, undergoing a sudden change of stability, as a

parameter α crosses some critical value αo and thereby resulting in appearance
of small amplitude nontrivial periodic solutions near xo. In the language of
symmetry, the Hopf bifurcation precisely refers to the moment when the whole
symmetry of the stationary solution breaks down to smaller subsymmetries of

the nontrivial periodic solutions.

To study the bifurcation phenomena, we associate a bifurcation invariant

to each bifurcation center, by means of the twisted primary degree method.
The nontrivial value of the invariant provides a sufficient condition for an
appearance of Hopf bifurcations, and offers a symmetric classification of the
bifurcating branches indicating their least symmetries. Further, if the invariant

contains a nonzero (Kϕ,l)-term for a dominating orbit type (Kϕ,1) (cf. Definition
6.1.7), then the exact symmetries of the bifurcating periodic solutions can be
detected (after rescaling the period). The main advantage of this method is
that it can be applied to different classes of equations in a standard manner

(cf. functional differential equations in Chapter 6, neutral functional differential
equations in Chapter 7 and the functional parabolic differential equations in
Chapter 8). The computational examples are listed in Appendix A4.1—A4.3
for selected groups of symmetries.

In Chapter 9 and Chapter 10, we study the existence of nontrivial peri-
odic solutions in equivariant autonomous dynamical systems. More precisely,

in Chapter 9, we consider a symmetric Lotka-Volterra type system with de-
lays, which arises naturally from an ecological model of symmetrically located
predator-prey interactions. As this symmetric system falls out of the category

of symmetric variational problems, only few topological methods are tradi-
tionally used. Unfortunately, some of those methods such as Leray-Schauder
degree, are ineffective for detecting nontrivial periodic solutions.

By introducing additional homotopy parameters to the system and estab-
lishing a priori bounds for the parameterized systems, we are able to define a
topological invariant as a twisted primary degree (cf. Definition 9.1.1), which

detects the existence of multiple nontrivial periodic solutions to the original
system (cf. Theorem 9.1.2). Indeed, the appearance of different nontrivial pe-
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riodic solutions is engraved in the value of the topological invariants by their

broken subsymmetries.

It is appropriate to mention that the main content of the thesis is based

on several published journal papers co-authored by the author, namely [6, 11,
12, 13, 14, 68, 88, 152], and the catalogue of the groups and their represen-
tations is excerpted from [15]. Consequently, the scientific results included in
the thesis originate from collabrative research rather than being an individual

achievement.

1.5 Future Research

The methods and applications of the equivariant degree theory are far from
being complete. For general euqivariant degree, a development of the com-

putational methods for secondary equivariant degrees is needed. In the case
of primary degree and twisted primary degree, multiparameter cases should
be further explored, as well as their further connection with other equivari-
ant degrees. To expand the applications of the gradient equivariant degree,

we must establish effective methods for computations of Euler ring and basic
gradient degrees, including new data base for other interesting groups such as
SO(3) × S1, U(2), U(2) × S1.

Explore further potential applications to the existence of periodic solutions
in autonomous systems based on the a priori bounds techniques. Another inter-

esting phenomenon is the forced symmetry-breaking, which takes place when
the total symmetry G of the system reduces to a smaller symmetry Go under
an asymmetric perturbation (cf. [34, 101]). By studying the homomorphism
U(G) → U(Go) (resp. A(G) → A(Go)) induced by the inclusion map Go ↪→ G,

it is possible to determine the equivariant degrees of the perturbed system,
thus allow us to predict the forced symmetries of the system. Also, it is inter-
esting to study the global continuation of branches of solutions by means of
equivariant degree method, so to have a global picture of the behavior of or-

bits of periodic solutions. Not the least, we can also investigate the bifurcation
from relative equilibria, doubly periodic and Hopf bifurcations from a periodic
orbits etc (cf. [78]).
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Preliminaries

2.1 Basic Facts from Differential Topology

2.1.1 Smooth Manifolds

Throughout, a smooth manifold always means a separable paracompact C∞-

smooth finite-dimensional manifold, and a smooth map between two manifolds
is assumed to be of class C∞. For smooth manifolds M , N and a smooth map
f : M → N , we denote by τ (M) the tangent bundle of M and τx(M) the
tangent space of M at x ∈ M ; df : τ (M) → τ (N) stands for the tangent map

of f with dfx : τx(M) → τf(x)(N).

Definition 2.1.1. Let f : M → N be a smooth map between smooth mani-
folds. A point x ∈ M is said to be regular if the rank of the induced map of
tangent spaces dfx : τx(M) → τf(x)(N) is equal to dimN ; otherwise x is called
critical. A point y ∈ N is called a regular value of f if f−1(y) does not contain

a critical point; otherwise y is called a critical value of f . By definition, y is a
regular value if f−1(y) = ∅.

The concept of a regular value naturally extends to the notion of a map
transversally regular on a submanifold. More precisely, we have

Definition 2.1.2. Let P be a smooth submanifold of a smooth manifold N
and k = dimN −dimP be the co-dimension of P in N , denoted by codimN P .

Then, a smooth map f : M → N is said to be transversally regular with
respect to P , if for every x ∈ f−1(P ), the rank of the map

τx(M)
dfx−→ τf(x)(N) −→ τf(x)(N)/τf(x)(P )

is maximal, i.e. equals to k.

Let us recall several well-known results.

Proposition 2.1.3. If f : M → N is transversally regular with respect to

P ⊂ N , then the complete inverse image f−1(P ) is a smooth submanifold of
M and codimMf

−1(P ) = codimNP , whenever f−1(P ) 6= ∅.
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Corollary 2.1.4. Let f : M → N be a smooth map and y ∈ N a regular value

of f . Then, f−1(y) is a (dimM − dimN)-dimensional smooth submanifold of
M , whenever f−1(y) 6= ∅.

Proposition 2.1.5. (Sard-Brown Theorem) Let M be a smooth compact man-

ifold and f : M → Rk a smooth map. Then, the set of all critical values of f
has Lebesgue measure zero in Rk. Moreover, the set of all regular values of f
is open and dense in Rk.

Corollary 2.1.6. Let Ω ⊂ Rn be an open set, f : Ω → Rk a smooth map and

K ⊂ Ω a compact subset. Take y ∈ Rk and ε > 0. There exists a smooth map
g : Ω → Rk such that y is a regular value of g and

sup{‖f(x) − g(x)‖ : x ∈ K} < ε.

Another important consequence of the Sard-Brown theorem is related to the

realization of compact manifolds as submanifolds in RN . To be more specific,

Definition 2.1.7. A smooth map f : M → N is called embedding if the fol-
lowing two conditions are satisfied:

(i) the rank of the induced map dfx : τx(M) → τf(x)(N) is dimM for all x ∈M
(in particular, we must then have dimM ≤ dimN);

(ii) f : M → f(M) is a homeomorphism.

We have

Proposition 2.1.8. (Whitney Theorem) Let M be a compact n-dimensional

manifold (possibly with boundary). Then:

(i) M can be embedded into R2n+1;
(ii) if g : M → R2n+1 is a continuous map and ε > 0, then there exists an

embedding f : M → R2n+1 such that

sup{‖f(x) − g(x)‖ : x ∈M} < ε.
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2.1.2 Oriented Vector Bundles

For an n-dimensional vector space V , we say that two ordered bases b1 :=
(b1, b2, . . . , bn) and b2 := (b′1, b

′
2, . . . , b

′
n) of V determine the same orientation

of V if the change-of-coordinates matrix from b1 to b2 has positive determinant.
An orientation in V , denoted by o

V
, is a class of all ordered bases b, which de-

termine the same orientation in V . The pair (V, o
V

) is called an oriented vector

space with the orientation oV on V . There are only two possible orientations
of V , the other orientation of V is denoted by −o

V
. The chosen orientation

oV will be called positive and a basis b representing oV is called positive basis
in V . For a zero-dimensional vector space we adopt the convention to assign

+1 (resp. −1) to indicate the positive (resp. negative) orientation. The orien-
tation on of the space Rn, determined by the standard basis (e1, . . . , en) in Rn,
is called the standard orientation of Rn.

For two oriented vector spaces (V, o
V

) and (W, o
W

), we denote by oV � oW
the natural orientation of the space V ⊕W (i.e. the orientation represented
by a positive basis of V followed by a positive basis of W ) and we write

oV⊕W := oV � oW . For an oriented vector space (V, oV ), the vector space
Rn ⊕ V is always assumed to have the orientation on � oV . For two oriented
vector spaces (V, o

V
) and (W, o

W
) of the same dimension, a linear isomorphism

A : V → W is said to preserves the orientations of V and W if a matrix

representation of A, with respect to positive bases in V and W has positive
determinant. In what follows, instead of writing (V, o

V
) we will simply say that

V is an oriented vector space, what will implicitly mean that there is a chosen

orientation oV on the space V .

Let ξ = (p,E,B) be a vector bundle modeled on Rn. Suppose that for every
x ∈ B, it is possible to choose an orientation class ox in the fiber p−1(x) in

such a way that there exists a family {(Ui, ϕUi
)} of local trivializations of ξ

satisfying B =
⋃
i Ui and such that:

(i) for all x ∈ Ui, the linear isomorphism ϕ
Ui,x

preserves the orientations of
p−1(x) and the standard orientation of Rn;

(ii) for x ∈ Uj∩Ui, the linear isomorphism ϕ
Ui,x

◦ϕ−1
Uj,x

preserves the orientation

ox of p−1(x).

Then, we say that oξ := {ox}x∈B is an orientation sheaf of the vector bundle
ξ. A vector bundle ξ is said to be orientable if there exists an orientation sheaf

of ξ. An orientable vector bundle ξ together with an orientation sheaf oξ will
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be called an oriented vector bundle. For two vector bundles ξ := (p,E,B) and

ξ′ := (p′, E′, B) with orientations sheaves oξ = {ox}x∈B and oξ′ = {o′x}x∈B,
respectively, we denote by oξ�o′ξ′ the orientation sheaf {ox�o′x}x∈B on ξ⊕ ξ′,
and we say that the orientation oξ � o′ξ′ of ξ ⊕ ξ′ is induced by the orientation

oξ of ξ followed by the orientation oξ′ of ξ′.

We say that a manifold M is orientable if its tangent vector bundle τ (M)
is orientable. An orientation sheaf oM := oτ(M) of τ (M) is also called an ori-

entation of M . In such a case, we will simply write (M, oM ) to indicate that
M is considered with the specific orientation oM .

Suppose that (M, oM ) is an oriented submanifold of an oriented vector space
(V, oV ). Then, the normal vector bundle ν(M) of M in V has a natural orien-
tation oν induced from M and V , which satisfies oν � oM = {oV }x∈M . Such an

orientation oν on ν(M) is called a positive orientation of ν(M) induced from
V .

Assume that f : M → N is a smooth map between two n-dimensional

oriented manifold. If for some x ∈M , the tangent map dfx : τx(M) → τf(x)(N)
is an isomorphism, then we put sign dfx = 1 if dfx preserves the orientations of
τx(M) and τf(x)(N), and sign dfx = −1 otherwise.

2.1.3 Local Brouwer Degree

Let us recall the standard properties of the (local) Brouwer degree of continu-
ous maps from an oriented n-dimensional manifold to Rn.

Let M be an oriented n-dimensional manifold and f : M → Rn a contin-
uous map such that K := f−1(0) is compact. The local Brouwer degree of f

(with respect to the origin) is the integer deg (f,M) satisfying the following
properties:

(1) (Additivity) Let U1 and U2 be two open disjoint subsets of M such that

K ⊂ U1 ∪ U2. Then,

deg (f,M) = deg (f, U1) + deg (f, U2).

(2) (Homotopy Invariance) Let h : [0, 1] ×M → Rn be a homotopy such that
h−1(0) is compact. Then, deg (h(0, ·),M) = deg (h(1, ·),M).

(3) (Normalization) If f is a homeomorphism preserving the orientations of

M and Rn then deg (f,M) = 1. If f reverses the orientations of M and Rn,
then deg (f,M) = −1.
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(4) (Regular Value Property) If f is a smooth mapping such that 0 is a

regular value of f , then

deg (f,M) =
∑

x∈f−1(0)

sign dfx,

where sign dfx is 1 if dfx : τx(M) → Rn preserves the orientations, and −1
otherwise.

(5) (Excision Property) Let U ⊂ M be an open set such that f−1(0) ⊂ U ,
then

deg (f,M) = deg (f, U).

Put Bn := {x ∈ Rn : |x| < 1}, Sn := ∂Bn. The local Brouwer degree also

satisfies the following important property:

(6) (Hopf Property) Two continuous maps

φ, ψ : (Bn, Sn−1) → (Rn,Rn \ {0})

are homotopic if and only if deg (φ) = deg (ψ).

Remark 2.1.9. In the case M is not orientable, the above degree is not cor-
rectly defined. However, the residue mod 2 of the integer is well-defined and
can be taken as a definition of the “mod 2 degree” in this case. Observe that
the mod 2 degree defined this way satisfies properties (2) and (5). Moreover,

properties (1), (3) and (4) are also satisfied being understood in the sense of
the algebraic operation taken in Z2.

2.2 Elements of Equivariant Topology and
Representation Theory

2.2.1 Basic Concept in Equivariant Topology

Hereafter, G stands for a compact Lie group. By a subgroup of G, we mean

a closed subgroup of G. Two subgroups H and K of G are conjugate if there
exists g ∈ G such that K = gHg−1. Obviously, the conjugation relation is an
equivalence relation. The equivalence class of H is called a conjugacy class of

H in G and will be denoted by (H). We denote by Φ(G) the set of all the
conjugacy classes (H) in G. For two subgroups H and K of G, we write
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(H) ≤ (K), if H ⊂ g−1Kg for some g ∈ G. (2.1)

The relation ≤ defines a partial order on the set Φ(G). For a subgroup H of
G, we use N(H) to denote the normalizer of H in G, and W (H) to denote
the Weyl group N(H)/H in G. Since H is assumed to be closed, N(H) is thus
also a closed subgroup of G. Moreover, since H is a closed normal subgroup in

N(H), hence W (H) is a compact Lie group.

Definition 2.2.1. A topological transformation group is a triple (G,X,ϕ),
where X is a Hausdorff topological space and ϕ : G×X → X is a continuous
map such that:

(i) ϕ(g, ϕ(h, x)) = ϕ(gh, x) for all g, h ∈ G and x ∈ X;
(ii) ϕ(e, x) = x for all x ∈ X, where e is the identity element of G.

The map ϕ is called a G-action on X and the space X, together with a

given action ϕ of G, is called a G-space. Similarly, one can define the right
G-action and call X a space-G (sometimes also called right G-space). We shall
use the notation gx, for ϕ(g, x), and xg in the case of a space-G. For K ⊂ G
and A ⊂ X, we put K(A) := {gx : g ∈ K, x ∈ A} and for g ∈ G we write

gA := {gx : x ∈ A}. A set A ⊂ X is said to be G-invariant, if G(A) = A.
Notice that if A is a compact set, G(A) is also compact. Observe that on any
Hausdorff topological space X, one can define the trivial action of G by gx = x

for all g ∈ G and x ∈ X.

Let X be a G-space. For x ∈ X, denote by Gx := {g ∈ G : gx = x} the
isotropy group of x and by G(x) := {gx ∈ X : g ∈ G the orbit of x. A

G-action is called free on X, if Gx = {e} for all x ∈ X. The conjugacy class
(Gx) will be called the orbit type of x. The symbol Φ(G;X) stands for the set of
all orbit types occuring in X. For an invariant subset A ⊂ X and a subgroup

H of G we put AH := {x ∈ A : Gx ⊃ H}, AH := {x ∈ A : Gx = H},
A(H) := {x ∈ A : (Gx) = (H)}. By direct verification, AH is N(H)-invariant,
as well as W (H)-invariant. Moreover, the W (H)-action on AH is free.

For a G-space X, consider an equivalence relation ∼ on X: x ∼ y if and
only if y = gx for some g ∈ G. Denote by X/G the quotient set X/ ∼. Then,
X/G endowed with the quotient topology is called the orbit space of X. For a

right G-space X, the orbit space will be denoted by G\X.

Let G1 and G2 be compact Lie groups and assume X to be a G1-space and

space-G2 such that (g1x)g2 = g1(xg2) for all gi ∈ Gi, i = 1, 2, x ∈ X. In this
case, we call X a G1-space-G2, and the orbit space is denoted by G2\X/G1.
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In particular, a subgroup H (resp. L) of G acts on G by the left (resp.

the right) G-action, so G can be viewed as an H-space (resp. space-L). The
corresponding orbit space G/H (resp. L\G) is canonically identified with the
set of left cosets {gH : g ∈ G} (resp. the set of right cosets {Hg : g ∈ G}).

By the associativity of G, G also becomes an H-space-L, with its orbit space
L\G/H being identified with the set of double cosets.

Definition 2.2.2. For two G-spaces X and Y , a continuous map f : X → Y
is called a G-equivariant map, or simply a G-map, if f(gx) = gf(x) for all
g ∈ G, x ∈ X.

For more details on the equivariant topology, we refer to [25, 47, 104].

2.2.2 Representation of Compact Lie Groups

Representations of a compact Lie group G are examples of G-spaces which are
of particular interest for us.

Finite-dimensional G-Representations

Definition 2.2.3. A finite-dimensional real (resp. complex) vector space V is
called a real (resp. complex) G-representation, if V is a G-space such that the
translation map Tg : V → V , defined by Tg(v) := gv for v ∈ V , is an R-linear

(resp. C-linear) operator for every g ∈ G. An inner product (resp. Hermitian
inner product) 〈·, ·〉 : V ⊕V → R (resp. 〈·, ·〉 : V ⊕V → C) is calledG-invariant,
if 〈gu, gv〉 = 〈u, v〉 for all g ∈ G, u, v ∈ W . A G-representation together

with a G-invariant inner product is called an orthogonal (resp. unitary) G-
representation.

A G-invariant linear subspace Ṽ ⊂ V is called a G-subrepresentation of V .

Two representations V1 and V2 are called equivalent or isomorphic, if there is an
G-equivariant isomorphism A : V1 → V2, and we write V1

∼= V2. We say that V
is an irreducible G-representation, if it has no subrepresentation different from

{0} and V . Otherwise, V is called reducible.

Given a G-representation V , the map T : G → GL(W ), T (g) := Tg, is a
continuous homomorphism, which is in fact an analytic map (cf. [142]). Based
on the usage of the Haar integral for a compact Lie group, it can be proved

that every real (resp. complex)G-representation is equivalent to an orthogonal
(resp. unitary) representation T : G→ O(n) (resp. T : G→ U(n)).
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For two G-representations V1 and V2, denote by LG(V1, V2) the space of

all linear G-equivariant maps A : V1 → V2, and by GLG(V1, V2) its subspace
of all G-equivariant isomorphisms. Put LG(V ) := LG(V, V ) and GLG(V ) :=
GLG(V, V ).

In the case of two irreducible G-representations V1 and V2, Schur’s Lemma
states that every equivariant linear map A : V1 → V2 is either an isomor-
phism or zero. It follows that every complex irreducible G-representation U
is absolutely irreducible, i.e. every equivariant linear map A : U → U satisfies
A = λId , for some λ ∈ C. Consequently, we have that dim C L

G(U1,U2) = 1
or 0 (where U1 and U2 are two complex G-representations). Using this fact,

it can be easily proved that every complex irreducible G-representation of an
abelian compact Lie group G is one-dimensional. In the case V is a real ir-
reducible G-representation, the set LG(V) is a finite-dimensional associative
division algebra over R, so it is either R, C or H, and we call V to be of real,

complex or quaternionic type, respectively.

Characters of G-representations

For a finite-dimensional real (resp. complex) G-representation W , with the

corresponding homomorphism T : G → GL(W ), the character of W is the
function χW : G→ R (resp. χW : G→ C), defined by

χ
W

(g) = Tr (T (g)), g ∈ G,

where Tr stands for the trace of the representing matrix.

The character is a class function, which takes a constant value on a fixed

conjugacy class. It carries the essential information about the representation.
For example, a real or complex representation is determined up to isomorphism
by its character. Also, if a representation is the direct sum of subrepresenta-
tions, then the corresponding character is the sum of the characters of those

subrepresentations (cf. [27]).

The characters of G-representations are mainly used in Appendix A2 to

distinguish different irreducible representations of G used in this thesis.

Convention of Notations

We use the letter V to denote a real G-representation, while the letter U

is reserved for complex G-representations. In the case the type of a G-
representation is not specified, we apply the letter W . By the completeness
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theorem of Peter-Weyl, a compact Lie group G has only countably many irre-

ducible G-representations (cf. [27]), so we assume that a complete catalogue,
indexed by numbers n = 0, 1, 2, 3, . . . , of these irreducible representation is
available. In Appendix A2, we describe several such catalogues for the groups

used in this thesis. In the case of real G-representations, we denote them by V0,
V1, V2, . . . (where V0 always stands for the trivial irreducibleG-representation),
and in the case of complex G-representations, by U0, U1, U2, . . . (where U0 is
the trivial complex irreducible G-representation), and in the case the type of

an irreducible G-representation is not clearly specified as real or complex, we
denote them by W0, W1, W2, . . . (where again W0 is the trivial irreducible
G-representation).

Remark 2.2.4. In a special case G = Γ × S1 for a compact Lie group Γ ,
notice that every complex irreducible Γ -representation Uj can be converted to
an real irreducible Γ × S1-representation by

(γ, z)w = zl · (γw), (γ, z) ∈ Γ × S1, w ∈ Uj , (2.2)

where ‘·’ is the complex multiplication. We denote the real Γ×S1-representation
obtained in this way by Vj,l.

A summary of our convention is presented in Table 2.1.

Real Complex Unspecified

G-representation V , V U , U W , W

Irreducible
G-representation V U W

List of all irreducible
G-representations V0, V1, V2, . . . U0, U1, U2, . . . W0, W1, W2, . . .

(
{Vj,l}, if G = Γ × S1

)

Table 2.1. Notational convention for real and complex G-representations

Exceptional notations will be applied to the irreducible S1-representations.
We denote by lU , l = 0,±1,±2, . . . , the complex S1-irreducible representation

with the S1-action given by
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zw = zl · w, z ∈ S1, w ∈ lU , (2.3)

where ‘·’ is the complex multiplication. Similarly, for real irreducible S1-
representations, we will use the notation lV, l = 0,±1,±2, . . . .

For a real vector space V , we denote by V c := C⊗RV the complexification of

V . Assume that V is a real G-representation. Then, V c has a natural structure
of a complex G-representation defined by g(z ⊗ v) = z ⊗ gv, z ∈ C, v ∈ V .
It is also known that for a real irreducible G-representation V , the complex

G-representation V c is irreducible if and only if V is of real type. Otherwise,
if V has a natural complex structure, then V c, as a complex G-representation,
is equivalent to V ⊕ V , where V is the conjugate representation of V . In this
case V is equivalent to V as a complex G-representation, if and only if V is of

quaternionic type (cf. [27]).

Isotypical Decompositions

By the complete reducibility theorem, every finite-dimensionalG-representation
V is a direct sum of irreducible subrepresentations of V , i.e.

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm (2.4)

where V i is an irreducible subrepresentation of V and some of V i’s may be
equivalent. This direct decomposition is not geometrically unique and only
defined up to isomorphism.

Among these irreducible subrepresentations, there may be distinct (non-
equivalent) subrepresentations, which we denote by Vk1, . . . , Vkr , including
possibly the trivial one-dimensional representation V0. Let Vkj be the sum of

all irreducible subspaces V i ⊂ V equivalent to Vkj . Then,

V = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkn , (2.5)

which is called the isotypical decomposition of V . In contrast to (2.4), the iso-
typical decomposition (2.5) is unique. The subspace Vkj is called the isotypical
component of type Vkj (or modeled on Vkj).

It will be also convenient to write the isotypical decomposition (2.5) in the
form

V = V0 ⊕ · · · ⊕ Vr, (2.6)
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where each isotypical component Vi is modeled on Vi, according to a complete

list of irreducible G-representations {Vi}. In particular, some Vj in (2.6) may
be a trivial subspace.

In the case of a finite-dimensional complex G-representation U , a similar
complex isotypical decomposition of U can be constructed, namely

U = U0 ⊕ U1 ⊕ · · · ⊕ Us,

where the isotypical component Uj is modeled on the complex irreducible
G-representation Uj , according to a complete list of complex irreducible G-

representations {Uj}.

Isotypical Decomposition of GLG(V )

Let V be an orthogonal G-representation and let GLG(V ) be the group of all

equivariant linear invertible operators on V . We have the following standard
algebraic facts on a decomposition of GLG(V ).

Proposition 2.2.5. (cf. [106]) Consider the G-isotypical decomposition

V = Vk1 ⊕ · · · ⊕ Vkr , (2.7)

where a component Vki is modeled on an irreducible representation Vki. Then,

(i) GLG(V ) =
⊕r

i=1GL
G(Vki);

(ii)for any isotypical component Vki from (2.7), we have GLG(Vki) ' GL(m,F),
where m = dimVki/dimVki and F ' GLG(Vki), i.e. F = R, C or H, de-
pending on the type of the irreducible representation Vki.

Banach G-Representations

Definition 2.2.6. A real (resp. complex) Banach space W is a real (resp.

complex) Banach G-representation, if W is additionally a G-space such that
the translation map Tg : W → W , defined by Tg(w) = gw for w ∈ W , is a
bounded R-linear (resp. bounded C-linear) operator for every g ∈ G. A Banach
G-representation W is called isometric, if for each g ∈ G, Tg : W → W is an

isometry, i.e. ‖Tgw‖ = ‖w‖ for all w ∈ W . The norm ‖·‖ is called a G-invariant
norm.

A closedG-invariant linear subspace ofW is called a Banach G-subrepresent-
ation. Two representations W1 and W2 are called equivalent or isomorphic, if
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there is an G-equivariant isomorphism A : W1 → W2. We say that W is

an irreducible Banach G-representation, if it contains no G-subrepresentation
different from {0} and W . Otherwise, W is called reducible.

If W is a real (resp. complex) Hilbert space, the inner product (resp. Her-
mitian inner product) 〈·, ·〉 on W is called G-invariant, if 〈gv, gw〉 = 〈v,w〉,
for all g ∈ G, v,w ∈ W . In this case, W is called an isometric Hilbert (resp.
unitary Hilbert) G-representation.

For a Banach G-representation W and r > 0, denote by

Br(W ) := {w ∈ W : ‖w‖ < r}.

Clearly, all the finite-dimensional G-representations are examples of Banach

G-representations. Based on the usage of the Haar integral for G, it can be
proved that for every Banach G-representation W , it is possible to construct
a G-invariant norm on W equivalent to the initial one.

By the completeness theorem of Peter-Weyl, there exists at most countably
many irreducible Banach G-representations of a compact Lie group G. It is
also important to notice that all the irreducible Banach G-representations are

finite-dimensional (see [106, 116]).

Consider a complete list of all irreducible Banach G-representations, de-

noted by {Wk}∞k=0. Let W be an isometric Banach G-representation. Then,
every irreducible Banach G-subrepresentation of W is equivalent to Wk for
some k. Moreover, there exists a closed G-invariant subspace Wk, called the
isotypical component of W corresponding to Wk, in which every irreducible

subrepresentation of type Wk is contained (cf. [15]). Define the subspace

W∞ :=
⊕

k

Wk (2.8)

which is clearly dense in W . Consequently, W admits the following isotypical

decomposition

W =
⊕

k

Wk. (2.9)

In particular, for every G-equivariant linear operator A : W → W , we have
that A(Wk) ⊆ Wk for all k = 0, 1, 2, . . . .

We have the following result
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Proposition 2.2.7. (cf. [15]) Given (2.8) and (2.9), for any finite subset X ⊂
W∞ the subspace spanG(X) spanned by the orbits of points from X, is finite-
dimensional and G-invariant.

For more information on Banach representations we refer to [106, 20, 116].

2.2.3 G-Manifolds

Definition 2.2.8. A finite-dimensional smooth manifold M is a G-manifold,
if it is a G-space such that the G-action on M is a smooth map.

A vector bundle (p,E,B) is a smooth G-vector bundle, if E and B are G-
manifolds and p : E → B is an equivariant smooth mapping admitting smooth

local trivializations, as well as the map g : p−1(x) → p−1(gx) given by y 7→ gy,
is an isomorphism of Banach spaces, for all g ∈ G.

For a G-manifold M , the tangent bundle τ (M) of M is a smooth G-vector bun-

dle. Let W be a Riemannian G-manifold, i.e. W has G-invariant Riemannian
metric 〈·, ·〉 : τ (W ) × τ (W ) → R. Suppose that M is a G-submanifold of W .
Then, the normal vector bundle ν(M) of M in W is also a smooth G-vector
bundle.

Definition 2.2.9. Let H be a closed subgroup of G and let A be an H-space.
Define an H-action on G×A by ϕ : H×(G×A) → (G×A) with ϕ(h, (g, a)) =
(gh−1, ha), for h ∈ H, g ∈ G and a ∈ A. The orbit space

G×
H
A := (G×A)/H

is called the twisted product of G and A.

For the twisted product G×
H
A, we denote by [g, a] the H-orbit of (g, a). Observe

that G ×
H
A is a G-space with the G-action ϕ̃ : G × (G×

H
A) → G×

H
A defined

by ϕ̃(g′, [g, a]) = [g′g, a]. By direct verification, we have that

(i) (G ×
H
A)/G is homeomorphic to A/H;

(ii) If A is also G-space, then G ×
H
A is G-homeomorphic to A.

Given a G-manifold, the following theorem describes the conditions of neigh-

borhoods of each orbit, which is fundamental in the study of the structure of
G-manifolds.
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Theorem 2.2.10. (Slice Theorem) (cf. [104]) Let G be a compact Lie group

and M a G-manifold. For any x ∈ M , the orbit G(x) is a G-invariant sub-
manifold of M . Let ν denote the normal G-vector bundle of G(x) in M . Then
the fibre νx over x of ν is a representation space of the isotropy group Gx so

that ν is isomorphic to
G ×

Gx

νx → G/Gx

as smooth G-vector bundles. Moreover, there exist a G-invariant open neigh-
borhood U of G(x) in M and a G-diffeomorphism f : G ×

Gx

νx → U such that

the restriction of f to the zero cross-section gives the G-diffeomorphism from
G/Gx to G(x) defined by gGx 7→ gx.

Definition 2.2.11. Let M be a G-manifold. The image f(νx) of νx under the
G-diffeomorphism f above is called a slice of G(x) at x, the representation νx
of Gx is called a slice representation, and U is called a tubular neighborhood
around the orbit G(x).

Theorem 2.2.12. ([cf. [104],[25]) Let M be a G-manifold and H a subgroup
of G. Then,

(i) M(H) is a G-invariant submanifold of M ;
(ii) M(H)/G is a manifold. If M(H) is connected, then M(H)/G is also con-

nected;
(iii) If (H) is a maximal orbit type in M , then M(H) is closed in M ;
(iv) If (H) is a minimal orbit type in M and M/G is connected, then M(H)/G

is a connected, open and dense subset of M/G;

(v) MH is a W (H)-invariant manifold with free W (H)-action,

where the minimal and maximal orbit types are taken with respect to the partial
order relation (2.1).

Corollary 2.2.13. Let V be a finite-dimensional G-representation. Then, for

every orbit type (H) in V , the set V(H) is an invariant submanifold of V .
Moreover, the set VH is an open W (H)-invariant dense subset of V H .
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2.2.4 Bi-Orientability of a Compact Lie Group

For a finite-dimensional smooth orientable G-manifold M , we say that M
admits a G-invariant orientation, if the G-action preserves an orientation of

τ (M).

It is easy to see that every compact Lie group G, considered as a G-manifold

with the G-action defined by left translations (resp. right translations), admits
a G-invariant orientation. In this case, we call this G-invariant orientation a
left-invariant orientation (resp. right-invariant orientation) on G.

Definition 2.2.14. (cf. [147, 72])Let G be a compact Lie group. If G admits
an orientation which is both left-invariant and right-invariant, then G is said

to be bi-orientable.

Remark 2.2.15. (cf. [15]) The concept of bi-orientability is closely related to
the following problem: given a free G-manifold M and x ∈ M , does the orbit
N := G(x) admit a natural G-invariant orientation? Since G acts freely on

M , there exists a G-diffeomorphism µx : G→ N given by µx(g) := gx, g ∈ G,
for a certain fixed point x ∈ N . Then, the G-diffeomorphism naturally induces
an orientation oN on N from the orientation oG of G. By direct verification, in
order for this choice of orientation being independent of the choice of x, one

needs to require the orientation oG being invariant with respect to right trans-
lations of G. On the other hand, the constructed orientation oN of the orbit N
is G-invariant, if and only if oG is invariant with respect to left translations of

G. Consequently, an orbit G(x) ⊂M admits a natural G-invariant orientation,
if and only if G is bi-orientable (see [147] for more details) .

Examples of bi-orientable compact Lie groups are abelian groups, finite groups
or those which have an odd number of connected components (in particular,

if G is connected) (cf. [147]). The importance of the notion of bi-orientability
rests on the following:

Proposition 2.2.16. (cf. [147]). Let M be a free smooth finite-dimensional
G-manifold and let M/G be connected. Assume M admits a G-invariant ori-
entation. Let Mo be a (fixed) connected component of M and put Go := {g ∈
G : gMo = Mo}. Then, Mo/Go is diffeomorphic to M/G as smooth manifolds.

Moreover, Mo/Go is orientable if and only if Go is bi-orientable.
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Consequently, under the assumptions of Proposition 2.2.16, if Go is bi-

orientable, then there exists an orientation on M/G in a canonical way.

Definition 2.2.17. LetX be a smooth finite-dimensionalG-manifold. Assume

that (H) ∈ Φ(G;X) is such that W (H) is bi-orientable, and XH admits a
W (H)-invariant orientation, denoted by oX . For x ∈ XH , choose a natural
orientation oW of the orbit W (H)(x) ⊂ XH (cf. Remark 2.2.15). Denote by

Sx a slice of W (H)(x) at x in XH (cf. Definition 2.2.11). An orientation oS
on Sx is called positive, if oS followed by oW gives the initial orientation oX of
XH . In this case, the slice Sx is called a positively oriented slice. Otherwise,
the slice will be called a negatively oriented slice.

Let V be an orthogonal G-representation. Consider another orthogonal G-
representation Rk ⊕ V , where G acts trivially on Rk, for k ≥ 0. We will adopt
several notations: Φk(G) stands for the set of all conjugacy classes (H) in G
such that dimW (H) = k; Φk(G,V ) denotes the set of all orbit types (H) in

Rk ⊕ V such that (H) ∈ Φk(G); Φ+
n (G) ⊂ Φn(G) stands for the set of all

conjugacy classes (H) such that W (H) is bi-orientable; Φ+
n (G,V ) ⊂ Φn(G,V )

denotes the set of all orbit types (H) in Rn⊕V such that (H) ∈ Φ+
n (G); A+

n (G)
stands for the free Z-module generated by Φ+

n (G).

2.3 Regular Normal Approximations

Let V be an orthogonal G-representation, and Ω ⊂ Rn⊕V be an open bounded
G-invariant subset (where n ≥ 0 and G acts trivially on Rn).

Definition 2.3.1. A continuous G-equivariant map f : Rn ⊕ V → V (resp.

a pair (f,Ω)) is called Ω-admissible (resp. an admissible pair), if f(x) 6= 0
for all x ∈ ∂Ω. An equivariant homotopy h : [0, 1] × (Rn ⊕ V ) → V is called
Ω-admissible, if ht := h(t, ·) is Ω-admissible for all t ∈ [0, 1].

Many theoretical problems of the equivariant homotopy classification of Ω-
admissible maps relate to the questions of how to separate zeros of different

orbit types, and how to choose representatives of equivariant homotopy classes
admitting reasonable transversality conditions. The first question gives rise to
the so-called normality condition, while the second one is more delicate, as the
equivariance “gets in conflict” with regularity. Therefore, one seeks for special

transversality requirements that are compatible with our considerations (for a
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general discussion related to different G-actions on a domain and target, we

refer to [19, 101, 120]).

Definition 2.3.2. (cf. [72, 119, 120]). Let V be an orthogonal G-representation,

Ω ⊂ Rn ⊕ V an open bounded G-invariant subset and f : Rn ⊕ V → V an
Ω-admissible G-equivariant map. We say that f is normal in Ω, if for every
α := (H) ∈ Φ(G;Ω) and every x ∈ f−1(0) ∩ ΩH, the following α-normality

condition at x is satisfied: there exists δx > 0 such that for all w ∈ νx(Ωα) with
‖w‖ < δx,

f(x+ w) = f(x) + w = w.

Similarly, an Ω-admissible G-homotopy h : [0, 1] × (Rn ⊕ V ) → V is called

a normal homotopy in Ω, if for every α := (H) ∈ Φ(G;Ω) and for every
(t, x) ∈ h−1(0) ∩ ([0, 1] ×ΩH), the following α-normality condition at (t, x) is
satisfied: There exists δ(t,x) > 0 such that for all w ∈ ν(t,x)([0, 1] × Ωα) with
‖w‖ < δ(t,x),

h(t, x+ w) = h(t, x) + w = w.

Definition 2.3.3. (cf. [72, 119, 120]). Let Ω ⊂ Rn ⊕ V be an open bounded
invariant set and f : Rn⊕V → V an Ω-admissible G-equivariant map. We say
that f is a regular normal map in Ω if

(i) f is of class C1;
(ii) f is normal in Ω;
(iii) for every (H) ∈ Φ(G;Ω), zero is a regular value of

fH := f |ΩH
: ΩH → V H.

Similarly, one can define a regular normal homotopy in Ω. The importance
of regular normal maps is outlined in the following propositions.

Proposition 2.3.4. (cf. [8], [120]) Let Ω ⊂ Rn⊕V be an open bounded invari-
ant set, and f : Rn⊕V → V an Ω-admissible G-equivariant map being regular
and normal. Then for every x ∈ f−1(0) ∩Ω we have dim (W (Gx)) ≤ n.

Proposition 2.3.5. (cf. [119], also see [120, 135, 187]). Let Ω ⊂ Rn⊕V be an
open bounded invariant set and f : Rn⊕V → V an Ω-admissible G-equivariant
map. Then for every η > 0 there exists a regular normal (in Ω) G-equivariant
map f̃ : Rn ⊕ V → V such that supx∈Ω ‖f̃(x) − f(x)‖ < η. Similarly, if
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h : [0, 1] × (Rn ⊕ V ) → V is an Ω-admissible G-equivariant homotopy, then

for every η > 0 there exists a regular normal (in Ω) G-equivariant homotopy
h̃ : [0, 1] × Rn ⊕ V → V such that sup(t,x)∈[0,1]×Ω ‖h̃(t, x) − h(t, x)‖ < η. In

addition, if h0 and h1 are regular normal in Ω, then h̃0 = h0 and h̃1 = h1.

2.4 The Sets N(L, H) and Numbers n(L, H)

The sets N(L,H) and numbers n(L,H) play an essential role in several recur-

rence formulae, based on which the equivariant degrees are computed.

Definition 2.4.1. (cf. [104]) Given two closed subgroups L ⊂ H of a compact
Lie group G, we define the set

N(L,H) :=
{
g ∈ G : gLg−1 ⊂ H

}
.

and we put

n(L,H) :=

∣∣∣∣
N(L,H)

N(H)

∣∣∣∣ , (2.10)

where the symbol |X| stands for the cardinality of the set X.

Remark 2.4.2. Since H is closed and the G-action on G itself is smooth, one
shows that N(L,H) is a closed subset of G, hence it is a compact set. Moreover,
define an H-action on G by (h, g) 7→ hg, for h ∈ H, g ∈ G, then N(L,H) is
an H-invariant subset of G. Consider the H-orbit space N(L,H)/H.

(i) Define an N(H)-action on N(L,H)/H given by ϕ : N(H) ×N(L,H) →
N(L,H), where

ϕ(n,Hg) := H(ng), for n ∈ N(H), g ∈ N(L,H).

By direct verification, the action is well-defined and the kernel of the action
coincides with H, meaning that ϕ(n,Hg) = Hg if and only if n ∈ H.
Therefore, N(L,H)/H is in fact a (left) W (H)-invariant subset of G, and

the W (H)-action is free.
(ii) Similarly, define an N(L)-action on N(L,H)/H given by ψ : N(L) ×
N(L,H) → N(L,H), where

ψ(n′,Hg) := H(gn′), for n′ ∈ N(L), g ∈ N(L,H).

One verifies that the action is well-defined and L lies in the kernel of the

action, meaning that for every l ∈ L, ψ(l,Hg) = Hg for all g ∈ N(L,H).
Consequently, N(L,H)/H is a (right) W (L)-invariant subset of G.
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On the other hand, consider G/H as an L-space, with the action given by

(l, gH) 7→ lgH. Then, the L-fixed-point space (G/H)L is naturally a (left)
W (L)-invariant space. The following result is established in [104].

Proposition 2.4.3. The map Ha 7→ a−1Hdefines a W (L)-equivariant home-
omorphism from N(L,H)/H to (G/H)L.

Moreover, we have the following (cf. [25])

Proposition 2.4.4. Let L ⊂ H be two closed subgroups of the compact Lie
group G. Consider (G/H)L as the left W (L)-space. Then, the corresponding
orbit space (G/H)L

/
W (L) is finite.

Based on Proposition 2.4.3 and Proposition 2.4.4, we prove the following

Proposition 2.4.5. Let L ⊂ H be two closed subgroups of a compact Lie group
G. Then,

(i) dimW (L) ≥ dimW (H);
(ii) let M be a connected component of the set N(L,H)/H, then dimW (H) ≤

dimM ≤ dimW (L);
(iii) in the case dimW (L) = dimW (H) = k, we have the number n(L,H)

is finite and the set N(L,H)/H is a closed k-dimensional submanifold of
G/H.

Proof: Since (i) is a direct consequence of (ii), we prove (ii) and (iii) only.

(ii) Combining Proposition 2.4.3 with Proposition 2.4.4, we have that
N(L,H)/H, when viewed as a right W (L)-space, consists of a finite num-
ber of W (L)-orbits. By the fundamental homomorphism theorem in algebra,

each of these W (L)-orbits is homeomorphic to W (L)/Lo for some subgroup
Lo ⊂W (L). As a connected component, M lies in one of these W (L)-orbit, as
a closed submanifold, with the dimension dim (W (L)/Lo). Clearly,

dim (W (L)/Lo) ≤ dimW (L).

It follows that

dimM ≤ dimW (L).

On the other hand, viewed as a rightW (H)-invariant space, the setN(L,H)/H
is a free W (H)-space (cf. Remark 2.4.2(i)). Thus, the natural projection
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p : N(L,H)/H → (N(L,H)/H)
/
W (H) ' N(L,H)/N(H), (2.11)

is a fibre bundle with the fiber W (H). Hence, we have the following dimension
relation

dimM = dimp(M) + dimW (H) ≥ dimW (H).

Therefore, we proved dimW (H) ≤ dimM ≤ dimW (L).

(iii) In the case dimW (L) = dimW (H) = k, by (ii), every connected com-
ponent of N(L,H)/H has the same dimension k, being a submanifold of cer-
tain W (L)-orbit. Consequently, the set N(L,H)/H is a closed k-dimensional
submanifold of G/H, and the fibre bundle (2.11) induces a dimension relation

k = dimN(L,H)/H = dimN(L,H)/N(H) + dimW (H)

= dimN(L,H)/N(H) + k,

which forces dimN(L,H)/N(H) = 0. By the compactness of N(L,H), the
orbit space N(L,H)/N(H) is also compact, which proves that the number
n(L,H) is finite. �

The number n(L,H) defined for two closed subgroups of G with dimW (H) =
dimW (L) has a very simple geometric interpretation.

Lemma 2.4.6. Let L and H be two closed subgroups of a compact Lie group
G such that L ⊂ H and dimW (L) = dimW (H). Then n(L,H) represents the
number of different subgroups H̃ in the conjugacy class (H) such that L ⊂ H̃.

In particular, if V is an orthogonal G-representation such that (L), (H) ∈
Φ(G;V ), L ⊂ H, then V L ∩ V(H) is a disjoint union of exactly m = n(L,H)
sets of VHj , j = 1, 2, . . . ,m, satisfying (Hj) = (H).

Proof: Notice that N(L,H) can be rewritten as

N(L,H) = {g ∈ G : L ⊂ gHg−1}.

Define H := {gHg−1 : g ∈ G, L ⊂ gHg−1} and a map b : N(L,H) → H
by b(g) = gHg−1, for g ∈ N(L,H). Consider N(L,H) as a left N(H)-space
(cf. Remark 2.4.2(i)). By direct verification, b is constant on each N(H)-orbit.
Thus, there exists a natural factorization b : N(L,H)/N(H) → H of b. It is

then easy to check that b is one-to-one and onto. By Proposition 2.4.5, the set
N(L,H)/N(H) is a finite set of order n(L,H). Therefore, by the bijection b,
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n(L,H) also represents the order of H, i.e. the number of different subgroups

H̃ in the conjugacy class (H) such that L ⊂ H̃.

Assume now that V is an orthogonal G-representation, (L), (H) ∈ Φ(G;V ),

and L ⊂ H. Then, VH ⊂ V L. Moreover, gVH ⊂ V L if and only if g ∈ N(L,H).
On the other hand, gVH = VH if and only if g ∈ N(H). Therefore, the conclu-
sion follows. �

Remark 2.4.7. For ga, gb ∈ G, consider the two subsets N(L,H) and N(L̃, H̃)
of G, where L̃ := gaLg

−1
a , H̃ := gbHg

−1
b . Define a map f : N(L,H) → N(L̃, H̃)

by f(g) := gbgg
−1
a . It is easy to check that f is well-defined and it pro-

vides a homeomorphism between N(L,H) and N(L̃, H̃). Furthermore, con-
sider N(L,H) as a left N(H)-space and N(L̃, H̃) as a left N(H̃)-space (cf.
Remark 2.4.2(i)). Then, f actually factorizes through the orbit spaces, as in-

dicated by a commutative diagram shown in Figure 2.4.7, where we used the
fact N(H̃) = gbN(H)g−1

b . In particular, f̄ provides a homeomorphism between

N(L,H)/N(H) and N(L̃, H̃)/N(H̃).

N(L,H) N(L̃, H̃)

N(L,H)/N(H) N(L̃, H̃)/N(H̃)

f

f

p p̃

Fig. 2.1. Factorization through the orbit spaces.

By Remark 2.4.7, whenever N(L,H) 6= ∅ (or equivalently, n(L,H) 6= 0), we
can always choose L and H from the conjugacy classes (L) and (H), such that

L ⊂ H. In the case, this is not possible, it simply implies that N(L,H) = ∅.

Given subgroups L ⊂ H ⊂ G, consider the H-orbit space N(L,H)/H (cf.

Remark 2.4.2). By the compactness of N(L,H)/H, it has only a finite number
of connected components, denoted by Mi, i = 1, 2, . . . , k. Put

DimN(L,H)/H := max{dimMi : i = 1, 2, . . . , k}.
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Lemma 2.4.8. Assume that L′ ⊂ L ⊂ H are three subgroups of G. Then,

Dim N(L,H)/H ≤ Dim N(L′,H)/H.

Proof: Notice that N(L,H) ⊂ N(L′,H), therefore

N(L,H)

H
⊂ N(L′,H)

H
,

and the conclusion follows. �

The numbers n(L,H), whenever are finite, play an important role in the

computation of multiplication tables of Burnside rings and the corresponding
modules (and, therefore, may be used to establish partial results on the mul-
tiplication structure of the Euler ring U(G)). However, the main assumption
providing the finiteness of n(L,H) is not satisfied for arbitrary L ⊂ H ⊂ G.

Below we introduce a notion close in spirit to n(L,H).

Definition 2.4.9. Given subgroups L ⊂ H ⊂ G, we say that L is N-finite
in H if the space N(L,H)/H is finite. For a given subgroup H, denote by
N(H) the set of all conjugacy classes (L) such that there exists L̃ ∈ (L) being
N-finite in H. For (L) ∈ N(H), put

m(L,H) := |N(L,H)/H| ,

where |X| stands for the number of elements in the set X.

Remark 2.4.10. Let L ⊂ H ⊂ G.
(i) Take a subgroup L′ ⊂ L. If L′ is N-finite in H, then L is N-finite in H

(cf. Lemma 2.4.8).

(ii) It follows from Proposition 2.4.5(ii) that, if W (L) is finite, then L is
N-finite.

(iii) Finally, if W (L) and W (H) are finite, then

m(L,H) = n(L,H) · |W (H)|.

We complete this subsection with the following simple but important ob-
servation.



2.5 Fundamental Domains 45

Proposition 2.4.11. Let L ⊂ H ⊂ G. Consider the set N(L,H) ⊂ G as

an N(H)-space-N(L) (cf. Remark 2.4.2). Then, the corresponding orbit space
N(L)\N(L,H)/N(H) is finite, i.e. there exist g1, g2, . . . , gk ∈ G such that

N(L,H) = N(H)g1N(L) tN(H)g2N(L) t · · · tN(H)gkN(L),

where N(H)gjN(L) denotes a double coset, for j = 1, 2, . . . , k, and t stands
for the disjoint union.

Proof: Combining Proposition 2.4.3 with Proposition 2.4.4, we have that
N(L,H)/H, when viewed as a right W (L)-space, consists of a finite number of
W (L)-orbits. This implies that there exist g1, g2, . . . , gm ∈ N(L,H) such that

N(L,H) = Hg1W (L) tHg2W (L) t · · · tHgmW (L)

⊂ N(H)g1N(L) ∪ N(H)g2N(L) ∪ · · · ∪N(H)gmN(L)

= N(H)gm1N(L) tN(H)gm2N(L) t · · · tN(H)gmk
N(L),

for some gm1 , gm2 , . . . , gmk
∈ N(L,H). �

2.5 Fundamental Domains

Definition 2.5.1. Let Q be a topological group and X a finite-dimensional
metricQ-space. Let D0 ⊂ X be open in its closure D. Then D is a fundamental

domain of the Q-action on X if the following conditions are satisfied:

(i) Q(D) = X;
(ii) g(Do) ∩ h(Do) = ∅ for distinct elements g, h ∈ Q;
(iii) X \Q(Do) = Q(D \Do);

(iv) dimD = dimX/Q, dim(D \ Do) < dimD, dim (X \ Q(Do)) < dimX
where “dim ” is the covering dimension.

Remark 2.5.2. The conditions (i)-(ii) imply that a fundamental domain is a

set of representatives of G-orbits, whose interior contains at most one repre-
sentative from each orbit. The conditions (iii)-(iv) require some compatibility
of the fundamental domain and the group action. Notice that the fundamen-
tal domain is not necessarily unique, but typically chosen to be a convenient

connected part of the space.
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Example 2.5.3. (i) Let Q := ZN be the cyclic group of order N , generated

by ξ, and X := B1 be the unit disk on the complex plane C, where ξ acts
as the multiplication by the complex number ei

2π
N , i.e. the rotation by angle

2π
N

. In this case, a fundamental domain of ZN -action on B1 is a sector of

angle 2π
N

.

1

ξξ2

ξ3

ξ4 ξ5

Fig. 2.2. Fundamental domain of the ZN -action.

(ii) Let Q := DN be the dihedral group of order 2N , composed of ZN and

κZN , where κξ = −ξκ. Consider the unit disk X := B1 ⊂ C, where ξ acts
as rotation and κ acts as the reflection with respect to the real line. In this
case, a fundamental domain is a sector of smaller angle π

N
.

1

ξξ2

ξ3

ξ4 ξ5

κξ

κξ3

κξ5

κξ

κξ3

κξ5

Fig. 2.3. Fundamental domain of the DN -action.
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In fact, a general result about the existence of a fundamental domain is
proved in [120]:

Proposition 2.5.4. Let G be a compact Lie group, and let X be a finite-
dimensional metric G-space on which G acts freely. Then a fundamental do-
main D ⊂ X always exists.

Definition 2.5.5. Under the notations of Definition 2.5.1, assume there exists
an open contractible subset T0 ⊂ X/Q such that the natural projection p :
X → X/Q induces the homeomorphism p|D0 : D0 → T0. Then D is called a

regular fundamental domain.

Theorem 2.5.6. (cf.[12, 15]) Let G be a compact Lie group. For any smooth
finite-dimensional free G-manifold X such that X/G is connected, there always

exists a regular fundamental domain D.

Proof: Since every smooth connected manifold admits a (smooth) triangu-
lation (cf. [179], p. 124-135), the proof is essentially based on the following:

Lemma 2.5.7. Let M be a smooth connected n-dimensional manifold (in gen-

eral non-compact), and let S :=
{
ski : i ∈ Jk, k = 0, 1, 2, . . . , n

}
be a smooth

triangulation of M , where the sets of indices Jk are countable. Then there

always exists a subset To of M satisfying the following conditions:

(i) To is open in M ;
(ii) To is dense in M ;

(iii) To is contractible;
(iv) M \ To is contained in the n− 1-dimensional skeleton.
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Proof: For a given k-dimensional simplex sk, we denote by
◦
sk its interior.

We call the n-dimensional simplices in S sn1 , sn2 , . . . and begin our recursive

definition with T1 :=
◦
sn1 and S1 := S \ {sn1}.

Assume now that Tm and Sm ⊂ S are already constructed with Tm being
open in M and contractible. If Sm still contains n-dimensional simplices, we
chose the minimal jm+1 ∈ N such that

(a) snjm+1
∈ Sm;

(b) snjm+1
∩ Tm contains an (n− 1)-dimensional simplex sn−1

km+1
∈ Sm.

We define Tm+1 := Tm∪ ◦
sn−1
km+1 ∪

◦
snjm+1 and Sm+1 := Sm \{snjm+1

, sn−1
km+1

}. Clearly,
Tm+1 is open in M and contractible.

Let To :=
⋃
m Tm and So :=

⋂
m Sm. By construction, To is open and (by

connectedness of M) dense in M . Also, So = M \ To is a subset of the n− 1-
dimensional skeleton of S.

In order to show that To is contractible, notice that To is a CW -complex
and for every continuous map ϕ : Sk → To, k = 0, 1, 2, . . . , the image ϕ(Sk)
is compact, so it is entirely contained in some of the contractible sets Tm.

Consequently, ϕ is null-homotopic, hence πk(To) = 0 for all k = 0, 1, 2, . . . .
Therefore, To is contractible (see [165], Cor. 24, Chap. 7, Sec. 6) and Lemma
2.5.7 is proved. �

Continuation of the proof of Theorem 2.5.6.
Let p : X → X/G be the natural projection. To complete the proof of The-
orem 2.5.6, we take the set To ⊂ M := X/G provided by Lemma 2.5.7 and

consider the restriction of p over p−1(To). The fiber bundle p : p−1(To) → To,
by contractibility of To, is trivial. Fix a trivialization ψ : p−1(To) → G × To.
We put Do := ψ−1({1}× To). It is clear (cf. [120]) that D := Do is the regular
fundamental domain.

The proof of Theorem 2.5.6 is complete. �

2.6 G-ENRs and The Euler Characteristics

In this section, we investigate the relationships among the Euler characteristics

of a G-ENR X, of its orbit space X/G, and of its various kinds of fixed point
sets XH .
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Definition 2.6.1. (i) A topological space X is called an ENR (Euclidean

Neighborhood Retract), if there exist an open subset O of some Euclidean
space Rn and maps i : X → O, r : O → X such that ri = Id ;

(ii) Let G be a compact Lie group. If an ENR X is a G-space, O is a G-

invariant open subset of a G-representation Rn, and the maps i and r are
G-equivariant, then X is called a G-ENR.

A basic theorem of point set topology states that a separable metric space
of dimension ≤ n can be embedded into R2n+1 (cf. [92]). Hence,

Lemma 2.6.2. (cf. [47]) A space is an ENR if and only if it is a finite-
dimensional, locally compact, separable, and locally contractible metric space.

For example, every compact manifold, with or without boundary, is an ENR
(cf. [87]). In case of G-ENRs, the following results are established in [102, 47].

Proposition 2.6.3. (cf. [47]) Let X be a G-ENR. Then the orbit space X/G
is an ENR.

Proposition 2.6.4. (cf. [102]) Let X be a G-space which is separable metric
and finite-dimensional. Then, X is a G-ENR if and only if X is locally com-

pact, has a finite number of orbit types, and for every isotropy group H ⊂ G,
the fixed point set XH is an ENR.

We have direct consequences of Proposition 2.6.4 (cf. [47]).

Corollary 2.6.5. (i) A finite G-complex X is a G-ENR;
(ii) A differentiable G-manifold with a finite number of orbit types is a G-ENR.

One of the important properties of (compact) ENR spaces is

Proposition 2.6.6. (cf. [50, 87]) The singular homology groups H∗(X) of a
compact ENR X are finitely generated, i.e. Hk(X) is finitely generated for all
k, and Hk(X) = 0 for sufficiently large k.

Consequently, the Euler characteristic of a compact ENR is defined. More
precisely, let X be a compact ENR, the Euler characteristic χ(X) is defined

as the alternating sum
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χ(X) :=
∞∑

k=0

(−1)krankHk(X), (2.12)

where H∗(X) denotes the singular homology group of X, the “rank” counts
the number of free generators of the group, and the sum is essentially finite
(cf. Proposition 2.6.6). It is sometimes more convenient to compute χ(X) by

the corresponding singular cohomology ring of X over reals (cf. [165])

χ(X) =
∞∑

k=0

(−1)kdimHk(X). (2.13)

In a similar way, one can define the Euler characteristic for a compact
ENR pair (X,A), denoted by χ(X,A), using the relative singular cohomology
H∗(X,A). In case of a non-compact ENR X, we define the Euler characteris-

tic χc(X) through the Alexander-Spanier cohomology with compact supports
H̄∗
c (X).

The following lemma indicates a relation between the Alexander-Spanier
and singular cohomology.

Lemma 2.6.7. (cf. [165]) If (X,A) is a pair of paracompact Hausdorff spaces
being locally contractible, then there exists an isomorphism between the Alexander-
Spanier cohomology and singular cohomology, i.e. H̄k(X,A) ∼= Hk(X,A), for
all k ≥ 0, where H̄∗(X,A) stands for the Alexander-Spanier cohomology of

(X,A).

Taking into account of Lemma 2.6.2, we have

Corollary 2.6.8. If (X,A) is a pair of ENRs, then there exists an isomor-

phism between the Alexander-Spanier cohomology and singular cohomology,
i.e. H̄k(X,A) ∼= Hk(X,A), for all k ≥ 0.

Consider the relation between the Alexander-Spanier cohomology with com-
pact supports and the usual Alexander-Spanier cohomology. The followings are
established in [165].

Lemma 2.6.9. (cf. [165]) If X is a compact Hausdorff space and A is closed
in X, then there exists an isomorphism between the Alexander-Spanier coho-

mology with compact supports and the usual Alexander-Spanier cohomology,
i.e. H̄k

c (X \A) ∼= H̄k(X,A), for all k ≥ 0.
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Corollary 2.6.10. (cf. [165]) If X is a locally compact Hausdorff space and

X+ is the one-point compactification of X, then there is an isomorphism

H̄k
c (X) ∼= ˜̄Hk(X+), for all k ≥ 0, where ˜̄H∗(X+) stands for the reduced

Alexander-Spanier cohomology of X+.

Based on Corollary 2.6.8 and Lemma 2.6.9, we have the following properties
of the Euler characteristics of the ENRs.

Lemma 2.6.11. Let (X,A) be a pair of compact ENRs. Then,

(i) the Euler characteristic χc(X \ A) is correctly defined in the Alexander-
Spanier cohomology with compact supports. Moreover,

χc(X \A) = χ(X,A)

χ(X) = χ(X,A) + χ(A) = χc(X \A) + χ(A),

where χ(·) denotes the Euler characteristic defined in the singular cohomol-
ogy.

(ii) (cf. [47]) let p : (X,A) → (Y,B) be a continuous map between compact
ENR’s such that p(X\A) = Y \B. Suppose that p : X\A → Y \B is a

fibration whose typical fibre F is a compact ENR. Then,

χ(X,A) = χ(F )χ(Y,B).

Denote by T n := S1 × S1 × · · · × S1 an n-dimensional torus (for n > 0),
which is an n-dimensional connected abelian compact Lie group.

Lemma 2.6.12. Let X be a compact T n-ENR space for n > 0. Then,

χ(X) = χ(XTn

).

In particular, if XTn
= ∅, then χ(X) = 0.

Proof: Take a decomposition of X by X =
⋃

(H)∈Φ(Tn)

X(H), where each X(H)

is an open T n-invariant subset of X. Since X(H) is a fibre bundle with fibre

T n/H, χc(X(H)) is a multiple of χ(T n/H) (cf. Lemma 2.6.11). Thus, by the
additivity of χ,

χ(X) =
∑

(H)

χc(X(H)) =
∑

(H)

nH · χ(T n/H), (2.14)
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where nH := χc(X(H)/T
n) ∈ Z.

On the other hand, notice that for all H ( T n, the orbit space T n/H is
diffeomorphic to a connected abelian compact Lie group of dimension at least

one. Hence, it is a torus, and thus χ(T n/H) = 0. Therefore, the essential
summand in (2.14) comes from (H) = (T n). It follows that χ(X) = χ(X(Tn)).
Since T n is abelian and T n is the maximal isotropy in X, χ(X(Tn)) = χ(XTn) =
χ(XTn

). �

Lemma 2.6.13. Let G be a compact abelian Lie group and X,Y two G-spaces.
Denote by ∆ the diagonal subgroup in G×G and consider X × Y as ∆-space.
Define a left G-action on the orbit space (X × Y )/∆ by

ρ : G× (X × Y )/∆→ (X × Y )/∆

(g,∆(x, y) 7→ ∆(x, gy).

Then, for ∆(x, y) ∈ (X ×Y )/∆, its isotropy equals to GxGy (i.e. the subgroup
of G generated by Gx, Gy).

Proof: Notice that since G is abelian, the action ρ is well-defined.

To verify the statement, take g ∈ G such that ∆(x, y) = ∆(gx, y). Observe
that viewed as two ∆-orbits, ∆(x, y) coincides with ∆(x, gy) if and only if

∆(x, y) ∩ ∆(x, gy) 6= ∅, i.e. there exists g1, g2 ∈ G such that (g1x, g1y) =
(g2x, g2gy). This is equivalent to require that g−1

1 g2 ∈ Gx and g−1
1 g2g ∈ Gy,

which implies that g ∈ g−1
2 g1Gy ⊂ GxGy.

On the other hand, if g ∈ GxGy, then there exist gx ∈ Gx, gy ∈ Gy such
that g = gxgy . Thus,

∆(x, gy) = ∆(x, gxgyy) = ∆(x, gxy) = ∆(g−1
x x, y) = ∆(x, y),

i.e. g belongs to the isotropy group of ∆(x, y). �

Corollary 2.6.14. Let X,Y be compact T n-ENRs, and ∆ be the diagonal sub-
group of T n × T n. Assume that GxGy 6= G, for all x ∈ X, y ∈ Y . Then,

χ((X × Y )/∆) = 0.

Proof: Consider (X × Y )/∆ as a left G-space. By Lemma 2.6.13,
((X × Y )/∆)G = ∅ if and only if GxGy 6= G, for all x ∈ X, y ∈ Y , which
is satisfied by the assumption. Therefore, by Lemma 2.6.12, χ ((X × Y )/∆) =
χ
(
((X × Y )/∆)G

)
= χ(∅) = 0. �
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Corollary 2.6.15. Let X,Y be compact T n-ENRs, and ∆ be the diagonal sub-

group of T n×T n. Assume that dimGx+dimGy < dimG, for all x ∈ X, y ∈ Y .
Then,

χ((X × Y )/∆) = 0.

In particular, it holds for G = S1, XS1
= Y S1

= ∅.

Proof: It is sufficient to observe that dimGx +dimGy < dimG implies that
GxGy 6= G. Hence, the statement follows from Corollary 2.6.14. �

Definition 2.6.16. A subgroup H ⊂ G is said to be of maximal rank if H
contains a maximal torus T n of G.

Proposition 2.6.17. Let H ⊂ G be a subgroup of G.
(i) If H is not of maximal rank, then χ(G/H) = 0.
(ii) If H is of maximal rank, then WH(T n) is finite and χ(G/H) =

|WG(T n)|/|WH(T n)|. In particular, χ(G/T n) = |WG(T n)|.

Proof:
(i) If H is not of maximal rank, then G/H admits an action of a torus

T k (0 < k < n) without T k-fixed-points, and the result follows from Lemma
2.6.12.

(ii) Assume H is of maximal rank. Then, for the proof of the finiteness of
WH(T ), we refer to [27], Chap IV, Theorem (1.5). Next, we have a fiber bundle
G/T n → G/H with the fiber H/T n. Then, by Lemma 2.6.11(ii), χ(G/T n) =

χ(H/T n) · χ(G/H). On the other hand, by Lemma 2.6.12 and Lemma 2.4.4,
we have

χ(H/T n) = χ((H/T n)T
n

) = χ(NH(T n)/T n) = |WH(T n)|, (2.15)

from which the statement follows.
�

2.7 Completely Continuous and Condensing Fields

2.7.1 Measure of Noncompactness

For a Banach space E, denote by B(E) the family of all bounded sets in E.
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Definition 2.7.1. A function µ : B(E) → R+ := [0,∞) is called a measure of

noncompactness if it satisfies the following conditions for A,B ∈ B(E)

(µ1) µ(A) = 0 ⇐⇒ A is compact,

(µ2) µ(A) = µ(A),
(µ3) if A ⊂ B then µ(A) ≤ µ(B),
(µ4) µ(A ∪B) = max{µ(A), µ(B)},
(µ5) µ(ηA) = |η|µ(A), η ∈ R,
(µ6) µ(A+B) ≤ µ(A) + µ(B),
(µ7) µ

(
conv (A)

)
= µ(A), where conv (A) denotes the convex hull of A.

An example of a measure of noncompactness is the so-called Hausdorff
measure of noncompactness.

Definition 2.7.2. The function χ : B(E) → R+, defined for A ∈ B(E) by

χ(A) := inf {r > 0 : ∃
X⊂E

X is finite and A ⊂ X + rB1(0)}, (2.16)

is call the Hausdorff measure of noncompactness.

Proposition 2.7.3. The function χ : B(E) → R+ defined by (2.16) is a mea-
sure of noncompactness.

Proof: We need to verify that χ satisfies the conditions (µ1) — (µ7). Notice
that A ⊂ B(E) is relatively compact if and only if it is totally bounded, i.e.

∀
ε>0

∃
X⊂E

X is finite and A ⊂ X + εB1(0).

If X = {x1, . . . , xn}, then the set

X + εB1(0) =

n⋃

k=1

Bε(xk) ⊃ A

is called ε-net for A, thus the condition (µ1) immediately follows from the
definition of χ(A). The condition (µ3) is trivially satisfied, so in order to show
(µ2) observe that χ(A) ≤ χ(A) and we only need to show that χ(A) ≥ χ(A).

Put χ(A) := α. Then

∀
ε>0

∃
X⊂E

X is finite and A ⊂ X +
(
α+

ε

2

)
B1(0). (2.17)
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Since A ⊂ X +
(
α + ε

2

)
B1(0) ⊂ X + (α+ ε)B1(0), it follows from (2.17) that

∀
ε>0

∃
X⊂E

X is finite and A ⊂ X + (α+ ε)B1(0),

which implies that

∀
ε>0

χ(A) ≤ α + ε = χ(A) + ε,

i.e. χ(A) ≤ χ(A).

To prove (µ5), observe that

Br1(0) +Br2(0) ⊂ Br1+r2(0), r1, r2 > 0

thus if for some finite sets X ′ and X ′′

A ⊂ X ′ + r1B1(0) and B ⊂ X ′′ + r2B2(0)

then

A+B ⊂ X ′ +X ′′ + r1B1(0) + r2B1(0) ⊂ X + (r1 + r2)B1(0),

where X := X1 + X2, and we get (µ6). To show (µ7), observe that for two
convex sets C1, C2 ⊂ E, we have that C1+C2 is convex. Also, since conv (A+B)
is the smallest convex set containing A+B, we immediately obtain

conv (A+B) ⊂ conv (A) + conv (B).

By (µ3), χ(A) ≤ χ
(
conv (A)

)
. Let α := χ(A), then by using (2.17) we have

∀
ε>0

∃
X⊂E

X is finite and conv (A) ⊂ conv (X) +
(
x+

ε

2

)
B1(0).

Since X is finite, conv (X) is compact and by (µ1) there exists a finite set
X ′ ⊂ E such that

conv (X) ⊂ X ′ +
ε

2
B1(0),

which implies

conv (A) ⊂ X ′ +
ε

2
B1(0) +

(
α+

ε

2

)
B1(0) ⊂ X ′ + (α+ ε)B1(0),

thus
∀
ε>0

χ
(
conv (A)

)
≤ α+ ε = χ(A) + ε

ı.e. χ
(
conv (A)

)
≤ χ(A) and (µ7) follows. The proofs of (µ4) and (µ5) are

straightforward. �
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Proposition 2.7.4. Let E be a Banach space and B := B1(0) the unit ball

in E, and µ a measure of noncompactness on B(E). If µ(B) = 0, then E is
finite-dimensional. In other words, only in finite-dimensional Banach spaces
the unit ball is relatively compact.

Proof: Suppose that B is compact, then there exists a finite set X ⊂ E such
that B ⊂ X + 1

2
B. Put E0 := span (X). Clearly, dim E0 <∞ and

B ⊂ X +
1

2
B ⊂ E0 +

1

2
B. (2.18)

By multiplying (2.18) by 1
2
, we get

1

2
B ⊂ E0 +

1

4
B.

Thus,

B ⊂ E0 + E0 +
1

4
B = E0 +

1

4
B.

By induction, for every n ∈ N

B ⊂ E0 +
1

2n
B, i.e. B ⊂

∞⋂

n=1

(
E0 +

1

2n
B
)

= E0,

which implies

E =
∞⋃

n=1

nB ⊂
∞⋃

n=1

nE0 = E0.

�

2.7.2 Compact, Completely Continuous, and Condensing Maps

Let µ be a measure of noncompactness on B(E). Then, µ can be extended to

a measure of noncompactness on B(Rn ⊕ E) by

µ(A) := µ(π(A)), A ∈ B(Rn ⊕ E),

where π : Rn ⊕ E → E is the natural projection.

Definition 2.7.5. Let µ be a measure of noncompactness on B(Rn ⊕ E). For
X ⊂ Rn ⊕ E, a continuous map F : X → E is called
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(i) a µ-Lipschitzian map with a constant k ≥ 0, if µ(F (A)) ≤ kµ(A) for all

A ∈ B(X);
(ii) a compact map, if X is bounded and µ(F (X)) = 0;
(iii) a completely continuous map, if it is µ-Lipschitzian with a constant k = 0;

(iv) a Darbó map with constant 0 ≤ k < 1, if it is µ-Lipschitzian with the
constant k ∈ [0, 1);

(v) a condensing map, if it is µ-Lipschitzian with a constant k = 1 and
µ(F (A)) < µ(A) for every A ∈ B(X) such that µ(A) > 0.

Definition 2.7.6. A bounded linear operator L : Rn ⊕ E → E is called com-
pact, if L is a completely continuous map.

Proposition 2.7.7. Let G : Rn ⊕ E → E be a Banach contraction with a
constant k ∈ [0, 1) and K : Rn ⊕ E → E a completely continuous map. Then
F (x) := G(x) + K(x) is a Darbó map with the same constant k, with respect

to the Hausdorff measure χ of noncompactness defined by (2.16).

Proof: For y ∈ E, denote by B∗
r (y) the ball of radius r centered at y in the

target space E. Take A ∈ B(Rn ⊕ E), and suppose α := χ(A). Then, for every

ε > 0, there exists a finite set X = {x1, . . . , xN} ⊂ Rn ⊕ E such that

A ⊂
N⋃

i=1

Bα+ε(xi).

Since G is a Banach contraction with a constant k ∈ [0, 1), we obtain

G(A) ⊂
N⋃

i=1

G(Bα+ε(xi)) ⊂
N⋃

i=1

B∗
k(α+ε)(G(xi)) = G(X) + k(α+ ε)B∗

1(0).

Thus, χ(G(A)) ≤ k(α+ ε), for any ε > 0, which implies that

χ(G(A)) ≤ kχ(A).

On the other hand, by the properties of χ

χ((G +K)(A)) ≤ χ(G(A) +K(A))

≤ χ(G(A)) + χ(K(A)) = χ(G(A))

≤ kχ(A).

Therefore, F is a Darbó map with the constant k. �
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Proposition 2.7.8. Let U ⊂ Rn ⊕ E be an open subset and F : U → E
a continuously Frechét differentiable Darbó map with a constant k ∈ [0, 1).
Then, for every xo ∈ U , the derivative L := DF (xo) : Rn ⊕ E → E is a Darbó
operator with the same constant k.

Proof: As before, we denote by Br(x) (resp. B∗
r (y)) the ball of radius r

centered at x ∈ Rn⊕E (resp. at y ∈ E). By the differentiability of F at xo ∈ U ,

we have that for every ε > 0, there exists δ > 0 such that if ‖x−xo‖ < δ, then

‖F (x) − F (xo) − L(x− xo)‖ ≤ ε‖x− xo‖ < εδ,

which implies that

‖L(x− xo)‖ ≤ ‖F (x) − F (xo)‖ + εδ.

Then,
L(Bδ(0) ⊂ F (Bδ(xo)) − F (xo) + εδB∗

1(0).

Therefore,

δµ(L(B1(0))) = µ(L(Bδ(0)) ≤ µ(F (Bδ(xo) − F (xo) + εδB∗
1(0))

≤ µ(F (Bδ(xo)) + εδµ(B∗
1(0))

≤ kµ(Bδ(xo)) + εδµ(B∗
1(0))

= kδµ(B1(0)) + εδµ(B∗
1(0)),

which holds for every ε > 0, thus we have µ(L(B1(0)) ≤ kµ(B1(0)). It follows
that L is a Darbó operator with the constant k. �

Proposition 2.7.9. (cf. [116]) Let L : E → E be a bounded Darbó operator.
Then, the linear operator Id − L : E → E is a bounded Fredholm operator of
index zero.

2.7.3 Completely Continuous and Condensing Fields

Definition 2.7.10. Let E be a Banach space, X ⊂ Rn ⊕ E and f : X → E a

continuous map of the form f = Id − F , for F : X → E. Then, the map f is
called

(i) a compact field on X, if F is a compact map;
(ii) a completely continuous field on X, if F is a completely continuous map;
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(iii) is a Darbó field on X, if F is a Darbó map;

(iv) is a condensing field on X, if F is a condensing map.

A finite-dimensional degree theory can be extended in a standard way to the
so-called Leray-Schauder degree theory for completely continuous fields on a
Banach space E. Further extensions of the degree theory can be done for Darbó

fields and condensing fields on E. For more details from this perspective, we
refer to [116].





3

Primary Equivariant Degree: An Axiomatic

Approach

The primary degree (with one parameter), as it was confirmed by a large
number of possible applications (cf. [5, 6, 10, 13, 14, 17, 53, 55, 181, 118]), is one

of the most effective tools for studying nonlinear equations with symmetries.
In particular, it provides a unique alternative to the equivariant singularity
method (cf. [79, 81, 94, 160]) for the treatment of symmetric Hopf bifurcation
problems. However, the effectiveness of the primary degree is not just limited

to symmetric bifurcation problems. This degree can also be applied to the
existence problems (e.g. periodic solutions in autonomous system, see Chapter
8) based on the usage of the a priori bounds.

The primary degree (which was originally introduced in [72]) is a “part”
of the general equivariant degree constructed by Ize et al. (cf. [97, 101]). The
general equivariant degree is a full topological invariant (defined as an element

of the stable equivariant homotopy group of sphere) expressing the obstruc-
tion for existence of an equivariant extension (without zeros) of a map from
a boundary of a bounded region onto its interior. The primary degree turns
out to be a computable part of the general equivariant degree. In this chapter,

we present a new construction of the primary degree using normal approxima-
tions, fundamental domain techniques and connections to the classical Brouwer
degree. In order to facilitate its applicability, we also provide for the primary
degree a set of axioms (summarizing the main properties of the primary de-

gree) and the computational result called the recurrence formula (cf. [114] for
an earlier version in a slightly different setting), allowing its effective usage
outside the equivariant topological context.

The recurrence formula reduces computations of the primary degree of an
equivariant map to the computations of its S1-degrees on the fixed-point sub-

spaces. Since the S1-equivariant degree plays a crucial role in a development
of effective computational formulae for the primary degree, we derived a prac-
tical set of axioms for the S1-degree and, based on these axioms established
all the needed computational techniques. We also explore the notion of the

so-called basic maps (i.e. the simplest equivariant maps having nontrivial pri-
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mary G-degrees) with a particular attention given to basic S1-maps. The

obtained results allow further reductions of the computations, leading to a
computerization∗ of the equivariant degree method.

The chapter is organized as follows. In Section 3.1, we recall the definition
of the general equivariant degree and define the primary equivariant degree as
its part. In Section 3.2, we present a new construction the primary equivari-
ant degree via the usage of fundamental domains, where we indicate a direct

connection of the primary degree with the (local) Brouwer degrees of related
maps. The axiomatic definition of the primary degree is stated in Proposition
3.2.5. The notion of basic maps and C-complementing maps are introduced

in Section 3.3. Towards the computations of primary G-degree, we present a
splitting lemma (cf. Lemma 3.3.4). Section 3.4 contains an axiomatic definition
to the primary S1-degree and several computational formulae as direct conse-
quences of splitting lemma. In Section 3.5, we state and prove the recurrence

formula in the context of the primary degree with n-parameters for n ≤ 1.

3.1 General Equivariant Degree

Let G be a compact Lie group, V be an orthogonal G-representation, and
Ω ⊂ Rn ⊕ V be an open bounded G-invariant subset. Consider a continuous
Ω-admissible equivariant map f : Ω ⊂ Rn ⊕ V → V , i.e. f : (Ω, ∂Ω) →
(V, V \{0}). One can assign to the pair (f,Ω) an element, called the equivariant
degree and denoted by degG(f,Ω), in the abelian group ΠG being stable limit
of the equivariant homotopy groups ΠN of maps (cf. [72, 15])

S(RN+n ⊕ V ) → S(RN ⊕ V ).

More precisely, take a large ball BR(Rn ⊕ V ) such that ΩN ⊂ BR(Rn ⊕ V ),
where ΩN := Ω ∪ N and N is an invariant neighborhood of ∂Ω such that
f(x) 6= 0 for all x ∈ N . Let η : BR(Rn ⊕ V ) → R be an invariant Urysohn
function such that

η(x) =

{
0 if x ∈ Ω,

1 if x /∈ ΩN .
(3.1)

Define F :
(
[−1, 1] ×BR(Rn ⊕ V ), ∂([−1, 1] × BR(Rn ⊕ V ))

)
→ (R ⊕ V, (R ⊕

V ) \ {0}) by

∗ Special Maple c© routines have been developed to assist effective computations of primary degree
with one free parameter, for several interesting symmetry groups. The most recent version is avail-
able at http://krawcewicz.net/degree or http://www.math.ualberta.ca/∼wkrawcew/degree.
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F (t, x) = (t+ 2η(x), f(x)), (t, x) ∈ [−1, 1] ×BR(Rn ⊕ V ). (3.2)

. The pair
(
[−1, 1]×BR(0), ∂([−1, 1]×BR(0))

)
is G-equivariantly homeomor-

phic to
(
B(R ⊕ V ), S(B(R ⊕ V ))

)
, so the map F determines an equivariant

homotopy class [F ] in Π1. Define

degG(f,Ω) := ξ1[F ] ∈ ΠG, (3.3)

and call it a G-equivariant degree of f in Ω.

The equivariant degree constructed above, which is a slight modification
of the construction given in [97], satisfies all the properties expected from any
reasonable degree theory, like existence, homotopy invariance, excision, suspen-

sion, additivity etc (cf. [72, 15, 101]). Roughly speaking, the equivariant degree
“measures” equivariant homotopy obstructions for f|∂Ω to have an equivariant
extension without zeros over Ω.

As it is shown in [8], the group ΠG admits a splitting

ΠG =
⊕

dimW (H)≤n

Π(H),

where Π(H) consists of all the elements in ΠG generated by B(RN+n ⊕ V )-
admissible maps f : RN+n ⊕ V → RN ⊕ V being regular normal maps with
zeros of the orbit type (H) only. Thus,

deg G(f,Ω) =
∑

dimW (H)≤n

n(H), n(H) ∈ Π(H).

If dimW (H) = n, the component Π(H) is called primary, and if W (H)
is bi-orientable, Π(H) ' Z (cf. [147]). The projection of deg G(f,Ω) onto∑
(H)∈Φ+

n(G,Ω)

Π(H) is called the primary degree of f in Ω and is denoted by

G-Deg (f,Ω).

The applicability of the primary degree depends heavily on its computabil-
ity. In the general case n > 0, the computation of the primary degree is a
complicated task. However, in the case n = 1, the primary degree seems to be
completely computable due to a reduction to the S1-degree using recurrence

formula (cf. Sections 3.4—3.5). In the case n = 2, one can look for a similar
reduction to the S1 × S1-degree (cf. [97] for results on S1 × S1-degree). In the
case n > 2, the situation is much more complicated, since possible connected
components of W (H) may be different from n-tori.
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3.2 Primary Equivariant Degree with n Free Parameters

The primary degree introduced in [72], uses the regular normal approximations

and winding numbers of their restrictions to normal slices around the orbits
of zeros (cf. [51, 52, 116], where the case G = S1 was considered). Since it
is well-known that the winding number admits an axiomatic definition as an
integer-valued function satisfying a list of certain properties (cf. [112, 188]), it

is natural to ask whether a similar axiomatic approach exists for the primary
degree. The answer turns out to be affirmative.

3.2.1 Construction

Take an Ω-admissible G-equivariant map f : Rn ⊕ V → V and assume that
it is regular normal in Ω. For (H) ∈ Φ+

n (G,V ), put fH := f|ΩH
and take a

canonical orientation on ΩH/W (H) (cf. Proposition 2.2.16). Choose a regular

fundamental domain D on ΩH such that f−1
H (0)∩(D\Do) = ∅ (cf. Section 2.5,

Theorem 2.5.6). Put To := p(Do). Since f is regular normal, the set p(f−1
H (0)∩

Do) is finite, thus it is always possible to construct To in such a way that

p(f−1
H (0)) ⊂ To. The homeomorphism ξ := p−1|To : To → Do is called the

lifting homeomorphism.

Definition 3.2.1. Consider an Ω-admissible G-equivariant regular normal
map f : Rn ⊕ V → V . We define the primary degree of f to be an element
G-Deg (f,Ω) ∈ A+

n (G) by

G-Deg (f,Ω) :=
r∑

i=1

nHi(Hi), (3.4)

where the coefficient nHi corresponding to (Hi) is defined by

nHi := deg (fHi ◦ ξ, To), (3.5)

with ξ being the lifting homeomorphism and deg standing for the (local)
Brouwer degree of fHi (cf. Section 2.1.3). To certain extent, one can think
of nHi as the Brouwer degree of fHi on a fundamental domain D.

If f : Rn⊕V → V is a general G-equivariant Ω-admissible map (not neces-
sarily being regular normal in Ω), then take a regular normal approximation
map f̃ of f (cf. Proposition 2.3.5) and define

G-Deg (f,Ω) := G-Deg (f̃ , Ω). (3.6)
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We will show that the primary degree given by (3.4)—(3.6) is well-defined.

Proposition 3.2.2. Let G be a compact Lie group, Ω ⊂ Rn ⊕ V an open
bounded invariant subset and f : Rn ⊕ V → V an Ω-admissible G-equivariant

map. Then, the primary degree given by (3.4)—(3.6) is well-defined.

Proof: (i) We first show that formula (3.5) is independent of a choice of a reg-

ular fundamental domain D. Suppose that D′ is another regular fundamental
domain such that f−1

H (0) ∩ (D′ \D′
o) = ∅, p(D′

o) = T ′
o with the lifting home-

omorphism ξ′ : T ′
o → D′

o. By applying the additivity property of the Brouwer

degree, we can assume, without loss of generality, that f−1
H (0) is composed of

a single orbit W (H)(xo) and put p(xo) = yo. Suppose that Bo ⊂ To ∩ T ′
o is a

contractible neighborhood of yo, put Eo = ξ(Bo), E
′
o = ξ′(Bo) and we assume

xo ∈ Eo. Then, by excision property of the degree,

deg (fH ◦ ξ, To) = deg (fH ◦ ξ,Bo), deg (fH ◦ ξ′, T ′
o) = deg (fH ◦ ξ′, Bo).

We will show that

deg (fH ◦ ξ,Bo) = deg (fH ◦ ξ′, Bo). (3.7)

Case 1. xo ∈ Eo ∩ E′
o. Observe that ξ|Bo and ξ′|Bo

are sections of the (trivial)

bundle p : p−1(Bo) → Bo, thus there exists a continuous map µ : Eo →W (H)
such that for every x ∈ Eo, we have

Ψ(x) := µ(x)x ∈ E′
o

and Ψ : Eo → E′
o is a homeomorphism since so are ξ|Bo and ξ′|Bo

. In particular,
µ(xo) = 1 and Eo is contractible. Therefore, there exists a homotopy µt of µ

with a constant map µo(x) ≡ 1. Put Ψt(x) := µt(x)x, i.e. Ψt is a homotopy
between Ψ and Id|Eo. Observe that ξ′ = Ψ ◦ ξ, therefore, by the homotopy
invariance of the degree, we have

deg (fH ◦ ξ′, Bo) = deg (fH ◦Ψ ◦ ξ,Bo) = deg (fH ◦Ψt ◦ ξ,Bo) = deg (fH ◦ ξ,Bo).

Case 2. xo 6∈ Eo ∩ E′
o. In this case, there exists g ∈ W (H)o such that gxo =:

x′o ∈ E′
o. Put D̃o := g(Do). Since W (H)o acts freely, D̃ := D̃o is a fundamental

domain with a lifting homeomorphism ξ̃ = g ◦ ξ, and we put Ẽo = g(Eo). By
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the Sard-Brown theorem (cf. Proposition 2.1.5), we can assume that yo is a

regular point of the map fH ◦ ξ. Since fH is W (H)-equivariant, we have

fH ◦ ξ = fH ◦ g−1 ◦ g ◦ ξ = g−1 ◦ fH ◦ g ◦ ξ = g−1 ◦ fH ◦ ξ̃,

i.e.
g ◦ fH ◦ ξ = fH ◦ ξ̃,

which implies that yo is also a regular point of fH ◦ ξ̃. Since the action of W (H)
preserves the orientation of the slice, we obtain immediately

deg (fH ◦ ξ,Bo) = deg (fH ◦ ξ̃, Bo).

Since x′o ∈ E′
o ∩ Ẽo, the equality (3.7) follows from the Case 1.

(ii) We show that the formula (3.5) does not depend on a choice of a repre-
sentative f . Take two regular normal G-equivariant maps f0 and f̃1, which are
equivariantly homotopic by an Ω-admissible homotopy Ψ : [0, 1]×Rn⊕V → V

with Ψ0 = f0 and Ψ1 = f̃1 (where Ψt := Ψ(t, ·)). Let (H) ∈ Φn(G,V ) and choose
D1 to be a regular fundamental domain for the W (H)-action on ΩH such that
(f0)

−1
H (0)∩ (D1 \D1

o) = ∅. Denote by ξ1 := (p|D1
o
)−1 : T 1

o → D1
o the correspond-

ing lifting homeomorphism. Then, by continuity of Ψ , there exists 0 < t̃1 ≤ 1

such that
⋃
t∈[0,t̃1)

(Ψt)
−1
H (0) ∩ (D1 \ D1

o) = ∅. Since for every t1 ∈ [0, t̃1), the
map Ψt, t ∈ [0, t1], is a regular normal homotopy between f0 and f1 := Ψt1, it
follows from the homotopy property of the local Brouwer degree that

deg ((f0)H ◦ ξ1, T 1
o ) = deg ((f1)H ◦ ξ1, T 1

o ).

By the compactness of [0, 1], there exists a (finite) partition 0 < t1 < · · · <
tk = 1 and fundamental domains D1,D2, . . . ,Dk with the corresponding lifting
homeomorphisms ξi := (p|Di

o
)−1 : T io → Di

o, such that

⋃

t∈[ti−1,ti]

(Ψt)
−1
H (0) ∩ (Di \Di

0) = ∅.

Consequently, by induction, we obtain

deg ((f0)H ◦ ξ1, T 1
o ) = deg ((f1)H ◦ ξ1, T 1

o ) = · · · = deg ((fk)H ◦ ξk, T ko ),

which implies

deg ((f0)H ◦ ξ1, T 1
o ) = deg ((fk)H ◦ ξk, T ko ).
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Thus, Proposition 3.2.2 is proved.

�

We will proceed with the basic properties satisfied by the primary degree.

To formulate the so-called normalization property, we start with the definition:

Definition 3.2.3. Let G be a compact Lie group, V an orthogonal
G-representation and f : Rn ⊕ V → V a regular normal map such that
f(xo) = 0 with Gxo = H and (H) ∈ Φ+

n (G,V ).

(i) Let UG(xo) be a G-invariant tubular neighborhood around G(xo) such that
f−1(0) ∩ UG(xo) = G(xo). Then, f is called a tubular map around G(xo).

(ii) In addition, take a positively oriented slice Sxo to W (H)(xo) in Rn ⊕ V H

(cf. Definition 2.2.17). Call nxo = sign detDfH (xo)|Sxo
the local index of f

at xo in UG(xo) (here fH := f |ΩH and D stands for the derivative).

Proposition 3.2.4. (cf. [72, 101]). Let G, V , Ω and f be as in Proposition

3.2.2. Then the primary degree defined by (3.4)—(3.6) satisfies the following
properties:

(P1) (Existence) If G-Deg (f,Ω) =
∑
(H)

nH(H) is such that nHo 6= 0 for some

(Ho) ∈ Φ+
n (G,V ), then there exists x ∈ Ω with f(x) = 0 and Gx ⊃ Ho.

(P2) (Additivity) Assume that Ω1 and Ω2 are two G-invariant open disjoint

subsets of Ω such that f−1(0) ∩Ω ⊂ Ω1 ∪ Ω2. Then,

G-Deg (f,Ω) = G-Deg (f,Ω1) +G-Deg (f,Ω2).

(P3) (Homotopy) Suppose h : [0, 1] × Rn ⊕ V → V is an Ω-admissible G-
equivariant homotopy. Then,

G-Deg (ht, Ω) = constant

(here ht := h(t, ·, ·), t ∈ [0, 1]).
(P4) (Suspension) Suppose that W is another orthogonal G-representation and

let U be an open, bounded G-invariant neighborhood of 0 in W . Then,

G-Deg (f × Id, Ω × U) = G-Deg (f,Ω).

(P5) (Normalization) Suppose f is a tubular map around G(xo) with H := Gxo

and (H) ∈ Φ+
n (G,V ). Let nxo be the local index of f at xo in a tubular

neighborhood UG(xo). Then,

G-Deg (f, UG(xo)) = nxo(H).
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(P6) (Elimination) Suppose f is normal in Ω and ΩH ∩ f−1(0) = ∅ for every

(H) ∈ Φ+
n (G,V ). Then,

G-Deg (f,Ω) = 0.

(P7) (Excision) If f−1(0)∩Ω ⊂ Ω0, where Ω0 ⊂ Ω is an open invariant subset,
then

G-Deg (f,Ω) = G-Deg (f,Ω0).

(P8) (Hopf property) Suppose that Ω ⊂ Rn ⊕ V is an open invariant subset

such that ΩH/W (H) is connected for all (H) ∈ Φ+
n (G,V ) and ΩK = ∅

for all (K) ∈ Φk(G,V ) with k < n and all (K) ∈ Φn(G,V ) \ Φ+
n (G). Let

f, g : Rn ⊕ V → V be two Ω-admissible G-equivariant maps such that

G-Deg (f,Ω) = G-Deg (g,Ω).

Then, f and g are G-equivariantly homotopic by an Ω-admissible homotopy.

Proof: (P1): Assume f is regular normal and (Ho) ∈ Φ+
n (G). Choose a

regular fundamental domain D and the lifting homeomorphism ξ : To → Do for
the W (Ho)-action on ΩHo . By assumption, 0 6= nHo = deg (fHo ◦ ξ, To). Then,

by the existence property of the (local) Brouwer degree, there exists yo ∈ To
such that fHo(ξ(yo)) = 0, i.e., fHo(xo) = 0, where xo = ξ(yo) ∈ Do ⊂ ΩHo , so
that Gxo = Ho.

In the general case, take a sequence {fn} of G-equivariant Ω-admissible
regular normal maps such that

sup
x∈Ω

‖fn(x) − f(x)‖ < 1

n
.

Since for n sufficiently large fn is G-equivariantly homotopic to f , it follows

that G-Deg (f,Ω) = G-Deg (fn, Ω). Since fn is normal, we obtain f−1
n (0) ∩

ΩHo 6= ∅, thus there is a sequence {xn} ⊂ ΩHo such that fn(xn) = 0 for each
n sufficiently large. We can assume without loss of generality that xn → x as
n → ∞ and therefore f(x) = lim

n→∞
fn(xn) = 0. Since V Ho is closed, x ∈ V Ho

and consequently Gx ⊃ Ho.

(P2) — (P4), (P7): To establish these properties, one can use the same idea
as above: for a regular normal f (resp. h) the statements follow from (3.4),
(3.5) and appropriate properties of the local Brouwer degree. In the general

case, it suffices to take regular normal approximations sufficiently closed to f
(resp. h) and use the standard compactness argument.
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(P5): Follows from the regular value definition of the Brouwer degree.

(P6): Follows from the definition of the primary equivariant degree.

(P8): We divide the proof in several steps:

Step 1. Local homotopies around zeros: Denote by Φn,0(G,V ) the set of
all orbit types in f−1(0) ∩ Ω, which is an invariant over the choice of all Ω-
admissible G-equivariant maps taking the same value of G-Deg as f (by the
definition of the G-Deg ). In particular, it is also the set of all orbit types in

g−1(0)∩Ω. Without loss of generality (see Proposition 2.3.5), one can assume
that f and g are regular normal. Further, by the assumption and regular
normality (see Proposition 2.3.4), f and g only have zeros of primary orbit
type. For each (H) ∈ Φn,0(G,V ), choose a regular fundamental domain D on

ΩH provided by Theorem 2.5.6 with To = p(Do) such that f−1
H (0)∩(D\Do) = ∅

and g−1
H (0) ∩ (D \Do) = ∅, i.e. p(f−1

H (0)) ∪ p(g−1
H (0)) ⊂ To. Notice that To is

contractible (in particular, connected). Thus, by the Hopf Property of Brouwer
degree,

deg (fH ◦ ξ, To) = deg (gH ◦ ξ, To)

implies that fH is homotopic to gH by a certain homotopy hH on ΩH. This ho-
motopy can be extended, in a standard way (cf. [120, 47]), to a G-equivariant

homotopy between f and g on Ω(H). By Proposition 2.3.5, this homotopy can
also be assumed to be regular and normal. Then, by using the normality condi-
tion, such a homotopy can be extended to an invariant neighborhood of Ω(H),
say NΩ(H)

(denote this homotopy by hH). Apply the same argument to each

(H) ∈ Φn,0(G,V ) and choose for any (H) an invariant closed neighborhood
NH ⊂ NΩ(H)

satisfying the conditions: (i) NH contains zeros of f and g of
orbit type (H); (ii) NH ∩ NL = ∅ as (H) 6= (L). The collection of the “lo-
cal” homotopies {hH|NH

} for all (H) ∈ Φn,0(G,V ), gives rise to the equivariant

homotopy between f and g on the closed invariant subset N :=
⊔
NH.

Step 2. Extension of local homotopies: based on the local homotopies, define

a map h on A := ({0}×Ω)∪ ([0, 1]×N) ∪ ({1}×Ω) by letting h(0, ·) = f(·),
h(1, ·) = g(·) and h(t, x) = hH(t, x) for (t, x) ∈ [0, 1] × N and x of orbit type
(H). By construction, h is continuous G-equivariant. Using the equivariant
Kuratowski-Dugundji Theorem (see, for instance, [120], Theorem 1.3), extend

h equivariantly and continuously over [0, 1] ×Ω and denote this extension by
ĥ. In general, ĥ may have new zeros.



70 3 Primary Equivariant Degree: An Axiomatic Approach

Step 3. Correcting ĥ via Urysohn function: Put Â := ĥ−1(0) \ A (i.e. the

set of the “new zeros” of ĥ). We claim that Â is a closed subset in [0, 1] ×Ω.
Indeed, take a sequence {(tn, xn)} from Â, and suppose {(tn, xn)} → (to, xo) in
[0, 1]×Ω. By continuity of ĥ, we have ĥ−1(0) is a closed subset in [0, 1]×Ω, so

(to, xo) ∈ ĥ−1(0). By the normality of h, one has: (to, xo) 6∈ A, i.e. Â is closed.
By construction, Â ∩ A = ∅, thus there exists an invariant Urysohn function
η : [0, 1] ×Ω → [0, 1] with η(A) = 1 and η(Â) = 0. Now, define a new map h̃
on [0, 1]×Ω by: h̃(t, x) = ĥ(t ·η(t, x), x). It’s easy to see that h̃−1(0) = h−1(0),

thus h̃ is a required homotopy between f and g.
�

3.2.2 Axiomatic Definition

We are now in a position to state an axiomatic definition of the primary equiv-
ariant degree.

Proposition 3.2.5. Let G be a compact Lie group. There exists a unique func-
tion G-Deg assigning to each admissible pair (f,Ω) an element

G-Deg (f,Ω) =
∑
nH(H) in A+

n (G), which satisfies properties (P1)—(P6)
listed in Proposition 3.2.4.

Proof: The existence part of Proposition 3.2.5 is provided by Propositions
3.2.2 and 3.2.4. To prove the uniqueness, take an arbitrary admissible pair
(f,Ω). By the homotopy property, f can be assumed to be regular normal.

By additivity (i.e. excision) and elimination properties, we can assume that
Ω ∩ f−1(0) contains points of the orbit types (H) ∈ Φ+

n (G,V ). Since f is
regular normal, the set Ω ∩ f−1(0) is composed of a finite number of G-orbits.
Take tubular neighborhoods isolating the above orbits (this is durable, since we

have finitely many zero orbits). By the additivity, the primary degree of (f,Ω)
is equal to the sum of degrees of restrictions of f to the tubular neighborhoods.
By the elimination axiom, the contribution of the secondary orbit types is equal

to zero. Finally, by the normalization property, the remaining orbits lead to
“local indices”, which determine uniquely the value of the primary degree
G-Deg (f,Ω). �

We provide a computational example for the primary degree with 2-
parameters.

Example 3.2.6. Let mV and lV be the m-th and l-th irreducible represen-
tation of S1 (cf. Appendix A2) with m, l > 0. Put V := mV ⊕ lV, which is
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naturally a T 2-representation. Define a map d : R2 ⊕ V → V by

d(s, t, z, w) :=
(
(1 − ‖z‖ + i(s+ t)) · z, (1 − ‖w‖ + i(s− t)) · w)

)
,

for s, t ∈ R, z ∈ mV and w ∈ lV. Let Ω ⊂ R2 ⊕ V be defined by

Ω := {(s, t, z, w) ∈ R2 ⊕ V : s2 + t2 < 1,
1

2
< ‖z‖, ‖w‖ < 2}.

Clearly, the map d is a T 2-equivariant Ω-admissible map. Also, by direct veri-
fication, the zero set d−1(0)∩Ω is composed of only one T 2-orbit {(s, t, z, w) :
s = t = 0, ‖z‖ = ‖w‖ = 1}, which is of orbit type (Zm × Zl). Moreover, the
map d is a regular normal map on Ω, since Ω = Ω(Zm×Zl). Thereofore, by

normalization property, we have

T 2-Deg (d,Ω) = i · (Zm × Zl),

where i is the local index of d at some point xo in the orbit. For simplicity,
choose xo := (0, 0, 1, 0, 1, 0) written in real coordinates. Then, the slice Sxo '
{(s, t, x1, y1, x2, y2) : y1 = y2 = 0}. Calculating the derivative Dd(xo) on the

slice Sxo, we have

Dd(xo)|Sxo
=




0 0 −1 0
1 1 0 0
0 0 0 −1
1 −1 0 0


 ,

and det
(
Dd(xo)|Sxo

)
> 0. Notice that Sxo is a negatively oriented slice (cf.

Definition 2.2.17). Therefore, T 2-Deg (d,Ω) = −(Zm × Zl).

3.3 Basic Maps, C-Complementing Maps and Splitting

Lemma

3.3.1 Basic Maps and C-Complementing Maps

The S1-degree will be the main computational tool to evaluate the primary
G-degree for G = Γ×S1, with Γ being a compact Lie group. In order to estab-
lish the links between the S1-degree and the primary G-degree, we introduce

the notion of the so-called basic maps and C-complementing maps. These two
types of equivariant maps (which can be considered as the simplest nontrivial
examples of G-equivariant maps with one parameter) appear naturally in the
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setting related to the existence of periodic solution problems (basic maps) and

symmetric Hopf bifurcation problems (C-complementing maps). The impor-
tant feature of these types of maps is that they have exactly the same primary
G-degrees. In fact, the C-complementing map can be viewed as a “suspension”

of the basic map (cf. Proposition 3.3.1).

Let G = Γ × S1 and V be an orthogonal G-representation with V S1
= {0}

(notice that the S1-action induces a natural complex structure on V ). Put

Ω := {(t, v) ∈ R ⊕ V : |t| < 1,
1

2
< ‖v‖ < 2}, (3.8)

O :=
{

(λ, v) ∈ C ⊕ V : ‖v‖ < 2,
1

2
< |λ| < 4

}
. (3.9)

Suppose a : S1 → GLG(V ) is a continuous map. We define b : R ⊕ V → V
and fa : (C \ {0}) × V → R ⊕ V by

b(t, v) :=
(
1 − ‖v‖ + it

)
· v, t ∈ R, v ∈ V, (3.10)

fa(λ, v) :=

(
|λ|(‖v‖ − 1) + ‖v‖ + 1, a

(
λ

|λ|

)
v

)
. (3.11)

Similarly, define

f−
a (λ, v) :=

(
|λ|(‖v‖ − 1) + ‖v‖ + 1, a

(
λ̄

|λ|

)
v

)
, (3.12)

b−(t, v) :=
(
1 − ‖v‖ − it) · v, t ∈ R, v ∈ V. (3.13)

It is easy to check that the pairs (b,Ω), (b−, Ω), (fa,O), (f−
a ,O) are admissible

pairs.

Proposition 3.3.1. Let G = Γ ×S1 for Γ being a compact Lie group, V be an
orthogonal G-representation such that V S1

= {0} and Ω, O are given by (3.20)
and (3.9). Assume that a(λ) = λ

|λ|Id : V → V , λ ∈ C \ {0} and consider the

maps b and fa defined by (3.19) and (3.11). Then, fa is G-homotopic to a map
f1, which is a suspension of b on an open subset of zeros of f1. In particular,

G-Deg (f,O) = G-Deg (b,Ω). (3.14)

Moreover, a similar property holds for b− and f−
a (defined by (3.12) and (3.22))

G-Deg (f−,O) = G-Deg (b−, Ω). (3.15)
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Proof: We only prove (3.26) and the proof of (3.27) is similar. Consider the

map

fa(λ, v) =

(
|λ|(‖v‖ − 1) + ‖v‖ + 1,

λ

|λ| · v
)
.

Define the function η : R → R by

η(t) =





0 if t < 1
2

t− 1
2

if 1
2
≤ t ≤ 3

2

1 if t > 3
2
,

and θ(v) := η(‖v‖), for v ∈ V . Put

fθ(λ, v) = (1 − θ(v))
(
f1(λ, 0) + v) + θ(v)f1(λ, v), (3.16)

where (λ, v) ∈ O. Obviously, f1 is G-homotopic to fθ by an O-admissible
homotopy, so we have

G-Deg (f1,O) = G-Deg (fθ,O), θ ∈ [0, 1].

By direct verification, f−1
θ (0) = Z0∪Z1 ⊂ Ω, where Z0 :=

{
(λ, 0) ∈ C⊕V :

|λ| = 1
}

and Z1 :=
{

(−3, v) ∈ C ⊕ V : ‖v‖ = 1
}
. Define G-invariant open

tubular neighborhoods Ω0 and Ω1 around Z0 and Z1 respectively by

Ω0 :=

{
(λ, v) :

1

2
< |λ| < 3

2
, ‖v‖ < 1

2

}

and

Ω1 :=

{
(λ, v) : |λ+ 3| < 1

2
,

1

2
< ‖v‖ < 3

2

}
.

By the additivity property, we have

G-Deg (fθ,O) = G-Deg (fθ, Ω0) +G-Deg (fθ, Ω1).

Since for (λ, v) ∈ Ω0, we have fθ(λ, v) = (1 − |λ|, v), it follows from the
suspension property that

G-Deg (fθ, Ω0) = G-Deg (ϕo, Bo),

where Bo = {λ ∈ C : 1
2
< |λ| < 3} and ϕo : Bo → R is defined by ϕo(λ) =

1 − |λ|. By the elimination property, we have G-Deg (ϕo, Bo) = 0. Thus,
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G-Deg (f,O) = G-Deg (fθ, Ω1).

Replacing in the R-component of (3.16) θ(v) (resp. ‖v‖) by ‖v‖ − 1
2

(resp. 1),
one obtains the map

f̃θ(λ, v) =

(
1

2
(3 − |λ|),

(
1 − θ(v) + θ(v) · λ|λ|

)
· v
)

=

(
1

2
(3 − |λ|), 3(1 + |λ|) − (2|λ| + 6)‖v‖ + (2‖v‖ − 1)(λ+ 3)

2|λ| · v
)

where (λ, v) ∈ Ω1 (recall, θ(v) = ‖v‖ − 1
2

on Ω1).

Obviously, f̃θ has no zeros on ∂Ω1. Moreover, for any (λ, v) ∈ ∂Ω1 the
vectors fθ(λ, v) and f̃θ(λ, v) do not point the opposite directions. Therefore,
fθ and f̃θ are G-homotopic by Ω1-admissible homotopy and

G-Deg (fθ, Ω1) = G-Deg (f̃θ, Ω1).

Next, replacing in the V -component of f̃θ the value |λ| (resp. 2‖v‖ − 1) by
3 (resp. 1), one obtains the map

f̂1(λ, v) =

(
1

2
(3 − |λ|), 12(1 − ‖v‖) + (λ + 3)

6
· v
)
,

where (λ, v) ∈ Ω1.

At this moment, we can apply the change of variables λ′ = λ + 3, leading
to the set Ω2 :=

{
(λ′, v) : |λ′| < 1

2
, 1

2
< ‖v‖ < 3

2

}
and after an appropriate

S1-homotopy) the map f̃1 : Ω2 → R ⊕ V, given by

f̃1(α+ iβ, v) =

(
1

2
α,

12(1 − ‖v‖) + (α + iβ)

6
· v
)
, λ′ = α + iβ,

(here, we used the fact that 3−|λ| = 3−
√

(α− 3)2 + (β)2 is S1-homotopic to
α, since |β| ≤ |λ′| < 1

2
, which guarantees no zeros of such a homotopy crossing

∂Ω2), which is clearly Ω2-admissibly S1-homotopic to the map

f1(α + iβ, v) = (α, (1 − ‖v‖ + iβ) · v).

Obviously, f 1 is a suspension of the map b, therefore

G-Deg (f1, Ω2) = G-Deg (b,Ω),
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and since

G-Deg (f1, Ω2) = G-Deg (f̃θ, Ω1) = G-Deg (f,O),

the equality (3.26) follows. �

Definition 3.3.2. Let Vj,l be an irreducible representation of Γ × S1 (cf. Re-
mark 2.2.4), and Ωj,l, Oj,l be defined by (3.20) and (3.9) with V replace by

Vj,l. We call the map b defined by (3.19) the basic map associated with Vj,l,
and the map b− defined by (3.22) is called the basic map of second type. The
map fa defined by (3.11) is called the C-complementing map and f−

a defined
by (3.12) will be called the C-complementing map of second type. In addition,

(f,Oj,l) (resp. (f−,Oj,l)) is called a C-complementing pair to (b,Ωj,l) (resp.
(b−, Ωj,l)).

By Proposition 3.3.1, we have the following

Corollary 3.3.3. Let G = Γ × S1 for Γ being a compact Lie group and Vj,l
be an irreducible G-representation. Suppose Ωj,l, Oj,l, b, b

−, fa and f−
a are as

given in Definition 3.3.2. Then, we have

G-Deg (f,Oj,l) = G-Deg (b,Ωj,l),

G-Deg (f−,Oj,l) = G-Deg (b−, Ωj,l).

3.3.2 Splitting Lemma

Lemma 3.3.4. (Splitting Lemma) Let G = Γ × S1 for a compact Lie group
Γ , V1 and V2 orthogonal G-representations with V S1

i = {0}, i = 1, 2. Put
V := V1 ⊕ V2. Suppose that ai : S1 → GLG(Vj), i = 1, 2, are two continuous

maps and a : S1 → GLG(V ) is given by

a(λ) = a1(λ) ⊕ a2(λ), λ ∈ S1.

Assume O and fa are defined by (3.9) and (3.11), respectively. Put

Oi :=
{

(λ, vi) ∈ C ⊕ Vi : ‖vi‖ < 2,
1

2
< |λ| < 4

}
,

fai(λ, vi) :=

(
|λ|(‖vi‖ − 1) + ‖vi‖ + 1, ai

(
λ

|λ|

)
vi

)
,

where i = 1, 2, vi ∈ Vi. Then,

G-Deg (fa,O) = G-Deg (fa1,O1) +G-Deg (fa2,O2).
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Proof: We can assume without loss of generality that ai : S1 → GLG(Vi) ∩
O(Vi) is analytic, i.e. there exists an analytic extension of ai to a neighborhood
of S1 in C (here O(Vi) stands for the group of orthogonal operators on Vi,
i = 1, 2). Introduce the functions qi : R → R, i = 1, 2,

qi(t) =





1 if 0 ≤ t < si;

− 1
εi

(t− ti) if si ≤ t < ti;

0 if t ≥ ti,

where





si = i
i+4

− 1
2(i+4)2

;

ti = i
i+4

+ 1
2(i+4)2

;

εi = ti − si = 1
(i+4)2

.

Then define for (λ, v1, v2) ∈ O ⊂ C ⊕ V1 ⊕ V2 the map

f̃a(λ, v1, v2) :=
(
θ(λ, v1, v2), β1(λ, v1), β2(λ, v1, v2)

)
,

with

θ(λ, v1, v2) = |λ|(‖v1 + v2‖ − 1) + ‖v1 + v2‖ + 1,

β1(λ, v1) = q2(‖v1‖)v1 + (1 − q2(‖v1‖)a1

(
λ

|λ|

)
v1,

β2(λ, v1, v2) = q1(‖v1 + v2‖)v2 + (1 − q1(‖v1 + v2‖)a2

(
λ

|λ|

)
v2.

The maps fa and f̃a are G-homotopic by an O-admissible homotopy.

Let us examine zeros of the map f̃a. It is clear that

Z0 :=
{

(λ, 0, 0) : |λ| = 1
}
⊂ f̃−1

a (0).

Observe that if (λ, v1, v2) ∈ f̃−1
a (0) is such that v1 6= 0 (resp. v2 6= 0) then

v2 = 0 (resp. v1 = 0). Indeed, suppose that (λ, v1, v2) ∈ f̃−1
a (0) is such that

v1 6= 0 6= v2. Then, by comparing the norms of the both sides in the following

equalities: q2(‖v1‖)v1 = −(1− q2(‖v1‖)a1

(
λ
|λ|

)
v1 and q1(‖v1 + v2‖)v2 = −(1−

q1(‖v1 + v2‖)a2

(
λ
|λ|

)
v2, we obtain

q2(‖v1‖) = 1 − q2(‖v1‖) and q1(‖v1 + v2‖) = 1 − q1(‖v1 + v2‖),

which implies

q2(‖v1‖) = q1(‖v1 + v2‖) =
1

2
,
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so ‖v1‖ = 1
3

and ‖v1 + v2‖ = 1
5
, but this is a contradiction because v1 is

orthogonal to v2 and thus ‖v1 + v2‖ ≥ ‖v1‖.

Therefore, we can first suppose that (λ, v1, 0) ∈ f̃−1
a (0), v1 6= 0, so ‖v1‖ = 1

3
.

Then θ(λ, v1, 0) = 0 and β1(λ, v1) = 0 imply |λ|
(

1
3
− 1
)
+ 1

3
+1 = 0, i.e. |λ| = 2.

On the other hand, since q2(
1
3
) = 1

2
,

β1(λ, v1) =
1

2

[
v1 + a1

(
λ

|λ|

)
v1

]
= 0, v1 6= 0,

λ satisfies the equation

detC

[
Id + a1

(
λ

|λ|

)
Id

]
= 0, |λ| = 2. (3.17)

Since the map ω → detC[Id + a1(ω)Id] is analytic in a neighborhood of S1 in
C, the equation

detC[Id + a1(ω)Id] = 0, ω ∈ S1,

has only a finite number of solutions, and consequently the equation (3.17)
also has finitely many solutions, say λ1, . . . , λn. Put

Zk :=
{

(λk, v1, 0) : ‖v1‖ =
1

3

}
, k = 1, . . . , n.

If (λ, v1, 0) ∈ f̃−1
a (0), v1 6= 0, then (λ, v1, 0) ∈ Z1 ∪ · · · ∪ Zn. Similarly, if

(λ, 0, v2) ∈ f̃−1
a (0), v2 6= 0, then ‖v2‖ = 1

5
and |λ| = 3

2
, and there exists a finite

number of solutions λ′1, . . . , λ
′
m to the equation

detC

[
Id + a2

(
λ

|λ|

)
Id

]
= 0, |λ| =

3

2
.

Put Z ′
l :=

{
(λ′l, 0, v2) : ‖v2‖ = 1

5

}
, l = 1, . . . ,m. In this way, we have

proved that f̃−1
a (0) ⊂ Z0 ∪ Z1 ∪ · · · ∪ Zn ∪ Z ′

1 ∪ · · · ∪ Z ′
m. By applying

the excision property to G-invariant separating neighborhoods of Zk, Z
′
l ,

k = 0, 1, . . . , n, l = 1, . . . ,m, and using appropriate deformations of f̃a on these

sets, we obtain the map f̂a such that f̂a(λ, v1, v2) = (θ(λ, v1, v2), β1(λ, v1), v2)
for (λ, v1, v2) in a neighborhood of Zk, k = 1, . . . , n, and f̂a(λ, v1, v2) =
(θ(λ, v1, v2), v1, β2(λ, 0, v2)) for (λ, v1, v2) in a neighborhood of Z ′

l , l = 1, . . . ,m.
Notice that f̃a in a neighborhood of Z0 is homotopic to a map without zeros.

The conclusion then follows from the suspension and excision properties. �
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3.4 Primary Equivariant S1-degree

To assist an effective computation of the primary equivariant degree with one
free parameter, we formulate an axiomatic definition (of more practical mean-
ing than the one provided in Proposition 3.2.5) for the S1-degree, based on the
usage of the basic maps and folding homomorphisms (cf. Definition 3.4.1). For

the rest of this chapter, we assume that n = 1.

Denote by A1(S
1) := A+

1 (S1) the free Z-module generated by the symbols

(Zk), k = 1, 2, 3, . . . .

Definition 3.4.1. Consider an orthogonal S1-representation V , an open S1-

invariant bounded set Ω ⊂ R⊕V , and an Ω-admissible S1-equivariant map f :
R⊕ V → V . The primary degree S1-Deg (f,Ω), also called the S1-equivariant
degree, is an element in A1(S

1) and can be written as (cf. (3.4)—(3.6))

S1-Deg (f,Ω) =
r∑

i=1

nki(Zki), nki ∈ Z. (3.18)

Notation 3.4.2 Denote by lV, for l = 1, 2, 3, . . . , the l-th real irreducible
representation of S1 (cf. Appendix A2, Table A2.1). For each l, there is an

associated basic map b (cf. Definition 3.3.2). To be more precise, b : R⊕ lV →
lV by

b(t, z) :=
(
1 − |z| + it

)
· z, (t, z) ∈ R ⊕ lV. (3.19)

We will also use the notation lΩ for the admissible domain of b, i.e.

lΩ :=

{
(t, z) ∈ R ⊕ lV : |t| < 1,

1

2
< |z| < 2

}
. (3.20)

To formulate an axiomatic definition of S1-degree, we need the following:

Definition 3.4.3. For every integer m = 1, 2, 3, . . . , we define the homomor-
phism θm : S1 → S1 by θm(γ) = γm, γ ∈ S1. Define the induced homomor-
phism Θm : A1(S

1) → A1(S
1) by

Θm(Zk) := (Zkm), k = 1, 2, 3, . . . ,

where (Zk) are the free generators of A1(S
1), and call it the m-folding homo-

morphism.
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Notice that if f : R ⊕ V → V is an Ω-admissible S1-equivariant map

for an open bounded S1-invariant subset Ω ⊂ R ⊕ V , then for every integer
m = 1, 2, 3, . . . , we can define the associated m-folded S1-representation m(V ),
which is the same vector space V with the S1-action ‘·’ given by

γ · v := θm(γ)v = γmv, γ ∈ S1, v ∈ V.

The map f : R ⊕ m(V ) →m (V ) is S1-equivariant. The set Ω considered as
an S1-subset of R ⊕ m(V ) will be denoted by mΩ. We will say that the pair
(f,mΩ) is the m-folded admissible pair associated with (f,Ω).

3.4.1 Axiomatic Definition

The following theorem provides us with an axiomatic definition of the S1-
degree.

Theorem 3.4.4. There exists a unique function, denoted by S1-Deg , assigning

to each admissible pair (f,Ω) an element S1-Deg (f,Ω) ∈ A1(S
1) satisfying

the properties (P1) — (P4) (see Proposition 3.2.4 with G = S1) as well as the
following ones:

(P5)’ (Normalization) Let 1V be the first irreducible S1-representation and
b : R ⊕ 1V → 1V be the basic map associated with 1V (cf. Notation 3.4.2).
Then, we have

S1-Deg (b, 1Ω) = (Z1).

(P6)’ (Elimination) If V is a trivial S1-representation, then

S1-Deg (f,Ω) = 0.

(F) (Folding) Let m(V ) be the m-folded representation associated with V , and
(f,mΩ) the m-folded admissible pair associated with (f,Ω). Then

S1-Deg (f,mΩ) = Θm

[
S1-Deg (f,Ω)

]
.

The proof of Theorem 3.4.4 is essentially based on the following lemma:

Lemma 3.4.5. Let f : R ⊕ V → V be a regular normal Ω-admissible map

such that f−1(0) ∩ Ω consists of one S1-orbit G(xo). Suppose that Gxo = Zko

and denote by Sxo the positively oriented slice at xo to the orbit G(xo) (cf.
Definition 2.2.17). Then,

S1-Deg (f,Ω) = no (Zko),

where no is the local index of f at xo (cf. Definition 3.2.3).
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Proof: Step 1: Unfolding the S1-Action.

Consider the S1-isotypical decomposition (2.6) of the space V . Assume that

xo = y0+y1+· · ·+yr, where yi ∈ Vi. Notice that Gxo =
r
∩
yi 6=0

Gyi , where Gy0 = S1

and Gyi = Zki for 1 ≤ i ≤ r and yi 6= 0. Thus, we have Zko = S1 ∩ ∩
yi 6=0

Zki ,

which implies that ki is a multiple of ko if yi 6= 0.

In the case kj is not a multiple of ko, the isotypical component Vkj is orthog-

onal to R⊕ V Zko . By the normality assumption of f , on a small neighborhood
of G(xo), f can be considered as the product map fo× Id, with fo := f|R⊕V Zko

.
By the suspension property (P4), we have

S1-Deg (f,Ω) = S1-Deg (fo × Id, Ωo ×B) = S1-Deg (fo, Ωo),

where Ωo = Ω ∩ (R⊕V Zko ) and B denotes the unit ball in (R⊕V Zko )⊥. Thus,

sign detDf(xo)|Sxo
= sign detDfo(xo)|S′

xo
,

where S ′
xo

:= Sxo ∩ (R ⊕ V Zko ).

Thus, we can assume, without loss of generality, that ki = ko · ni for ni ∈ Z
and ko = gcd(k1, . . . , kr). In this case, the subgroup Zko acts trivially on V .
Define the new action of S1 ' S1/Zko on the space V , which is also an orthog-
onal S1-representation, and denote this new representation by Ṽ . Moreover,
the map f remains S1-equivariant with respect to this new action. Denote by

Ω̃ the set Ω considered as an S1-subspace of Ṽ . Consequently, (f,Ω) is the
ko-folded admissible pair associated with the admissible pair (f, Ω̃). By the
folding property (F), we have

S1-Deg (f,Ω) = Θko

[
S1-Deg (f, Ω̃)

]
.

To conclude the argument, it is sufficient to show that

S1-Deg (f, Ω̃) = no (Z1).

In the remaining part of the proof, we will assume that Gxo = Z1.

Step 2: Reduction to a tubular neighborhood.

Take a tubular neighborhood Ω′ around the orbit G(xo), i.e.

Ω′ = G
(
xo +Bε(Sxo)

)
, 0 < ε < ‖xo‖,
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where Sxo is the positively oriented slice to the orbit G(xo) at xo. Then every

point x ∈ Ω′ has a unique representation as γxo + γv, for some v ∈ Bε(Sxo)
and γ ∈ S1.

Define the linear operator

A := Df(xo)|Sxo
: Sxo → V,

and the map f0 := Ω′ → V by

f0

(
γ(xo + v)

)
= γ(Av), γ ∈ S1, v ∈ Bε(Sxo),

which is clearly S1-equivariant. By the excision property (P7’) and homotopy
property (P3), we have that

S1-Deg (f0, Ω
′) = S1-Deg (f,Ω).

Step 3: Reduction to One Isotypical Component.

We consider the path xλ = λe+(1−λ)xo, λ ∈ [0, 1], where e is a unit vector
belonging to the isotypical component V1. Let Sxλ

be the slice to the orbit
G(xλ) at the point xλ, and Bλ =

{
v ∈ Sxλ

: ‖v‖ < ε
}

for min{‖xo‖, 1} > ε > 0.
We putΩλ := G(xλ+Bλ),Aλ := Df(xλ)|Sxλ

and define fλ : Ωλ → V , λ ∈ [0, 1],

by
fλ(γ(xλ + v)) = γ(Aλv), v ∈ Sxλ

, γ ∈ S1.

By the excision property (P7)’ and the homotopy property (P3), we have

S1-Deg (f1, Ω1) = S1-Deg (fλ, Ωλ) = S1-Deg (f0, Ω
′) = S1-Deg (f,Ω).

Notice that, using a path in the space of linear isomorphisms from Se to V , the
matrix A can be deformed to a block matrix Ã, which is Id on the isotypical
components Vk2 , . . . , Vkr . By the suspension property (P4), we can assume
that V = V G ⊕ V1, e ∈ V1.

Step 4: Reduction to Basic Maps.

Suppose that V1 = Ck = R2k and e = (0, 0, . . . , 0, 1, 0). Since the orbit
G(e) consists of the points (0, 0, . . . , 0, cos τ , sin τ ) ∈ R2k, the tangent vector
to G(e) at e is the vector v2k+1 = (0, 0, . . . , 0, 1), and consequently the slice

Se consists of all vectors of the form (α1, α2, . . . , α2k−1, 0), αj ∈ R. By taking
the standard basis in Se, which in this case defines the positive orientation of
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Se, we can use the fact that there exists a path Aλ (λ ∈ [0, 1]), in GL(2k,R)

connecting the matrix Ã to the matrix:

A1 :=




0 0 . . . 0 0 −1
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 0 1 0
1 0 . . . 0 0 0




if sign detDf(xo)|Sxo
> 0, and

A1 :=




0 0 . . . 0 0 −1
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 0 1 0

−1 0 . . . 0 0 0




if sign detDf(xo)|Sxo
< 0. The path Aλ defines an Ω1-admissible homotopy

f1+λ

(
γ(e+ v)

)
= γ(Aλv), v ∈ Se, γ ∈ S1.

Let us consider an element (t, v) ∈ R ⊕ V , which is represented as

(t, v) = v0+ ṽ1+γse, v0 ∈ V G, ṽ1 ∈ Ck−1×{0} ⊂ Ck = V1, γ ∈ S1, s ∈ R+.

Then we have

f2(t, v) = f2(t, v0 + ṽ1 + γse) = f2(γ(t, v0 + γ−1ṽ1 + se)

= γ
(
A1(t, v0 + γ−1ṽ1 + se

)
= γ(v0 + γ−1ṽ1) + γÃ1(t, s)

= v0 + ṽ1 + γÃ1(t, s),

where Ã1 :=

[
0 −1
1 0

]
if sign detDf(xo)|Sxo

> 0 and Ã1 :=

[
0 −1
−1 0

]
if

sign detDf(xo)|Sxo
< 0. The above identities show that the map f2 is “normal”

with respect to the vectors v0 + ṽ1, i.e. f2 = f̃2 × Id, where f̃2 : R ⊕ C → C is

given by:
f̃2(t, γse) = γ(Ã1(t, s)

)
, γ ∈ S1, s ∈ R+, t ∈ R.

Therefore, by the suspension property (P4), we have

S1-Deg (f2, Ω1) = S1-Deg (f̃2, Ω̃1),
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where Ω̃1 :=
{

(t, z) ∈ R ⊕ C : |t| < 1, 1
2
< |z| < 2

}
is equivariantly homo-

topically equivalent to Ω1, and the S1-action on C is the standard complex
multiplication.

Let us consider the maps b(t, z) =
(
1−|z|+it

)
·z and b−(t, z) =

(
1−|z|−it

)
·z,

defined on Ω̃1, to which we can apply the linearization procedure along the
orbit G(zo), zo = (0, 1, 0) ∈ R ⊕ C. More precisely, we consider the derivatives
Db(0, 1, 0) and Db−(0, 1, 0) restricted to Se, which can be easily evaluated:

B+ := Db(0, 1, 0)|Se =

[
0 −1
1 0

]
; B− := Db−(0, 1, 0)|Se =

[
0 −1

−1 0

]
(3.21)

Then, by applying the formula f±(t, γs) := γ(B±(t, s)), γ ∈ S1, s ∈ R+ and
t ∈ R, we observe that f+ (resp. f−) is equivariantly homotopic to the basic
map b (resp. b−). Therefore, if sign detDf(xo)|Sxo

= 1, then there exists an Ω̃1-
admissible homotopy between b and f̃2, and if sign detDSxo

f(xo) = −1, then

there exists an Ω̃1-admissible homotopy between b− and f̃2. Consequently, by
the normalization property (P5) and Corollary 3.4.7, we obtain that

S1-Deg (f,Ω) = no (Z1),

which completes the proof. �

Proof of Theorem 3.4.4

Existence. We claim that the primary degree defined by the formulae (3.4)—
(3.6) (with n = 1 and G = S1) satisfies the properties listed in Theorem 3.4.4.
Indeed, Properties (P1)—(P4), (P6)’ are provided by Proposition 3.2.4. Prop-

erty (P5)’ follows from (3.21). To show (F), consider an admissible pair (f,Ω)
and the associated m-folded pair (f,m (Ω)). By the homotopy and excision
properties, we can assume that f is regular normal on Ω (and, consequently,
on m(Ω)). Take some orbit type (Zk) occuring in Ω and let D be a regular

fundamental domain for ΩZk
. Then D is a regular fundamental domain for

m(Ω)Zkm
. Since f is the same for both cases, the result follows from (3.5).

Uniqueness. Let S1-̃Deg be a function satisfying Properties (P1)—(P4), (P5)’,
(P6)’ and (F). Let V be an orthogonal S1-representation, Ω ⊂ R ⊕ V an S1-

invariant open bounded region, and f : R⊕V → V an equivariantΩ-admissible
map. We will show that

S1-̃Deg (f,Ω) = S1-Deg (f,Ω).
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By Proposition 2.3.5 and homotopy property (P3), without lost of generality

one can assume that f is regular normal. By the normality, there exists an open
S1-invariant subset Ωo ⊂ Ω such that Z := f−1(0) ∩ ΩS1

= f−1(0) ∩ Ωo, i.e.
Ωo is an isolating invariant neighborhood of Z. In addition, we can assume

that f|Ωo (up to an Ωo-admissible homotopy) is a product map fS
1 × Id, where

fS
1

:= f|R⊕V S1 , and Id is the identity operator on the space (R⊕V S1
)⊥. Then,

by the suspension property (P4) and the elimination property (P6)’, we have

S1-̃Deg (f,Ωo) = S1-̃Deg (fS
1 × Id, ΩS1

o ×B) = S1-̃Deg (fS
1

, ΩS1

o ) = 0,

where B denotes the unit ball in (R ⊕ V S1
)⊥.

Since f is assumed to be regular, we have that

f−1(0) ∩ Ω = Z ∪ S1(x1) ∪ · · · ∪ S1(xm),

where S1(xj), j = 1, 2, . . . ,m, are isolated orbits. We can choose open invariant
sets Ωj ⊂ Ω such that Ωj ⊃ S1(xj), Ωj ∩ Ωi = ∅, i 6= j, i, j = 0, 1, 2, . . . ,m.

Then, by applying the additivity property (P2), we obtain that

S1-̃Deg (f,Ω) = S1-̃Deg (f,Ω0) + S1-̃Deg (f,Ω1) + · · · + S1-̃Deg (f,Ωm)

= S1-̃Deg (f,Ω1) + · · · + S1-̃Deg (f,Ωm).

For each of the orbits S1(xj), j = 1, . . . ,m, we consider the positively oriented
slice Sj at the point xj, and we denote by Djf(xj) the matrix of the derivative
Df(xj)|Sj

, with respect to a basis in Sj defining the positive orientation on it.

Applying Lemma 3.4.5 and Properties (P2), (P7)’, one obtains

S1-̃Deg (f,Ω) =
m∑

j=1

S1-̃Deg (f,Ωj) =
m∑

j=1

sign detDf(xj)|Sj · (Zkj )

=
m∑

j=1

S1-Deg (f,Ωj) = S1-Deg (f,Ω).

�

We present some immediate consequences of Theorem 3.4.4.

Corollary 3.4.6. The S1-degree provided by Theorem 3.4.4 also satisfies
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(P7)’ (Excision) Assume Ωo is an S1-invariant open subset of Ω such that

f−1(0) ∩Ω ⊂ Ωo. Then,

S1-Deg (f,Ω) = S1-Deg (f,Ωo).

(P9) (l-th Basic Map) For every l = 1, 2, 3, . . . and the basic map b associated
with l-th irreducible S1-representation, we have (cf. Notation 3.4.2)

S1-Deg (b, lΩ) = (Zl).

The proof of Corollary 3.4.6 is straightforward and we omit it.

Corollary 3.4.7. Let b− : R ⊕ lV → lV, l = 1, 2, 3, . . . , be defined by

b−(t, z) =
(
1 − |z| − it) · z, t ∈ R, z ∈ lV. (3.22)

Then,
S1-Deg (b−, lΩ) = −(Zl). (3.23)

Proof: We consider the set

Ω :=

{
(t, z) ∈ R ⊕ lV : |t| < 2,

1

2
< |z| < 2

}

and the function α : R → R defined by

α(t) =





1 if t < −1 or t > 3
2
,

−t if − 1 ≤ t < 1
4
,

t− 1
2

if 1
4
≤ t ≤ 3

2
.

Define the homotopy h : [0, 1] × R ⊕ lV → lV by

hλ(t, z) =
(
λ
(
1 − |z|

)
+ i
(
(1 − λ) + λα(t)

))
· z, z ∈ lV, t ∈ R, λ ∈ [0, 1].

It is clear that hλ is an Ω-admissible homotopy such that h0(t, z) = i ·z, which
implies (by (P1)) that S1-Deg (h0, Ω) = 0 and, therefore (by (P3)),

S1-Deg (h1, Ω) = 0. (3.24)

Obviously, h−1
1 (0) ∩ Ω =

{
(t, z) ∈ R ⊕ lV : |z| = 1, t = 0, 1

2

}
. Put
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Ω1 :=

{
(t, z) ∈ R ⊕ lV : |t| < 1

4
,

1

2
< |z| < 2

}
,

Ω2 :=

{
(t, z) :

∣∣∣∣t−
1

2

∣∣∣∣ <
1

4
,

1

2
< |z| < 2

}
.

Then (by (P2) and (3.24))

S1-Deg (h1, Ω1) + S1-Deg (h1, Ω2) = 0. (3.25)

By (P7)’ (resp. (P3)), we have

S1-Deg (h1, Ω1) = S1-Deg (b−, lΩ)
(

resp. S1-Deg (h1, Ω2) = S1-Deg (b, lΩ)
)
.

Therefore, by (P9) and (3.25), S1-Deg (b−, lΩ) = −(Zl). �

3.4.2 Computational Formulae for S1-Degree

Based on the S1-degrees of basic maps, by Proposition 3.3.1, we obtain similar
result for C-complementing maps (cf. Definition 3.3.2).

Corollary 3.4.8. (i) Let (f, lO) be a C-complementing pair to (b, lΩ). Then,
f is S1-homotopic to a map f1, which is a suspension of b on an open subset
containing zeros of f1. In particular,

S1-Deg (f, lO) = S1-Deg (b, lΩ) = (Zl). (3.26)

(ii) Similarly, let (f−, lO) be a C-complementing pair to (b−, lΩ). Then, f−

is S1-homotopic to a map f−
1 , which is a suspension of b− on an open subset

containing zeros of f−
1 . Moreover,

S1-Deg (f−, lO) = S1-Deg (b−, lΩ) = −(Zl). (3.27)

As consequence of Splitting Lemma (cf. Lemma 3.3.4), we have the following
computational formulae of the S1-degree.

Corollary 3.4.9. Let lV be the l-th irreducible S1-representation. Define

f̃(λ, v) =
(
|λ|(‖v‖ − 1) + ‖v‖ + 1,

(
λ

|λ|

)k
v
)
, (λ, v) ∈ O,

where lO is given by (3.9) (cf. Notation 3.4.2). Then, S1-Deg (f̃ , lO) = k(Zl).
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Proof: For the sake of definiteness, assume that k > 0 (the case k ≤ 0 can

be treated using a similar argument), and consider the map

f̃ × Id : lO ×Bk−1 → R ⊕ lVl ⊕
[
lV ⊕ · · · ⊕ lV︸ ︷︷ ︸

k−1

]
,

where Bk−1 = B( lV) × · · · ×B( lV)︸ ︷︷ ︸
k−1

and B( lV) denotes the unit ball in lV.

Then, by suspension property,

S1-Deg (f̃ , lO) = S1-Deg
(
f̃ × Id, lO ×Bk−1

)
.

Obviously, f̃ × Id is equivariantly homotopic, by an lO × Bk−1-admissible
homotopy, to fa given by (3.11), where v ∈ V = lV ⊕ · · · ⊕ lV︸ ︷︷ ︸

k

and a : S1 →

GLS
1
(V ) is defined by

a(γ) =




γk 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , γ ∈ S1.

By an lO × Bk−1-admissible homotopy, fa is equivariantly homotopic to fb
given by

fb(λ, v) =

(
|λ|‖(‖v‖ − 1) + ‖v‖ + 1, b

(
λ

|λ|

)
v

)
,

with b : S1 → GLS
1
(V ) defined by

b(γ) =




γ 0 . . . 0
0 γ . . . 0
...

...
. . .

...
0 0 . . . γ


 , γ ∈ S1.

Since S1-Deg (f̃ , lO) = S1-Deg (fb,
lO × Bk−1), by the Splitting Lemma and

Proposition 3.3.1, we have

S1-Deg (f̃ , lO) = (Zl) + · · · + (Zl)︸ ︷︷ ︸
k

= k(Zl).

The proof of Corollary 3.4.9 is complete. �

By combining the Splitting Lemma and Corollary 3.4.9, we obtain
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Theorem 3.4.10. Let V be an orthogonal S1-representation with V S1
= {0},

admitting the isotypical decomposition (2.5). Let O (resp. fa) be defined by
(3.9) (resp. (3.11)). Then

S1-Deg (fa,O) =
s∑

i=1

ki(Zli),

where ki := deg
(

detC ◦ai, S1
)
, ai(λ) := a(λ)|Vli

: Vli → Vli, for i = 1, . . . , r.

As an immediate consequence of Theorem 3.4.10, we obtain

Corollary 3.4.11. Let V and O be as in Theorem 3.4.10. Let ki ∈ Z, i =
1, . . . , r, be given integers and assume that dim C Vli = mi. Define f : O →
R ⊕ V by f(λ, v1, . . . , vs) =

(
|λ|
(
‖v‖ − 1

)
+ ‖v‖ + 1, λk1v1, . . . , λ

ksvs
)
, where

λ ∈ C \ {0}, vi ∈ Vli. Then

S1-Deg (f,O) =
s∑

i=1

miki(Zli).

3.5 Recurrence Formulae

In this section, we present two recurrence formulae. The first one allows us
to reduce the computation of the primary G-degree of one parameter to the
computations of the related S1-degrees, while the second one facilitates the
computations of primary G-degree without free parameters.

3.5.1 One Parameter Case

To formulate this formula, we need the following notations.

Notation 3.5.1 Let V be an orthogonal S1-representation, Ω ⊂ R ⊕ V
an open bounded S1-invariant set, and f : R ⊕ V → V an Ω-admissible S1-

equivariant map. Consider the S1-degree defined by (3.18) and put

deg ki
(f,Ω) := nki , i = 1, 2, . . . , r.

Observe that each of the integer coefficients nki satisfies the usual additivity,
homotopy, excision, and suspension properties.
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For simplicity, we assume that

(*) for all (H), (K), (L) ∈ Φ1(G) with (H) < (K) < (L) and (H), (L) ∈
Φ+

1 (G), we have that (K) ∈ Φ+
1 (G).

Remark 3.5.2. In all computational examples considered in this thesis, the
assumption (*) automatically verifies. In the general case, one needs to extend
the notion of the primary degree to include the relatively bi-orientable orbit
types and similar statement holds [12, 15].

Proposition 3.5.3. (Recurrence Formula) Let V be an orthogonal
G-representation, Ω ⊂ R ⊕ V an open bounded invariant subset and f :
R ⊕ V → V a G-equivariant Ω-admissible map. Under the assumption (*),
we have that

G-Deg (f,Ω) =
∑

(H)∈Φ+
1 (G)

nH · (H),

where

nH =


∑

k

deg k(f
H , ΩH) −

∑

(Ho)>(H)

nHo n(H,Ho) |W (Ho)/S
1|



/ ∣∣W (H)/S1

∣∣ .

Notice that a particular case of Proposition 3.5.3 was established in [114],
where the argument is based on the using the S1-fixed point index.

Proof: By the definition of nH, it is an algebraic count of W (H)-orbits in

ΩH. Since dimW (H) = 1, it is diffeomorphic to a disjoint union of m copies of
S1, where m = |W (H)/S1|. In another word, nH ·|W (H)/S1| gives an algebraic
count of S1-orbits in ΩH.

Observe that ΩH = ∪
Ho⊇H

ΩHo. To count the S1-orbits in ΩH, it is sufficient

to do the counting first in ΩH, then subtract off those S1-orbits belonging to

ΩHo for Ho ⊃ H. In order to count the S1-orbits in ΩH, it is sufficient to
compute the value of S1-Deg (fH , ΩH), then sum up the coefficients related
to (Zk) for all k ∈ N, i.e. it equals to

∑
k

deg k(f
H , ΩH). On the other hand,

nHo · |W (Ho)/S
1| represents the count of S1-orbits in ΩHo.

Therefore, we have
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nH · |W (H)/S1| =
∑

k

deg k(f
H , ΩH) −

∑

Ho⊃H

nHo · |W (Ho)/S
1|

=
∑

k

deg k(f
H , ΩH) −

∑

(Ho)>(H)

n(H,Ho)nHo · |W (Ho)/S
1|,

which completes the proof.

�

We provide an example of computation for a primary D6 ×S1-degree using

the recurrence formula. The conventions of notations follow Appendix A2.

Example 3.5.4. Let G = D6 × S1 and take an irreducible G-representation

V2,1 ' C ⊕ C with the G-action given by

(γ, eiθ)(z,w) := eiθ · (γ2 · z, γ−2 ·w),

(κ, eiθ)(z,w) := eiθ · (w, z),

where γ6 = 1 and eiθ ∈ S1. Let b : R⊕V2,1 → V2,1 be the basic map associated

to V2,1 given by

b(t, v) :=
(
1 − ‖v‖ + it

)
· v, t ∈ R, v ∈ V2,1,

and Ω := {(t, v) ∈ R ⊕V2,1 : |t| < 1, 1
2
< ‖v‖ < 2} (cf. Definition 3.3.2).

To evaluate G-Deg (b,Ω), we use an induction over the lattice of the orbit
types according to the recurrence formula. Since the orbit types occuring in
V2,1 are (Zt2

6 ), (Dz
2), (D2) and (Z2), we suppose

G-Deg (b,Ω) = n1(Zt2
6 ) + n2(D

z
2) + n3(D2) + n4(Z2),

for integers ni ∈ Z, i = 1, 2, 3, 4. Following the lattice of these four orbit
types (cf. Figure A2.12 with N = 6, j = 2 and h = 2), we first compute the

coefficients n1, n2, n3 for the maximal orbit types (Zt2
6 ), (Dz

2), (D2) respectively.

Using the maximality of (Zt2
6 ) and the fact that dim C(ΩZt2

6 ) = 1, we have that

S1-Deg (bZt2
6 , ΩZt2

6 ) = 1 · (Z1). Taking into account W (Zt2
6 ) = Z1 ×S1, we then

have

n1 = deg 1(b
Zt2

6 , ΩZt2
6 )/|W (Zt2

6 )/S1|
= 1/|Z1 × S1/S1|
= 1.
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Similarly, we obtain that n2 = n3 = 1. To compute the coefficient n4 for the or-

bit type (Z2), observe that ΩZ2 = Ω. Thus, S1-Deg (bZ2, ΩZ2) = S1-Deg (b,Ω).
By the splitting lemma, S1-Deg (b,Ω) = m · (Z1), where m = dim CΩ = 2.
Therefore,

n4 =
(
deg 1(b

Z2 , ΩZ2) − n1 ·N(Z2,Zt2
6 )|W (Zt2

6 )/S1| − n2 ·N(Z2,D
z
2)|W (Dz

2)/S1|
−n3 ·N(Z2,D2)|W (D2)/S

1|
)
/|W (Z2)/S

1|
= (2 − 1 · 2 · 1 − 1 · 3 · 1 − 1 · 3 · 1)/6

= −1,

where we use the facts N(Z2,Zt2
6 ) = 2, N(Z2,D

z
2) = N(Z2,D2) = 3, W (Zt2

6 ) =
W (Dz

2) = W (D2) = Z1 × S1 and W (Z2) = D3 × S1.

Consequently, G-Deg (b,Ω) = (Zt2
6 ) + (Dz

2) + (D2) − (Z2). In fact, we just
computed the so-called twisted basic degree of V2,1 (cf. Definition 4.2.8).

3.5.2 No Parameters Case

Following the same idea as the proof of Proposition 3.5.3, we obtain (cf. [116,
5, 114, 47])

Proposition 3.5.5. (Recurrence Formula) Let V be an orthogonal
G-representation, Ω ⊂ V an open bounded invariant subset and f : V → V a
G-equivariant Ω-admissible map. Then, we have that

G-Deg (f,Ω) =
∑

(H)∈Φ0(G)

nH · (H),

where

nH =


deg (fH, ΩH) −

∑

(Ho)>(H)

nHo n(H,Ho) |W (Ho)|



/
|W (H)| .

As an illustration of the usage of the above recurrence formula, we compute
a primary D6-degree without parameters. For the conventions of notations, we

refer to Appendix A2.

Example 3.5.6. Let G = D6 and take an irreducible G-representation V4 '
R, which is induced by the homomorphism ϕ : D6 → Z2 with kerϕ = D3.
Consider the basic map b := −Id : V4 → V4 on the unit ball B1 := B1(V4)
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and compute G-Deg (−Id, B1). Observe that the only orbit types occuring in

V4 are (D6) and (D3). Suppose that

G-Deg (b,B1) = n1(D6) + n2(D3).

Since BD6
1 = {0}, we have that deg (bD6, BD6

1 ) = 1. Thus

n1 = deg (bD6, ΩD6)/|W (D6)| = 1.

Similarly, from BD3
1 ' R, it follows that deg (bD3, BD3

1 ) = −1. Therefore,

n2 =
(
deg (bD3, BD3

1 ) − n1 ·N(D3,D6)|W (D6)|
)
/|W (D3)|

= (−1 − 1 · 1 · 1)/2

= −1.

Consequently, G-Deg (b,B1) = (D6)− (D3), which is indeed the so-called basic
degree without parameters associated to V4 (cf. Definition 4.1.5).



4

Twisted Primary Degree

In this chapter, we assume that G = Γ ×S1 for Γ being a compact Lie group.
We introduce the so-called twisted equivariant degree, which is defined as a

truncated part of the primary G-equivariant degree with one free parameter.
The twisted equivariant degree turns out to be the most “computable” part
of the primary equivariant degree, and thus serves as an effective topological
tool in the study of various applied problems, including the Γ -symmetric Hopf

bifurcation problems and the existence of periodic solutions in autonomous
systems (cf. Part II).

Among the important “predecessors” of the (twisted) S1-equivariant degree,
one should mention the rational-valued homotopy invariants introduced and
studied in [67, 40, 42, 44, 43].

The effective usage of the twisted equivaraint degree method highly depends
on an important property called the multiplicativity property, which is analo-
gous to the multiplicativity property of the classical Brouwer degree taken in

the integer ring Z. In the case of the primary degree without free parameters,
this property is related to a natural ring structure of its range A0(Γ ), called
the Burnside ring. In the case of the twisted equivariant degree, it takes a form
of a A0(Γ )-module multiplication in the range At

1(Γ ×S1). The multiplication

in both cases expresses the orbit structure in a Cartesian product of two orbits.
In general, explicit multiplication tables for an arbitrary compact Lie group Γ
are difficult to establish. Nevertheless, based on certain recurrence formulae,
a series of examples of the multiplication tables are obtained and listed in the

Appendix A3 for Γ equal to the quaternionic group Q8, dihedral group DN ,
symmetry groups A4, S4, A5 and orthogonal group O(2).

By the multiplicity property, the computations of the twisted equivariant
degree can be significantly reduced to the evaluations of the twisted degrees
of the basic maps. Since the twisted degrees of basic maps (called basic de-
grees), stand out of context of any specific applied scheme and depend only

on the group Γ and its irreducible representations, the values of the basic de-
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grees can be computed systematically in advance, using certain recurrence

formulae, and simply included as a part of the database for the equivari-
ant degree methods. See Appendix A3 for examples of basic degrees, where
Γ = Q8,DN , A4, S4, A5, O(2).

This chapter is organized as follows. In Section 4.1, we recall the Burnside
ring structure on A0(Γ ) and provide the recurrence formula for the multiplica-
tion operation. Also, we define the basic degrees in the setting of the primary

degree without parameters and present the corresponding recurrence formula.
In Section 4.2, we introduce the twisted subgroups of G = Γ × S1 and define
At

1(G) ⊂ A+
1 (G) as a Z-submodule generated by the conjugacy classes of the

twisted subgroups in G. This submodule At
1(G) has an A0(Γ )-module struc-

ture, which can be determined by a recurrence formula. We also define the
twisted primary degree for G = Γ × S1, as a truncated primary degree, taking
values in At

1(G). Finally, the twisted basic degree will be introduced, which

plays an important role in obtaining all the computational results presented
in this thesis.

4.1 Burnside Ring and Basic Degrees without Free

Parameter

4.1.1 Burnside Ring

Recall that Φ0(Γ ) = {(H) : dimW (H) = 0. Denote by A0(Γ ) the free abelian
group generated by Φ0(Γ ). In order to define the multiplication operation on
A0(Γ ), observe that

(Γ/H × Γ/K)(L)/Γ ∼= (Γ/H × Γ/K)L/N(L)

⊂ (Γ/H × Γ/K)L/N(L)

= (Γ/HL × Γ/KL)/(N(L)/L)

= (Γ/HL × Γ/KL)/W (L).

Since the spaces Γ/HL and Γ/KL consist of finitely many N(L)/L-orbits and
by assumption, N(L)/L is finite, Γ/HL and Γ/KL are also finite (cf. [116]).
Consequently, the set (Γ/H × Γ/K)(L)/Γ is finite.

Definition 4.1.1. Let Γ be a compact Lie group and A0(Γ ) be the free abelian
group generated by Φ0(Γ ). Define the multiplication on A0(Γ ) by
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(H) · (K) =
∑

(L)∈Φ0(Γ )

nL(H,K) (L) (4.1)

where (H), (K), (L) ∈ Φ0(Γ ) and nL(H,K) denotes the number of elements in
the set (Γ/H × Γ/K)(L)/Γ , i.e.

nL(H,K) :=
∣∣(Γ/H × Γ/K)(L)/Γ

∣∣,

where |X| denotes the number of elements in the set X. In other words, the

number nL(H,K) represents the number of orbits of type (L) contained in the
space Γ/H × Γ/K. Equipped with the multiplication given by (4.1), A0(Γ ) is
called the Burnside Ring of Γ .

Notation 4.1.2 In the case G = Γ × S1, the Burnside ring A0(Γ ) can be
naturally identified with A0(G) by (H) 7→ (H × S1). Throughout the rest of

this thesis, we will use this identification freely and possibly without further
notice.

We refer to [116] for more details and proofs related to the above definition of

the Burnside Ring.

Remark 4.1.3. (i) The computations of the multiplication table for A0(Γ )
can be effectively conducted using a simple recurrence formula (cf. Propo-
sition 3.5.5)

nL(H,K) =

n(L,H)|W (H)|n(L,K)|W (K)| −
∑

(L̃)>(L)

n(L, L̃)nL̃|W (L̃)|

|W (L)| .

(4.2)
(ii) Examples of Burnside ring multiplication tables are provided in Appendix

A3, for Γ = Q8,D3,D4,D5,D6, A4, S4, A5, O(2).

4.1.2 Primary Degrees without Free Parameters

The Burnside ring structure naturally endows the primary equivariant degree
without parameters, a multiplicativity property.

Proposition 4.1.4. Let Γ be a compact Lie group and Vi be a Γ -orthogonal

representation, for i = 1, 2. Assume that (fi, Ωi) is an admissible pair in Vi,
for i = 1, 2. Then, we have
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(P7’) (Multiplicativity) The product map f1 × f2 : V1 ⊕ V2 → V1 ⊕ V2 is

Ω1 ×Ω2-admissible, and

Γ -Deg(f1 × f2, Ω1 ×Ω2) = Γ -Deg(f1, Ω1) · Γ -Deg(f2, Ω2),

where Γ -Deg is the primary equivariant degree without free parameters and
‘·’ stands for the multiplication in the Burnside ring A0(Γ ).

4.1.3 Basic Degrees and Computational Formulae for Linear
Isomorphisms

In the case of no-parameter equivariant maps, the concept of being the simplest
possible equivariant maps having nontrivial degrees reduces to the −Id map
defined on a Γ -irreducible representation.

Definition 4.1.5. Let V be a real irreducible representation of Γ . Consider
−Id : V → V and its primary equivariant degree (without free parameters)

(cf. Proposition 3.2.4—3.2.5). We call deg V := G-Deg (−Id, B1(V)) ∈ A0(Γ ×
S1) ' A0(Γ ) the basic degree (without free parameters) of Γ associated to the
irreducible representation V.

Remark 4.1.6. (i) The computations of the basic degrees without free pa-

rameters can be achieved using the following recurrence formula (cf. [116]).
Suppose that deg V =

∑
(L)∈Φ0(G)

nL(L). Then,

nL =

(−1)nL −
∑

(L̃)>(L)

n(L, L̃) · nL̃ · |W (L̃)|

|W (L)| , (4.3)

where nL = dim VL.

(ii) As examples, the basic degrees of Γ = Q8,DN , A4, S4, A5, O(2) are pro-
vided in Appendix A2.

It turns out that the computations of the primary degree without free pa-

rameters for general, usually nonlinear, Γ -maps, can often be reduced to the
computations for symmetric linear isomorphisms A : V → V , where V is a Γ -
orthogonal representation. Based on the usage of the basic degrees and the mul-

tiplicativity property of the primary degree without free parameters (cf. Propo-
sition 4.1.4), we derive a computational formula for Γ -Deg(A,B1(V )) ∈ A0(G).
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Since A : V → V is assumed to be a symmetric linear Γ -isomorphism, V

allows a Γ -isotypical decomposition provided by the eigenspaces E(µ) of A,
for µ ∈ σ(A), namely

V =
⊕

µ∈σ(A)

E(µ).

By applying suspension property, Γ -Deg(A,B1(V )) can be evaluated by

Γ -Deg(A,B1(V
−)), where V − ⊂ V is the maximal subspace on which A is

negative definite. More precisely, let σ−(A) denote the negative spectrum of
A. Then,

V − =
⊕

µ∈σ−(A)

E(µ).

Moreover on V −, A is homotopic to −Id , which can be viewed as a product
map with respect to the above isotypical decomposition of V −, by homotopy
and multiplicativity properties, we have

Γ -Deg(A,B1(V )) =
∏

µ∈σ−(A)

Γ -Deg(−Id , B1(E(µ))).

A further reduction is possible, by viewing E(µ) as a Γ -invariant subspace
in V and taking an isotypical decomposition

E(µ) = E0(µ) ⊕ E1(µ) ⊕ · · · ⊕ Er(µ),

where Ei(µ) is modeled on Vi for i = 0, 1, . . . , r. Put

mi(µ) = dimEi(µ)/dimVi, i = 0, 1, 2, . . . , r. (4.4)

and call it the Vi-multiplicity of µ.

By applying the multiplicativity property, we obtain

Γ -Deg(A,B1(V )) =
∏

µ∈σ−(A)

r∏

i=0

(Γ -Deg(−Id , B1(Vi)))mi(µ),

=
∏

µ∈σ−(A)

r∏

i=0

(deg Vi
)mi(µ), (4.5)

where mi(µ) is the Vi-multiplicity of µ (cf. (4.4)) and we used the identification
A0(Γ ) ' A0(G) (cf. Notation 4.1.2).
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4.2 Twisted Primary Degree

4.2.1 Twisted Subgroups of Γ × S1

Let G := Γ × S1 for Γ being a compact Lie group.

Definition 4.2.1. For a subgroup K ⊂ Γ , a group homomorphism ϕ : K →
S1 and an integer l ∈ Z, define a ϕ-twisted l-folded subgroup by

Kϕ,l := {(γ, z) ∈ K × S1 : ϕ(γ) = zl}.

In the case l = 1, we use the notation Kϕ and simply call it a twisted subgroup.

Remark 4.2.2. Notice that if H = Kϕ,l is a twisted subgroup and (H̃) ≤ (H),
then H̃ is also a twisted subgroup. In particular, every subgroup H1 ∈ (H) is
twisted. Consequently, it makes sense to talk about the lattice of the conjugacy

classes of twisted subgroups in Γ × S1. Moreover, if dimW (K) = 0 and Lψ,m

is a twisted subgroup such that (Lψ,m) ≥ (Kϕ,l), then by Lemma 2.4.5(i), we
have dimW (L) = 0 (where W (K) and W (L) are taken in Γ ).

Denote by Φt1(G) the set of all conjugacy classes of the twisted m-folded sub-
groups H = Kϕ,l, l = 1, 2, . . . , such that dimW (H) = 1. Let At

1(G) be the

free Z-module generated by Φt1(G).

We have the following

Proposition 4.2.3. Let H = Kϕ,l be a twisted subgroup such that (H) ∈
Φt1(G). Then, the Weyl group W (H) of H in G is bi-orientable and can be
equipped with the natural orientation induced from S1.

Proof: The twisted subgroup H = Kϕ,l is given by

Kϕ,l :=
{

(γ, z) ∈ K × S1 : ϕ(γ) = zl
}
,

and we have

W (H) =
No × S1

Kϕ,l
,

where No = {γ ∈ N(K) : ϕ(γkγ−1) = ϕ(k) ∀ k ∈ K}. In order to prove that
W (H) is bi-orientable, it is sufficient to show that there exists a non-vanishing

vector field X̃ : W (H) → τ (W (H)) which is invariant with respect to both left
and right translations on W (H). For this purpose, consider the vector field
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X : No × S1 → τ (No × S1) = τ (No) × τ (S1),

defined by
X(γ, z) =

(
(γ, z), v(z)

)
,

where v(z) is a unit tangent vector at z on S1. More precisely, by using the
identification

τ (S1) ⊂ S1 × C, τ (S1) = {(z, v) ∈ S1 × C : z ⊥ v},

we can put v(z) = iz ∈ τz(S
1) ⊂ C. Since S1 is an abelian group, the vector

field X is invariant with respect to both left and right translations of the group
No × S1. Moreover, Kϕ is a normal subgroup of No × S1. By passing to the
quotient spaces, we obtain an invariant (with respect to left and right trans-

lations) vector field X̃ : W (H) → τ (W (H)) such that the following diagram
commutes:

τ (No × S1) τ (W (H))

No × S1 W (H)

X X̃

p

τp

where p : No × S1 → No × S1/H = W (H) is the natural projection. �

Corollary 4.2.4. Let Γ be a compact Lie group and G = Γ × S1. Then,

Φt1(G) ⊂ Φ+
1 (G).

4.2.2 A0(Γ )-Module At
1(Γ × S1) Structure

Proposition 4.2.5. The Z-module A1(G) admits a natural structure of an
A0(Γ )-module, where A0(Γ ) denotes the Burnside ring, and the A0(Γ )-multiplication
on the generators (R) ∈ A0(Γ ) and (Kϕ,l) ∈ A1(Γ ×S1), is defined by the for-

mula
(R) ◦ (Kϕ,l) =

∑

(L)

nL · (Lϕ,l),

where the numbers nL are computed using the recurrence formula (cf. [12, 114])
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nL =


n(L, R)|W (R)|n(Lϕ,l,Kϕ,l)|W (Kϕ,l)/S1| −

∑

(L̃)>(L)

n(Lϕ,l, L̃ϕ,l)nL̃|W (L̃ϕ,l)/S1|




|W (Lϕ,l)/S1| (4.6)

where n(L,R) and n(Lϕ,l, L̃ϕ,l) are defined by (2.10), and |Y | stands for the
cardinality of Y .

The following multiplicativity property of the primary degree plays an im-

portant role in practical computations of the primary degree (cf. [17, 114]):

Proposition 4.2.6. Assume that (f1, Ω1) is an admissible pair in R ⊕ V , W
is an orthogonal representation of Γ , Ω0 is an open Γ -invariant subset of W
and f0 : W → W an Ω0-admissible Γ -equivariant map. Then, we have

(P7) (Multiplicativity) The product map f1 × f0 : R ⊕ V ⊕W → V ⊕W is

Ω1 ×Ω0-admissible, and

G-Deg (f1 × f0, Ω1 ×Ω0) = Γ -Deg(f0, Ω0) ◦G-Deg (f1, Ω1),

where Γ -Deg(f0, Ω0) ∈ A0(Γ ) is the primary equivariant degree without free
parameters and ‘◦’ stands for the A0(Γ )-module multiplication provided by
Proposition 4.2.5.

Examples of A0(Γ )-module multiplication tables are listed in Appendix A3,
where Γ = Q8,D3,D4,D5,D6, A4, S4, A5 and O(2).

4.2.3 Twisted Primary Degree

Let Γ be a compact Lie group and G = Γ × S1 and Pt : A+
1 (G) → At

1(G)
be the natural projection onto At

1(G). Suppose that V an orthogonal G-

representation, Ω ⊂ R⊕V an open bounded invariant subset and f : R⊕V →
V an Ω-admissible G-equivariant map. Define the twisted primary degree (or
simply twisted degree) of the map f on Ω by the formula

G-Deg t(f,Ω) := Pt(G-Deg (f,Ω)). (4.7)

Proposition 4.2.7. Let Γ be a compact Lie group, G = Γ × S1, V an or-
thogonal G-representation, Ω ⊂ R ⊕ V an open G-invariant bounded set and

f : R⊕V → V an Ω-admissible G-equivariant map. Then, the twisted primary
degree defined by (4.7) satisfies the following properties:
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(P1)t (Existence) If G-Deg t(f,Ω) =
∑

(H) nH(H) is such that nHo 6= 0 for

some (Ho) ∈ Φt1(G), then there exists x ∈ Ω with f(x) = 0 and Gx ⊃ Ho.
(P2)t (Additivity) Assume that Ω1 and Ω2 are two G-invariant open disjoint

subsets of Ω such that f−1(0) ∩Ω ⊂ Ω1 ∪ Ω2. Then

G-Deg t(f,Ω) = G-Deg t(f,Ω1) +G-Deg t(f,Ω2).

(P3)t (Homotopy) Suppose h : [0, 1] × R ⊕ V → V is an Ω-admissible G-

equivariant homotopy. Then,

G-Deg t(hτ , Ω) = const

(here hτ := h(τ, ·, ·), τ ∈ [0, 1]).
(P4)t (Suspension) Suppose that W is another orthogonal G-representation and

let U be an open bounded G-invariant neighborhood of 0 in W . Then,

G-Deg t(f × Id, Ω × U) = G-Deg t(f,Ω).

(P5)t (Normalization) Suppose f is a tubular map around G(xo), H := Gxo,
(H) ∈ Φt1(G), with the local index nxo of f at xo in a tubular neighborhood

UG(xo). Then,
G-Deg t(f, UG(xo)) = nxo(H).

(P6)t (Elimination) Suppose f is normal in Ω and ΩH ∩ f−1(0) = ∅ for every
(H) ∈ Φt1(G,V ). Then,

G-Deg t(f,Ω) = 0.

4.2.4 Basic Degrees with One Parameter

Definition 4.2.8. Let Vj,l be an irreducible representation of G = Γ × S1,

b : R ⊕ Vj,l → Vj,l be the basic map associated to Vj,l and Ωj,l as provided by
Definition 3.3.2. Then, the twisted primary degree deg Vj,l

:= G-Deg t(b,Oj, l)
is called the twisted basic degree of Vj,l.

Remark 4.2.9. (i) The twisted basic degrees can be computed using the
recurrence formula (cf. Proposition 3.5.3). Suppose that

deg Vj,l
=

∑

(L)∈Φt
1(G)

nL(L).

Then,

nL =

1
2
dimVH

j,l −
∑

(L̃)>(L)

n(L, L̃) · nL̃ · |W (L̃)/S1|

|W (L)/S1| . (4.8)
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(ii) As examples, the twisted basic degrees for Γ = Q8, DN , A4, S4, A5, O(2)

are provided in Appendix A2.



5

Euler Ring and Equivariant Degree for

Gradient Maps

One of the most important feature of the Brouwer degree is the multiplicativity
property taken in the integer ring Z. Possible extensions of this property to the

primary equivariant degree are usually connected to the Burnside ring and rel-
evant module structures (cf. Chapter 4). It turns out that the multiplicativity
property is naturally valid for the so-called equivariant degree for gradient G-
maps. This equivariant degree was introduced by K. Gȩba, in order to develop

equivariant degree methods for applications to the variational problems (cf.
[71, 101, 153]). The gradient G-degree takes values in the so-called Euler ring
U(G), which is a generalization of the Burnside ring, introduced by T. tom
Dieck in [47]. The multiplicative structure of U(G) is naturally related to the

multiplicativity property of the gradient equivariant degree, and is essential
for its effective usage.

Therefore, a better understanding of the ring structure of U(G) is essential
for establishing the exact multiplication tables for several important groups.
It turns out that, in the case G = Γ ×S1, the ring structure on U(G) is closely
related to the previously considered algebraic structures such as the Burnside

ring and A0(Γ )-module At
1(G) (cf. Remark 5.1.13). However, the multiplicative

structure in U(G), as defined in terms of Euler characteristics taken in the
Alexander-Spanier cohomology with compact supports, is in general difficult
to compute. Nevertheless, there are several techniques available towards this

direction: (i) induction over orbit types and reasonable recurrence formulae,
(ii) ring homomorphisms to other known structures U(Go) (for example taking
Go to be a maximal torus in G) (iii) fibre bundles of specific orbit spaces

and techniques for computations of Euler characteristics. It is our belief that
natural module structures, related to multi-parameter primary degrees, may
also provide a clue to understand the algebraic structure of U(G).

In the case G is a one-dimensional bi-orientable compact Lie group, we
propose a passage from the gradient equivariant degree to the primary degree
with one parameter, by defining the so-called equivariant orthogonal degree (cf.

[152] for G = Γ × S1 with Γ being finite), which reduces the computations
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of the gradient degrees to those of the primary degree and thus makes all the

computational tools (related to the primary degree) available for the applica-
tion of the gradient degree to variational problems. This technique is further
developed in Subsection 5.2.4, where it is applied (on the H-fixed point spaces)

to establish a connection between the gradient degree and twisted primary de-
gree for the case G = Γ ×S1 with Γ being a compact Lie group. Observe that
in the case of the gradient degree, the notion of basic maps simply coincides
with the map −Id : V → V, where V is an irreducible G-representation. We

will call the corresponding gradient degrees, the basic gradient degrees. For
convenience, the basic gradient degrees for G = Γ ×S1 are listed in Appendix
A2 for Γ = Q8,DN , A4, S4, A5 and O(2).

5.1 Euler Ring and Related Modules

5.1.1 Relation between Euler Ring, Burnside Ring and Other
Related Modules

Recall the definition of the Euler ring, which was introduced in [47].

Definition 5.1.1. Let G be a compact Lie group. Consider the free Z-module
generated by Φ(G), i.e.

U(G) := Z[Φ(G)].

Define a ring multiplication ∗ : U(G) × U(G) → U(G), on generators (H),
(K) ∈ Φ(G) by

(H) ∗ (K) =
∑

(L)∈Φ(G)

nL(L), (5.1)

where the coefficients are given by

nL := χc((G/H ×G/K)L/N(L)), (5.2)

where χc stands for the Euler characteristic taken in Alexander-Spanier coho-
mology with compact support (cf. Section 2.6). The Z-module U(G) equipped
with the multiplication ∗ is called the Euler ring of the group G.

Proposition 5.1.2. (General Recurrence Formula) Given (H), (K) ∈ Φ(G),
one has the following recurrence formula for the computations of coefficients
nL in (5.1),

nL = χ((G/H ×G/K)L/N(L)) −
∑

(L̃)>(L)

nL̃ χ((G/L̃)L/N(L)). (5.3)
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Proof: Let X := G/H × G/K. The projection X(L̃) → X(L̃)/G is a fibre

bundle with fibre G/L̃, which implies that XL
(L̃)
/N(L) → X(L̃)/G is a fibre

bundle with fibre ((G/L̃)L)/N(L). By Lemma 2.6.11, we have

χc(X
L
(L̃)
/N(L)) = χ((G/L̃)L/N(L)) · χc(X(L̃)/G).

Therefore,

χ(XL/N(L)) =
∑

(L̃)≥(L)

χc(X
L
(L̃)
/N(L))

=
∑

(L̃)≥(L)

χ((G/L̃)L/N(L)) · χc(X(L̃)/G)

=
∑

(L̃)≥(L)

χ((G/L̃)L/N(L)) · χc(XL̃/N(L̃))

=
∑

(L̃)≥(L)

χ((G/L̃)L/N(L)) · nL̃

= nL +
∑

(L̃)>(L)

nL̃ · χ((G/L̃)L/N(L))

and the result follows.
�

The following fact plays an essential role in our computations of the multi-
plication structure in U(G).

Proposition 5.1.3. Let H, H̃ be subgroups of G such that dimW (H) =
dimW (H̃) = 1. Assume that for any maximal orbit type (Lo) in the G-space

G/H ×G/H̃ , the group Lo is finite. Let

(H) ∗ (H̃) =
∑

(L)∈Φ(G)

nL(L). (5.4)

Then, nL = 0 for any finite subgroup L ⊂ G with dimW (L) = 1.

Proof: Take a finite subgroup L ⊂ G with dimW (L) = 1. Clearly,
dimN(L) = 1. Consider (G/H)L as a left N(L)-space. By Proposition 2.4.3,
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(G/H)L is diffeomorphic to the right N(L)-space N(L,H)/H. By the assump-

tion that dimW (H) = dimW (L) = 1, N(L,H)/H is a closed 1-dimensional
submanifold of G/H (cf. Proposition 2.4.5(iii)). Similarly, N(L, H̃)/H̃ is also
a compact 1-dimensional manifold. Put

X :=
(
G/H ×G/H̃

)L
= (G/H)L × (G/H̃)L,

which is then diffeomorphic to a compact 2-dimensional manifoldN(L,H)/H×
N(L, H̃)/H̃ .

We claim that each connected component of X has one orbit type (in fact,

one isotropy) under the N(L)-action. By a connected component of X, we
mean the product space of two S1-orbits in N(L,H)/H and N(L, H̃)/H̃ re-
spectively (where S1 ⊂ N(L) is the connected component of e ∈ N(L)),
namely S1(Hg) × S1(H̃g̃) for some g, g̃ ∈ G. Notice that when S1 moves

(Hg, H̃g̃) to (Hgγ, H̃g̃γ̃) for some γ, γ̃ ∈ S1, the corresponding isotropy
changes from g−1Hg ∩ g̃−1H̃ g̃ to γ−1(g−1Hg)γ ∩ γ̃−1(g̃−1H̃g̃)γ̃. It suffices to
show that γ−1(g−1Hg)γ = g−1Hg and γ̃−1(g̃−1H̃g̃)γ̃ = g̃−1H̃g̃. We only prove

the first equality (for arbitrary γ ∈ S1), which is equivalent to show that S1 ⊂
N(g−1Hg). By assumption dimW (H) = 1, we have that dimN(g−1Hg) =
dimN(H) ≥ dimW (H) = 1, which certainly implies that N(g−1Hg) contains
S1.

Consequently, the right N(L)-space X, though may have different orbit
types, each of its connected component shares the same orbit type. Since each

connected component is both open and closed, the structure theorem, though
initially designed for homogeneous spaces, remains valid, which claims that
X/N(L) is a smooth manifold. To determine the dimension, it is enough to
notice that, by assumption, N(L) acts on X by finite isotropies, hence X/N(L)

is a compact smooth manifold of dimension 1. Thus, χ(X/N(L)) = 0.

In the case (L) is a maximal type in G/H ×G/H̃ , then

X =
(
G/H ×G/H̃

)
L
.

Hence, nL = χ(X/N(L)) = 0.

In the case (L) is not a maximal orbit type in G/H ×G/H̃ , then
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nL = χc
((
G/H ×G/H̃

)
L
/N(L)

)

= χ(X/N(L)) −
∑

(L′)>(L)

χc(
(
G/H ×G/H̃

)
L′
/N(L′).

By induction on the lattice of orbit types in G/H ×G/H̃ , we obtain that

χc
((
G/H ×G/H̃

)
L′
/N(L′)

)
= 0,

for all finite L′ ⊂ G and dimW (L′) = 1. �

Example 5.1.4. Let G := O(2) × S1. Then, we have that (we refer to Ap-
pendix A2 for conventions)

Φ0(G) = {(O(2) × S1), (SO(2) × S1), (Dn × S1)},
Φ1(G) = {(Zn × S1), (O(2) × Zl), (SO(2) × Zl), (Dn × Zl),

(O(2)−,l), (SO(2)ϕk ,l), (Dz,l
n ), (Dd,l

2n)}
Φ2(G) = {(Zn × Zl), (Zϕk ,l

n ), (Zd,l
2n)}

(a) Take H = Dn × Zl, H̃ = Zm × S1. Notice that (H), (H̃) ∈ Φ1(G), i.e.
dimW (H) = dimW (H̃) = 1. Moreover, any isotropy subgroup in the G-
space G/H × G/H̃ has the form of g1Hg

−1
1 ⊂ g2H̃g

−1
2 , for some g1, g2 ∈

G. Since H is finite, we have that this isotropy must be finite as well.
Therefore, by Proposition 5.1.3, we have that nL = 0 in (5.4) for (L) ∈
{(Dn × Zl), (D

z,l
n ), (Dd,l

2n)}.
(b) Using the argument similar to the one used in the proof of Proposition

5.1.3, one can show that if H and K are subgroups of G with dimW (H) ≥ 1
and dimW (K) = 2. Then,

(H) ∗ (K) = 0.

Indeed, assume that for some (L) ∈ Φ(G) one has that the coefficient nL
in (H) ∗ (K) is different from zero. Then, (L) ≤ (K) which, by assumption
and Proposition 2.4.5(i), implies dimW (L) = 2. In particular,

N(L) ⊃ SO(2) × S1 = T 2. (5.5)

Consider the space

X := (G/H ×G/K)L = (G/H)L × (G/K)L = N(L,K)/K ×N(L,H)/H.
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Combining (5.5) with Proposition 2.4.11 implies that N(L,H) and N(L,K)

contain T 2. Therefore, N(L,H)/H and N(L,K)/K admit T 2-actions with-
out T 2-fixed-points. By Lemma 2.6.13, χ(X/T 2) = 0. If N(L) = T 2, then
χ(X/N(L)) = 0. Another possibility for N(L) may be N(L) = O(2) × S1.

Then, using the same fibre bundle argument as in the proof of Proposition
5.1.3 one concludes that χ(X/N(L)) = 0 as well. If (L) is a maximal orbit
type in X, then the last equality implies nL = 0. If (L) is not maximal, one
can use the same induction argument as in the proof of Proposition 5.1.3

to show that nL = 0.

Burnside Ring

Recall that the Burnside ring A0(G) is defined as the Z-module A0(G) :=
Z[Φ0(G)] equipped with a similar multiplication as in U(G) but restricted

only to regenerators from Φ0(G) (cf. Section 4.1.1), i.e. for (H), (K) ∈ Φ0(G)

(H) · (K) =
∑

(L)

nL(L) ((H), (K), (L) ∈ Φ0(G)),

where nL := χ((G/H × G/K)L/N(L)) = |(G/H × G/K)L/N(L)| (here χ
stands for the usual Euler characteristic). One can easily notice that the space
(G/H ×G/K)(L)/G is finite, thus

χ((G/H ×G/K)(L)/G) = |(G/H ×G/K)(L)/G|,

where |X| stands for the number of elements in X.

Observe that being a Z-submodule of U(G), the Burnside ring A0(G) may
not be a subring of U(G), in general. Indeed, we have the following example

Example 5.1.5. Let G = O(2). By direct computation, we have (Dn) ·
(SO(2)) = 0, while (Dn) ∗ (SO(2)) = (Zn).

However, there is a connection between the rings U(G) and A0(G). Take

the natural projection π0 : U(G) → A0(G) defined on generators (H) ∈ Φ(G)
by

π0((H)) =

{
(H) if (H) ∈ Φ0(G),

0 otherwise.
(5.6)
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Lemma 5.1.6. The map π0 defined by (5.6) is a ring homomorphism, i.e.

π0((H) ∗ (K)) = π0((H)) · π0((K)), (H), (K) ∈ Φ(G).

Proof: Assume (H) 6∈ Φ0(G) and

(H) ∗ (K) =
∑

(R)∈Φ(G)

mR(R) ((R) ∈ Φ(G)). (5.7)

Then, for any (R) occuring in (5.7), one has (R) ≤ (H), hence dimW (R) > 0

(cf. Proposition 2.4.5(i)). By definition of π, π0((R)) = 0 and thus π0((H) ∗
(K)) = 0. On the other hand, π0((H)) · π0((K)) = 0 · π0(K) = 0.

Thus, without loss of generality, assume (H), (K) ∈ Φ0(G) and

(H) ∗ (K) =
∑

(L)∈Φ0(G)

nL(L) +
∑

(L̃)6∈Φ0(G)

mL̃(L̃).

Then,
π0((H) ∗ (K)) =

∑

(L)∈Φ0(G)

nLπ0((L)) =
∑

(L)∈Φ0(G)

nL(L)

and

(H) · (K) =
∑

(L)∈Φ0(G)

n′
L(L).

However,

nL = χc((G/H ×G/K))L)/N(L))

= χ((G/H ×G/K))L/N(L))

= |(G/H ×G/K)L/N(L)|
= n′

L (5.8)

and the result follows. �

The following stated result is due to T. tom Dieck (cf. [47]). We provide an
alternative proof.

Proposition 5.1.7. Let (H) ∈ Φn(G) with n > 0. Then, (H) is a nilpotent
element in U(G), i.e. there is an integer k such that (H)k = 0 in U(G).
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Proof: We will use induction and the fact that there is only finitely many

conjugacy classes of isotropies in the spaces G/H × · · · ×
k times

G/H. Suppose that

for k ≥ 1 we have the expansion

(H)k =
∑

(K)

aK(K), (5.9)

and assume that (L) a maximal element in the sum (5.9) with aL 6= 0. We will
show that the expansion of the product (H)k+1 does not contain the term (L)

with non-zero coefficient. Indeed, by multiplying (5.9) by (H) we obtain

(H)k+1 =
∑

(K)

aK(K) ∗ (H), (5.10)

then by the maximality of (L) we obtain that the only product (K) ∗ (H) in

(5.10) that can lead to a term with (L)-coefficient is (L)∗ (H). Notice that (L)
is the maximal orbit type in G/H ×G/L, thus

(G/H ×G/L)L = (G/H ×G/L)L = (G/H)L × (G/L)L = (G/H)L ×N(L)/L.

Notice that (see Corollary 1.92 in [104])

((G/H)L ×N(L)/L)/N(L) = (G/H)L ×W (L))/W (L) = (G/H)L.

Hence

χc((G/H ×G/L)L/N(L)) = χ(((G/H)L ×N(L)/L)/N(L)) = χ(((G/H)L).

Since W (H) acts freely on (G/H)L = N(L,H)/H and dimW (H) > 0, the
maximal torus Tm ⊂ W (H) (with m ≥ 1) acts freely on (G/H)L, which
means ((G/H)L)T

m
= ∅. Then by Proposition 2.6.12, χ((G/H)L) = 0, and the

conclusion follows. �
Combining Proposition 5.1.7 with Lemma 5.1.6 and the fact that the mul-

tiplication table for A0(G) contains only non-negative coefficients (cf. formula
(5.8)), yields

Proposition 5.1.8. (cf. [73]) Let π0 be defined by (5.6). Then, N = kerπ0 =

Z[Φ(G) \ Φ0(G)] is a maximal nilpotent ideal in U(G) and A0(G) ∼= U(G)/N.

Summing up, the Burnside ring multiplication structure in A0(G) can be
used to describe (partially) the Euler ring multiplication structure in U(G).
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Twisted Subgroups and Related Modules

We resume the assumption that G = Γ ×S1, where Γ is a compact Lie group.
In this case, there are exactly two sorts of subgroups H ⊂ G, namely,

(a) H = K × S1, for K ⊂ Γ ;
(b) ϕ-twisted l-folded subgroups Kϕ,l (cf. Subsection 4.2.1).

Proposition 5.1.9. Let G = Γ × S1, where Γ is a compact Lie group. Given
a twisted subgroup Kϕ,l ⊂ G, for some l ∈ {0} ∪ N and a homomorphism
ϕ : K → S1, the following holds

dim
(
NG(Kϕ,l)

)
= dim

(
NΓ (K) ∩NΓ (Kerϕ)

)
+ 1. (5.11)

Proof: For the homomorphism ϕ : K → S1, put L := kerϕ. Also, for
simplicity, write N(Kϕ,l) for NG(Kϕ,l), and N(K) (resp. N(L)) for NΓ (K)
(resp. NΓ (L)).

Notice that N(Kϕ,l) = No × S1, where

No := {γ ∈ N(K) : ϕ(γkγ−1) = ϕ(k), ∀k ∈ K}.

Hence, it is sufficient to show that dimNo = dim
(
N(K) ∩N(L)

)
.

Case 1. ϕ is surjective.

By the fundamental homomorphism theorem of algebra, we haveK/L ' S1.
Fix an element t ∈ N(K) ∩ N(L), define an automorphism hγ : K → K by

hγ(k) := γkγ−1. Since γ ∈ N(L), hγ induces a homomorphism on the factor
group K/L, which will be denoted by h̄γ . Then, we have the commutative
diagram shown in Figure 1.

K K/L ' S1

K K/L ' S1

ϕ

ϕ

hγ h̄γ

Fig. 5.1. Commutative diagram for surjective ϕ.

For any fixed γ in the connected component of e ∈ N(K) ∩ N(L), let σγ
be a path from γ to e. Then, this path induces a homotopic homomorphism
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hσγ connecting hγ to Id on K, as well as a homotopic homomorphism h̄σγ

connecting h̄γ to Id on K/L ' S1. It is well-known that any group automor-
phism on S1 has the form of z 7→ zn for some n ∈ Z, and each represents a
distinct homotopy class in H1(S

1; Z). Thus, we conclude that h̄γ ≡ Id . By the

commutative diagram in Figure 5.1.1, it is equivalent to claim that ϕ◦hγ ≡ ϕ,
i.e. ϕ(γkγ−1) = ϕ(k) for all k ∈ K. Therefore, every γ in the same con-
nected component of e ∈ N(K) ∩ N(L), actually belongs to No. This implies
that dim

(
N(K)∩N(L)

)
≤ dimNo. On the other hand, by direct verification,

No ⊂ N(K) ∩N(L). Therefore, dimNo = dim
(
N(K) ∩ N(L)

)
.

Case 2. ϕ is not surjective.

Take any element γ in the same connected component of e ∈ N(K) ∩
N(L), and denote by σγ a path from γ to e. Define ϕσ : [0, 1] × K → S1

by ϕσ(t, k) := ϕ
(
σγ(t)k(σγ(t))

−1
)
. Since ϕ is not surjective, ϕσ has a discrete

image in S1. Hence, when restricted on a connected component, ϕσ is constant,
so we have ϕ(γkγ−1) = ϕ(k) for all k in the same connected component of
K. Therefore, for any element γ in the same connected component of e ∈
N(K), we have ϕ(γkγ−1) = ϕ(k) for all k ∈ K, i.e. γ ∈ No, which implies
dimN(K)∩N(L) ≤ dimNo. On the other hand,No ⊂ N(K)∩N(L). Therefore,
dimNo = dim

(
N(K) ∩N(L)

)
. �

Lemma 5.1.10. Let Γ be a compact Lie group, G = Γ×S1 and H = Kϕ,l ⊂ G
a twisted subgroup. Then,

(i) 1 ≤ dimWG(H) ≤ 1 + dimWΓ (K);

(ii) any subgroup H̃ ⊂ H is twisted:

Proof: (i) The second inequality was established in [15], Section 5.1. To prove

the first inequality, observe that NG(Kϕ,l) = No× S1 with K ⊂ No ⊂ NΓ (K).
Thus,

WG(Kϕ,l) =
No × S1

Kϕ,l
⊃ K × S1

Kϕ,l
. (5.12)

Consider a homomorphism ψ : K × S1 → S1 defined by ψ(γ, z) = ϕ(γ)z−l.

Since ψ is surjective and kerψ = Kϕ,l, we obtain that dimK × S1/Kϕ,l =
dimS1 = 1 from which (cf. (5.12)) the statement follows.

(ii) It is obvious that H̃ is twisted by the same homomorphism ϕ. �

Corollary 5.1.11. Let G be as in Lemma 5.1.10.
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(a) Let H be a twisted subgroup of G. Then, dimWG(H) = 1 if dimWΓ (K) =

0.
(b) Φ0(G) = {(H) : H ⊂ G, H = K × S1, dimWΓ (K) = 0} and thus

A0(G) ∼= A0(Γ ). (5.13)

(c) If H = Kϕ,l is twisted in G, dimW (H) = 1 and (H) < (H̃) ∈ Φ1(G),

then H̃ is twisted in G and dimW (H̃) = 1.

Proof: Statement (a) follows directly from Lemma 5.1.10(i). Next, Lemma
5.1.10(i) excludes twisted conjugacy classes from Φ0(G). Since, for H = K×S1

for K ⊂ Γ , on has dimWG(H) = 0 if and only if dimWΓ (K) = 0. Hence, the
statement (b) follows.

To prove (c), observe that H̃ cannot be a subgroup of type K̃ ×S1, since it

would imply dimWΓ (K̃) = 1 and (K) ≤ (K̃), which would be a contradiction
to Proposition 2.4.5(i) combined with (a). Consequently, H̃ = K̃ψ,m, where ψ :
K̃ → S1 is a homomorphism, and sinceK ⊂ K̃, it follows that dimWΓ (K̃) = 0,
which implies that dimW (H̃) = 1 (cf. (a)).

�

Being motivated by Corollary 5.1.11, put

Φt1(G) := {(H) ∈ Φ(G) : H = Kϕ,l for some K ⊂ Γ with dimWΓ (K) = 0},
Φ∗

1(G) := {(H) ∈ Φ(G) : dimWG(H) = 1 and (H) /∈ Φt1(G)},
Φ∗
k(G) := {(H) ∈ Φ(G) : dimWG(H) = k}, k ≥ 2,

and define

At
1(G) := Z[Φt1(G)],

A∗
k(G) := Z[Φ∗

k(G)], k ≥ 1,

A∗(G) :=
⊕

k≥1

A∗
k(G).

As it was discussed in Subsection 4.2.2, there is a natural A0(Γ )-module

structure on At
1(G) (cf. Proposition 4.2.5). By using Corollary 5.1.11, one can

establish a relation between the A0(Γ )-module structure on At
1(G) and the

ring structure on U(G).

To this end, take the natural projection π1 : U(G) → At
1(G) defined by
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π1(H) =

{
(H) if (H) ∈ Φt1(G),

0 otherwise.

Proposition 5.1.12. Let Γ be a compact Lie group and G = Γ ×S1. If (H̃) ∈
Φ0(G) with H̃ = K × S1 and (H) ∈ Φt1(G), then

π1((H̃) ∗ (H)) = (K) ◦ (H).

Remark 5.1.13. Proposition 5.1.12 indicates that the multiplication table in
the Z-module decomposition U(G) = A0(G)⊕At

1(G)⊕A∗(G) can be described

by the following table

∗ A0(G) ∼= A0(Γ ) At
1(G) A∗(G)

A0(G) ∼= A0(Γ ) A0(G)-multip +T∗ A0(Γ )-module multip +T∗ T∗

At
1(G) A0(Γ )-module multip +T∗ T1 + T∗ T∗

A∗(G) T∗ T∗ T∗

where T∗ stands for an element from A∗(G) and T1 for an element from At
1(G).

Table 5.1. U(G)-Multiplication Table for G = Γ × S1

In the case Γ is a finite group, we have the following result (cf. [152])

Proposition 5.1.14. For G = Γ × S1 with Γ being a finite group, the mul-
tiplication in U(G), when restricted to A1(G) ×A1(G), is trivial, i.e. for any
(H), (K) ∈ Φ1(G), we have

(H) ∗ (K) = 0.

Proof: Let (H), (K) ∈ Φ1(G). Take L ⊂ G such that (G/H ×G/K)L 6= ∅.

By dimension restrictions, we have (L) ∈ Φ1(G) (cf. Proposition 2.4.5(i)).

Claim. χ
(

(G/H ×G/K)L/W (L)
)

= 0 for (L) ∈ Φ1(G).

We prove the claim by showing that (G/H × G/K)L/W (L) allows an S1-
action without S1-fixed points.



5.1 Euler Ring and Related Modules 115

Observe that (G/H ×G/K)L = (G/H)L × (G/K)L. By Proposition 2.4.3,

the space (G/H)L is homeomorphic to N(L,H)/H, on which W (H) acts freely.
Thus, the space (G/H)L is of dimension 1. On the other hand, by Proposition
2.4.4, (G/H)L is composed of a finite number of W (L)-orbits. Therefore, by the

dimension restriction, the isotropy subgroup W (L)x of each point x ∈ (G/H)L

is finite.

Take the connected component of the neutral element e ∈ W (L), which is

diffeomorphic to S1. Consider the W (L)-space (G/H)L as an S1-space. For
each x ∈ (G/H)L, the new isotropy is S1

x = W (L)x ∩ S1, which forces S1
x

to be finite. Consequently, every connected component of (G/H)L allows an

S1-action without S1-fixed points.

Similarly, every connected component of (G/K)L allows an S1-action with-

out S1-fixed points. Consider the product space (G/H)L × (G/K)L as an S1-
space by the diagonal action. Then, by Lemma 2.6.13, we have

χ
(
((G/H)L × (G/K)L)/S1

)
= 0.

To conclude that χ
(
((G/H)L× (G/K)L)/W (L)

)
= 0, it is sufficient to observe

that ((G/H)L × (G/K)L)/S1 → ((G/H)L × (G/K)L)/W (L) is a trivial fibre
bundle with a finite fibre W (L)/S1. �Claim

If (L) is a maximal orbit type in (G/H)L × (G/K)L, then

nL = χc(
(
G/H ×G/K

)
L
/W (L))

= χ(
(
G/H ×G/K

)L
/W (L))

= 0.

Otherwise, one applies the general recurrence formula (cf. Proposition 5.1.2)
and conclude that nL = 0 .

�

In the rest of this subsection, we present the computational formulae for the

Euler ring U(T n), where T n is an n-dimensional torus. The following statement
was observed by S. Rybicki.

Proposition 5.1.15. If (H), (K) ∈ Φ(T n), and L = H ∩K, then

(H) ∗ (K) =

{
(L) if dimH + dimK − dimL = dimT n,

0 otherwise.
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Proof: Put G := T n and observe that every compact abelian connected Lie

group is a torus. Since H and K are normal in G, the groups G/H and G/K
are tori. Take L = H ∩ K. Since G is abelian, L is the only one isotropy in
(G/H ×G/K)L with respect to the N(L) = G-action. Hence,

(H) ∗ (K) = χ
(

(G/H ×G/K)L
/
G
)

(L)

Next, N(L,H) = G, therefore

(G/H ×G/K)L
/
G = (G/H ×G/K)

/
G.

Put M := (G/H ×G/K)
/
G. Observe that M is a compact connected G-

manifold of precisely one orbit type (L). Thus, it is of dimension N :=
dimG/H + dimG/K − dimG + dimL = dimG − dimK − dimH + dimL.

If N := 0, then χ(M) = 1, and if N > 0, then there is an action of a torus on
M without G-fixed-points, so χ(M) = 0 (cf. Lemma 2.6.12). �

The full multiplication table for U(T 2) is presented in A3.19, Appendix A3.

5.1.2 Euler Ring Homomorphism

Let ψ : G′ → G be a homomorphism between compact Lie groups. Then,
the formula g′x := ψ(g′)x defines a left G′-action on G. In particular, for any
subgroup H ⊂ G, the map ψ induces the G′-action on G/H with

G′
gH = ψ−1(gHg−1). (5.14)

In this way, ψ induces a map Ψ : U(G) → U(G′) defined by

Ψ((H)) :=
∑

(H ′)∈Φ(G′)

χc((G/H)(H ′)/G
′)(H ′). (5.15)

We claim that

Lemma 5.1.16. The map Ψ defined by (5.15) is the Euler ring homomor-
phism.

Proof: Recall that, by Gleason Lemma, if X is a compact G-CW complex,

then the projection map X(H) → X(H)/G is a fibre bundle with the fibre G/H
(cf. [25], p. 88, Theorem 5.8). Hence, by Lemma 2.6.11,
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χc(X) =
∑

(H)

χc(X(H)), χc(X(H)) = χc(X(H)/G) · χ(G/H).

Combining the formulae (5.2), (5.15), Lemma 2.6.11, one obtains

Ψ((H) ∗ (K)) = Ψ(
∑

(L)

χc((G/H × G/K)(L)/G) · (L))

=
∑

(L)

χc((G/H × G/K)(L)/G) · Ψ(L)

=
∑

(L)

χc((G/H × G/K)(L)/G)
∑

(L′)

χc((G/L)(L′)/G′) · (L′)

=
∑

(L′)

∑

(L)

χc((G/H × G/K)(L)/G)χc((G/L)(L′)/G′) · (L′).

On the other hand,

Ψ(H) ∗ Ψ(K)

=
∑

(H′)

χc((G/H)(H′)/G′) · (H ′) ∗
∑

(K′)

χc((G/K)(K′)/G′) · (K ′)

=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′) · (H ′) ∗ (K ′)

=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′) ·
∑

(L′)

χc((G′/H ′ × G′/K ′)(L′)/G′) · (L′)

=
∑

(L′)

∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χc((G′/H ′ × G′/K ′)(L′)/G′) · (L′).

Put

nL′ :=
∑

(L)

χc((G/H × G/K)(L)/G)χc((G/L)(L′)/G′),

mL′ :=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χc((G′/H ′ × G′/K ′)(L′)/G′).

We need to show that for all G′-orbit types (L′) in G/H ×G/K

nL′ = mL′. (5.16)

Consider uL′ := χc((G/H ×G/K)(L′)/G
′) = χc((G/H ×G/K)L′/N(L′)). If

(L′) is a maximal orbit type, then

uL′ = χc(G/H × G/K)L′/N(L′) = χc(G/H × G/K)L′
/N(L′) =

∑

(L)

χc(G/H × G/K)L′

(L)/N(L′),

where the union is taken over all (L)-orbit types occuring in (G/H ×
G/K)L

′
(considered as N(ψ(L′))-space) (cf. (5.14)). Using the fibre bundle

G/L ↪→ (G/H × G/K)(L) → (G/H × G/K)(L)/G, we get that (G/H ×
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G/K)L
′

(L)/N(L′) → (G/H × G/K)(L)/G is a fibre bundle with the fibre

(G/LL
′
)/N(L′). Thus,

uL′ = χ((G/H × G/K)L′
/N(L′)) =

∑

(L)

χc((G/H × G/K)L′
(L)/N(L′))

=
∑

(L)

χc((G/H × G/K)(L)/G)χ((G/LL′
)/N(L′))

=
∑

(L)

χc((G/H × G/K)(L)/G)χc(((G/L)L′ )/N(L′)) = nL′

In the case (L′) is not a maximal orbit type, assume, by induction, that

uL̃′ = nL̃′ for all (L̃′) > (L′). Then,

uL′ = χc((G/H × G/K)L′/N(L′))

= χ((G/H × G/K)L′
/N(L′)) −

∑

(L̃′)>(L′)

χc((G/H × G/K)L̃′/NL̃′)

= χ((G/H × G/K)L′
/N(L′)) −

∑

(L̃′)>(L′)

uL̃′

=
∑

(L)

χc((G/H × G/K)(L)/G)χ((G/LL′
)/N(L′)) −

∑

(L̃′)>(L′)

uL̃′

=
∑

(L̃′)≥(L′)

∑

(L)

χc((G/H × G/K)(L)/G)χ((G/LL̃′)/NL̃′) −
∑

(L̃′)>(L′)

uL̃′

=
∑

(L̃′)≥(L′)

nL̃′ −
∑

(L̃′)>(L′)

uL̃′ = nL′ +
∑

(L̃′)>(L′)

(nL̃′ − uL̃′ ) = nL′

On the other hand, in the case (L′) is a maximal orbit type,

(G/H × G/K)L′/N(L′) = (G/H × G/K)L′
/N(L′) =

⋃

(H′),(K′)

((G/H)(H′) × (G/K)(K′))
L′

/N(L′),

where the union is taken over all (H ′)-orbit types (resp. (K ′)-orbit types)
occuring in (G/H)L

′
(resp. in (G/K)L

′
), considered as N(L′)-space. By us-

ing the fibre bundles G′/H ′ ↪→ (G/H)(H ′) → (G/H)(H ′)/G
′ and G′/K ′ ↪→

(G/K)(K′) → (G/K)(K′)/G
′ we obtain the product bundle G′/H ′ ×G′/K ′ ↪→

(G/H)(H ′) × (G/K)(K′) → (G/H)(H ′)/G
′ × (G/K)(K′)/G

′. Therefore,

((G/H)(H ′) × (G/K)(K′))
L′
/N(L′) → (G/H)(H ′)/G

′ × (G/K)(K′)/G
′

is a fibre bundle with the fibre (G′/H ′ ×G′/K ′)L
′
/N(L′). Consequently,
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uL′ = χ((G/H × G/K)L′
/N(L′)) =

∑

(H′),(K′)

χ(((G/H)(H′) × (G/K)(K′))
L′

/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′ × (G/K)(K′)/G′)χ((G′/H ′ × G′/K ′)L′
/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′ × (G/K)(K′)/G′)χ((G′/H ′ × G′/K ′)L′/N(L′))

=
∑

(H′),(K′)

χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)χ((G′/H ′ × G′/K ′)L′/N(L′)) = mL′

In the case (L′) is not a maximal orbit type, by applying induction over the
orbit types in the same way as above,

χc((G/H × G/K)L′/N(L′)) = χ((G/H × G/K)L′
/N(L′)) −

∑

(L̃′)>(L′)

uL̃′

=
∑

(H′),(K′)

(
χc((G/H)(H′)/G′)χc((G/K)(K′)/G′)

· χ((G′/H ′ × G′/K ′)L′
/N(L′))

)
−

∑

(L̃′)>(L′)

uL̃′

=
∑

(L̃′)≥(L)

mL̃′ −
∑

(L̃′)>(L′)

uL̃′ = mL′ +
∑

(L̃′)>(L)

(mL̃′ − uL̃′) = mL′

Therefore, the statement follows. �

Remark 5.1.17. A similar result was obtained implicitly in [47], with a proof
containing several omissions. We present hereby the proof of Lemma 5.1.16 for

completeness.

5.1.3 Euler Ring Structure on U(O(2) × S1)

To establish the Euler ring multiplication on U(O(2)×S1), we discuss the ring
homomorphism ψ : G̃ → G for the case G̃ = T n being a maximal torus in G

and ψ : T n → G being the natural embedding. Then, the homomorphism Ψ
takes the form

Ψ(H) =
∑

(K)∈Φ(Tn)

χc((G/H)(K)/T
n) · (K), (5.17)

with K = H ′ ∩ T n, H ′ ∈ (H). Observe that since all the maximal tori in a

compact Lie group are conjugate (see, for instance, [27]), the homomorphism
(5.17) is independent of a choice of a maximal torus in G.

We will show that Ψ can be used to find additional coefficients for the
multiplication formulae in U(G). To compute Ψ , we start with the following
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Proposition 5.1.18. Let T n be a maximal torus in G and the homomorphism

Ψ is defined by (5.17). Then,

Ψ(T n) = |W (T n)|(T n) +
∑

(T ′)

nT ′(T ′),

where T ′ = gT ng−1 ∩ T n for some g ∈ G and (T ′) 6= (T n).

Proof: By Proposition 2.6.17, the Weyl group W (T n) is finite and the coef-

ficient of Ψ(T n) corresponding to (T n) can be computed as follows (cf. 5.17):

χc((G/T
n)(Tn)/T

n) = χ((G/T n)(Tn)/T n) = χ((G/T n)T
n

/T n)

= χ
(

(G/T n)T
n
)

= χ (G/T n) = |W (T n)|.

�

Proposition 5.1.18 tells us what is precisely the coefficient of Ψ(T n) related

to T n. In general, to compute a coefficient related to an arbitrary (K) in (5.17),
one can use the following

Proposition 5.1.19. (Recurrence Formula) Let T n be a maximal torus in

G, ψ : T n → G a natural embedding, and Ψ : U(G) → U(T n) the induced
homomorphism of the Euler rings. For (H) ∈ Φ(G), put

Ψ(H) =
∑

(K)

nK(K),

where (K)’s stand for the orbit types in the T n-space G/H, i.e. K = H ′ ∩ T n
with H ′ = gHg−1 for some g ∈ G. Then, for K = H ′ ∩ T n,

nK = χ

(
N(K,H ′)

H ′ /T n
)
−

∑

(K̃)>(K)

nK̃ . (5.18)

Proof: Put X := G/H. Then,

X(K)/T n =
⋃

(K̃)≥(K)

X(K̃)/T
n,

which (since T n is abelian) implies
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χ(X(K)/T n) =
∑

(K̃)≥(K)

χc(X(K̃)/T
n) =

∑

(K̃)≥(K)

χc(XK̃/T
n).

Therefore,
χc(XK/T

n) = χ(XK/T n) −
∑

(K̃)>(K)

χc(XK̃/T
n).

To complete the proof, it remains to observe that XK/T n = N(H ′∩Tn,H ′)
H ′ /T n

(see Proposition 2.4.3) from which (5.18) follows directly. �

Example 5.1.20. Consider the natural embedding ψ : T 2 := SO(2) × S1 →
O(2)×S1, which induces the homomorphism of Euler rings Ψ : U(O(2)×S1) →
U(T 2). Using Proposition 5.1.19, one can verify by direct computations that:

Ψ(O(2) × S1) = (SO(2) × S1), Ψ(SO(2) × S1) = 2(SO(2) × S1)

Ψ(Dn × S1) = (Zn × S1), Ψ(Zm × S1) = 2(Zm × S1)

Ψ(O(2) × Zl) = (SO(2) × Zl), Ψ(SO(2) × Zl) = 2(SO(2) × Zl)

Ψ(Dn × Zl) = (Zn × Zl), Ψ(Zm × Zl) = 2(Zm × Zl),

Ψ(O(2)−,l) = (SO(2) × Zl), Ψ(Dz,l
n ) = (Zn × Zl)

Ψ(SO(2)ϕm ,l) = (SO(2)ϕm ,l) + (SO(2)ϕ−m,l ), Ψ(Dd,l
2k ) = (Zd,l

2k )

Ψ(Zϕm ,l
n ) = (Zϕm ,l

n ) + (Zϕ−m ,l
n ), Ψ(Zd,l

2k ) = 2(Zd,l
2k )

where all the symbols used follow the convention in Appendix A2.1.6.

We conclude this subsection with a brief explanation of how to use the

homomorphism Ψ : U(G) → U(T n) to compute the multiplication structure in
U(G). The knowledge of the Burnside Ring A0(G) (cf. Subsection 4.1.1), the
A0(G)-module At

1(G) (cf. Proposition 4.2.5, Remark 5.1.13, Proposition 5.1.3)
as well as some ad hoc computations of certain coefficients in the multiplication

table for U(G) (cf. Example 5.1.4), may provide one with some information on
the structure of U(G). Thus, taking some (H), (K) ∈ Φ(G), one can express
(H) ∗ (K) as follows

(H) ∗ (K) =
∑

(L)

nL(L) +
∑

(L′)

xL′(L′), (5.19)

where nL are “known” coefficients while xL′ are “unknown”. On the other hand,

Proposition 5.1.15 allows in principle to completely evaluate the ring U(T n)
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(cf. Table A3.19). Since we also know the homomorphism Ψ (cf. Propositions

5.1.18—5.1.19), one has that

Ψ((H)) ∗ Ψ((K)) =
∑

(L′′)

nL′′(L′′) ∈ U(T n), (5.20)

where all the coefficients nL′′ are “known”. Applying the homomorphism Ψ
to (5.19) and comparing the coefficients of the obtained expression with those
obtained in (5.20) (related to the same conjugacy classes) leads to a linear

system of equations over Z from which, in principal, it is possible to determine
some unknown coefficients in (5.19). However, it might happen that the number
of equations in the above linear system is less than the number of unknowns.
Summing up, the more partial information on U(G) we have, there is a better

chance to compute the remaining coefficients. We will illustrate the described
strategy by computing the multiplication table for U(O(2) × S1). Take G :=
O(2)×S1. Based on the above discussion and the known structure of the Euler

ring U(T 2) in Table A3.19, we obtain the Euler ring structure for U(O(2) ×
S1). The multiplication table for U(O(2) × S1) is presented in Table A3.20,
Appendix A3.

5.2 Equivariant Degree for Gradient G-Maps

Throughout this section, G is a compact Lie group (if not otherwise specified),
V is a G-orthogonal representation and Ω ⊂ V is an open bounded G-invariant
subset.

5.2.1 Construction by K. Gȩba and Basic Properties

In this subsection, we follow the construction of the G-equivariant degree for
gradient G-maps introduced by K. Gȩba in [71] (which is denoted by ∇G-deg ),

and discuss some of its basic properties. Based on these properties, we derive
an axiomatic definition for ∇G-deg .

Definition 5.2.1. (i) A map f : V → V is called a gradient G-map if there

exists a G-invariant function ϕ : V → R of class C1 such that f = ∇ϕ.
Similarly, one can define gradient G-homotopy.

(ii) Let f : V → V be a gradient G-map. The pair (f,Ω) is called a gradient

admissible pair, if f(x) 6= 0 for all x ∈ ∂Ω. Two gradient admissible pairs
(f0, Ω) and (f1, Ω) are called gradient G-homotopic, if there exists a gradient
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G-homotopy h : [0, 1] × V → V such that h(0, ·) = f0, h(1, ·) = f1 with

(h(t, ·), Ω) being gradient admissible for all t ∈ (0, 1).

Take x ∈ V , put H := Gx, and consider the orthogonal decomposition of V

V = τxG(x) ⊕Wx ⊕ νx, (5.21)

where τM denotes the tangent bundle of M, Wx := τxV(H) 	 τxG(x) and
νx := (τxV(H))

⊥. Suppose f : V → V is a gradient G-map being differentiable
at x and f(x) = 0. The derivative Df(x) has a block-matrix form with respect
to (5.21)

Df(x) =




0 0 0
0 Kf(x) 0
0 0 Lf(x)


 , (5.22)

where Kf(x) := Df(x)|Wx and Lf(x) := Df(x)|νx .

Definition 5.2.2. (i) An orbit G(x) is called a regular zero orbit of f , if
f(x) = 0 and Kf(x) : Wx → Wx (provided by (5.22)) is an isomorphism.
Let E−(x) ⊂ Wx denote the generalized eigenspace of Kf(x) corresponding

to the negative spectrum of Kf(x). Then κx := dimE−(x) is called the
Morse index of the regular zero orbit G(x). Put

i(G(x)) := (−1)κ(x), (5.23)

or equivalently,

i(G(x)) := sign detKf(x) = sign detDf(x)|Wx .

(ii) For an open G-invariant subset U of V(H) such that U ⊂ V(H), and a small∗

ε > 0, put

N (U, ε) := {y ∈ V : y = x+ v, x ∈ U, v ⊥ τxV(H), ‖v‖ < ε},

and call it a tubular neighborhood of type (H). A gradient G-map f : V →
V , f := ∇ϕ is called (H)-normal, if there exists a tubular neighborhood

N (U, ε) of type (H) such that f−1(0)∩Ω(H) ⊂ N (U, ε) and for y ∈ N (U, ε),
y = x+ v, x ∈ U, v ⊥ τxV(H),

ϕ(y) = ϕ(x) +
1

2
‖v‖2,

or equivalently,
f(y) = f(x) + v.

∗ ε is assumed to be sufficiently small that the representation of y = x + v in N (U, ε) is unique.
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The concept of a generic pair plays an essential role in the construction of the

equivariant degree for G-maps presented in [71].

Definition 5.2.3. A gradient admissible pair (f,Ω) is generic if there exists
an open G-invariant subset Ωo ⊂ Ω such that

(i) f |Ωo is of class C1;
(ii) f−1(0) ∩ Ω ⊂ Ωo;
(iii) f−1(0) ∩ Ωo is composed of regular orbits of zeros;

(iv) For each (H) with f−1(0)∩Ω(H) 6= ∅, there exists a tubular neighborhood
N (U, ε) such that f is (H)-normal on N (U, ε).

Theorem 5.2.4. (Generic Approximation Theorem, cf. [71]) For any gradient
admissible pair (f,Ω) there exists a generic pair (fo, Ω) such that (f,Ω) and

(fo, Ω) are gradient G-homotopic.

Define the equivariant degree for a gradient admissible pair (f,Ω) by

∇G-deg (f,Ω) := ∇G-deg (fo, Ω) =
∑

(H)∈Φ(G)

nH · (H), (5.24)

where (fo, Ω) is a generic approximation pair of (f,Ω) provided by Theorem

5.2.4 and
nH :=

∑

(Gxi
)=(H)

i(G(xi)), (5.25)

with G(xi)’s being the disjoint orbits of type (H) in f−1
o (0) ∩ Ω.

We refer to [71] for the verification that ∇G-deg (f,Ω) is well-defined and
satisfies the standard properties expected from a degree.

Now, we are in a position to formulate an alternative axiomatic definition
of the degree for gradient G-maps.

Theorem 5.2.5. Let G be a compact Lie group, Ω ⊂ V be an open bounded
G-invariant subset and f : V → V be a gradient G-map. There exists a unique
function ∇G-deg associating to each gradient admissible pair (f,Ω) an element
∇G-deg (f,Ω) ∈ U(G) such that the following properties are satisfied:

(P1) (Existence) If ∇G-deg (f,Ω) =
∑
(H)

nH(H), is such that nHo 6= 0 for some

(Ho) ∈ Φ(G), then there exists xo ∈ Ω with f(xo) = 0 and Ho ⊂ Gx.
(P2)(Additivity) Suppose that Ω1 and Ω2 are two disjoint open G-invariant

subsets of Ω such that f−1(0) ∩Ω ⊂ Ω1 ∪ Ω2. Then

∇G-deg (f,Ω) = ∇G-deg (f,Ω1) + ∇G-deg (f,Ω2).
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(P3) (Homotopy) If h : [0, 1] × V → V is a gradient G-homotopy being Ω

admissible, then
∇G-deg (ht, Ω) = constant,

where ht(·) := h(t, ·) for t ∈ [0, 1].
(P4) (Multiplicativity) Let V and W be two orthogonal G-representations,

(f,Ω) and (f̃ , Ω̃) two gradient admissible pairs, where Ω ⊂ V and Ω̃ ⊂ W .
Then

∇G-deg (f × f̃ , Ω × Ω̃) = ∇G-deg (f,Ω) ∗ ∇G-deg (f̃ , Ω̃),

where the multiplication ‘∗’ is taken in the Euler ring U(G).

(P5) (Normalization) Suppose (f,Ω) is a generic pair such that f−1(0) ∩
Ω = G(xo), for some xo ∈ Ω with Ho := Gxo . Let N (U, ε) be a tubular
neighborhood provided by Definition 5.2.3(iv) and i(G(xo)) be defined by

(5.23). Then
∇G-deg (f,N (U, ε)) = i(G(xo))(Ho).

(P6) (Suspension) Suppose that W is another orthogonal G-representation and

let O be an open bounded G-invariant neighborhood of 0 in W . Then

∇G-deg (f × Id , Ω ×O) = ∇G-deg (f,Ω).

Proof: Existence. The existence of ∇G-deg satisfying (P1)-(P5) is guaran-
teed by its construction as shown in [71]. The suspension property (P6) is a
direct consequence of (P4) and (P5). Indeed, by (P4), we have

∇G-deg (f × Id , Ω ×O) = ∇G-deg (f,Ω) ∗ ∇G-deg (Id ,O).

Since (Id ,O) is generic, by (P5),

∇G-deg (Id ,O) = i({0}) (G) = (G),

which is the unit element in the ring U(G), thus (P6) follows.

Uniqueness. The uniqueness of ∇G-deg (f,Ω) is provided by (P5), which leads
to its analytic definition (cf. (5.24)—(5.25)). �

We complete this subsection with the following

Lemma 5.2.6. Let G be a compact Lie group, V an orthogonal G-representation,
Ω ⊂ V an open bounded G-invariant set and f : V → V a G-gradient Ω-

admissible map. Then, for every orbit type (L) in Ω, the map fL := f |V L :
V L → V L is an ΩL-admissible W (L)-equivariant gradient map. Moreover, if
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∇G-deg (f,Ω) =
∑

(K)∈Φ(G)

nK(K),

and

∇W (L)-deg (fL, ΩL) =
∑

(H)∈Φ(W (L))

mH(H),

then,

nL = mZ1, (5.26)

where Z1 = {e} and e ∈ W (L) is the identity element.

Proof: By homotopy property of the G-gradient degree, without loss of
generality, one can assume that f is generic G-map on Ω. Thus, fL is generic
W (L)-map on ΩL. From the construction of G-gradient degree, formula (5.26)

follows. �

5.2.2 Computational Formulae for the G-Gradient Degree for
Linear Isomorphisms

The G-gradient degree as described in Subsection 5.2.1, contains a complete

topological information on the symmetric properties of zeros of f (cf. [41]).
However, the computation of ∇G-deg (f,Ω) is a complicated task, in general.
In several important cases from the application viewpoint, it is possible to use
the standard linearization techniques so that one can reduce the computation

of gradient degrees ∇G-deg (f,Ω) for general G-maps f : V → V to the com-
putation of ∇G-deg (A,B1(V )) for symmetric linear isomorphisms A : V → V .

By applying suspension property, ∇G-deg (A,B1(V )) can be evaluated by
∇G-deg (−Id , B1(V

−)), where V − ⊂ V is the maximal subspace on which A is
negative definite. Since −Id can be viewed as a product map with respect to the

isotypical decomposition of V −, a further reduction is possible. In terms of the
spectra of A, we can write V − =

⊕
µ∈σ−(A)

E(µ), where σ− := {µ ∈ σ : µ < 0}

is the negative spectrum of A, and E(·) denotes the eigenspace.

Let {Wk}, k = 0, 1, ..., be the complete list of all irreducible G-represent-
ations. Since each E(µ) is G-invariant, one can consider its G-isotypical de-
composition

E(µ) = E0(µ) ⊕ E1(µ) ⊕ · · · ⊕ Eko(µ),
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where Ek(µ) is modeled on Wk for k = 0, 1, 2, . . . , ko. Put

mk(µ) = dimEk(µ)/dimWk, k = 0, 1, 2, . . . , ko, (5.27)

which is called the Wk-multiplicity of µ.

By applying the multiplicativity properties, one obtains

∇G-deg (A,B1(V )) =
∏

µ∈σ−(A)

ko∏

k=0

(∇G-deg (−Id , B1(Wk)))
mk(µ), (5.28)

where mk(µ) is defined by (5.27).

Notice that the values of ∇G-deg (−Id , B1(Wk)) contribute as basic building
blocks to the value of ∇G-deg (A,B1(V )), and depend only on the irreducible

representation Wk. Therefore, we introduce the following notion:

Definition 5.2.7. We call

Deg Wk
:= ∇G-deg (−Id , B1(Wk)), (5.29)

the basic gradient degree associated to Wk.

Remark 5.2.8. Observe that the computation of Deg Wk
can be complicated

for an arbitrary G. In the rest of this section, we develop a method for the
computation of Deg Wi

, in the case G = Γ × S1, where Γ is a compact Lie

group. The main ingredients of the method are
(i) for each (L) ∈ Φ(G), the nL-coefficient of Deg Wi

can be computed via
the W (L)-gradient degree of the restriction to V L (cf. Lemma 5.2.6);

(ii) if (L) ∈ Φt1(G), then the computation of the related W (L)-gradient
degree can be done using a canonical passage via the so-called orthogonal
degree (cf. Subsection 5.2.3);

(iii) the computation of basic gradient degree related to the maximal torus-

action usually is simple, therefore the remaining (non-twisted) coefficients nL
can be computed using the homomorphism Ψ : U(G) → U(T n) and the infor-
mation obtained for the twisted orbit types.
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5.2.3 Passage through Orthogonal Degree for One-dimensional
Bi-Orientable Compact Lie Groups

In this subsection, assume that G stands for a one-dimensional bi-orientable
compact Lie group. It turns out that, in this case, one can associate to a given
G-gradient Ω-admissible map f : V → V , (or more generally, to an orthogonal

map (cf. Definition 5.2.9)), a G-equivariant map f̃ : R ⊕ V → V in such a
way that the primary degree of f̃ is intimately connected to ∇G-deg (f,Ω).
Observe that in the case G = Γ ×S1 with Γ finite, a similar construction was
suggested in [152].

We start with the following definition.

Definition 5.2.9. A G-equivariant map f : V → V is called G-orthogonal
on Ω, if f is continuous and for all v ∈ Ω, the vector f(v) is orthogonal to

the orbit G(v) at v. Similarly, one can define the notion of a G-orthogonal
homotopy on Ω.

Clearly, any G-gradient map is orthogonal, however, one can easily construct

an orthogonal map which is not G-gradient (cf. [15] for instance).

To associate with an orthogonal map, a G-equivariant map and the corre-

sponding primary degrees, some preliminaries of relatedG-orbits are necessary.

Take the connected component of e ∈ G, which is a maximal torus T 1 of G.

Choose an orientation on T 1 and identify T 1 with S1. The chosen orientation
on S1 can be extended invariantly on the whole group G. We assume the
orientation to be fixed throughout this subsection.

Next, take a vector v ∈ V and define the diffeomorphism

µv : G/Gv → G(v), ϕv(gGv) := gv. (5.30)

Take the decomposition

V = V S1 ⊕ V ′, V ′ := (V S1

)⊥. (5.31)

If v ∈ V S1
, then dimGx = 1 so that the orbit G(x) ∼= G/Gx is finite and,

therefore, admits a natural orientation.

If v 6∈ V S1
, then Gv is a finite subgroup of G, and by bi-orientability of

G, both (left and right) actions of Gv preserve the fixed orientation of G.
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Therefore, G/Gv has a natural orientation, induced from G. Consequently, the

orientation obtained by (5.30) does not depend on a choice of the point v from
the orbit G(v) (cf. Remark 2.2.15). More precisely, consider v ∈ V and the
map ϕv : G→ G(v) given by

ϕv(g) = gv, g ∈ G. (5.32)

Clearly ϕv is smooth and Dϕv(1) : τ1(G) = τ1(S
1) → τv(G(v)). Since the total

space of the tangent bundle to S1 can be written as

τ (S1) = {(z, γ) ∈ C × S1 : z = itγ, t ∈ R},

a tangent vector to the orbit G(v) can be represented by

τ (v) := Dϕv(1)(i) = lim
t→0

1

t

[
eitv − v

]
. (5.33)

Notice that for any v ∈ V S1
, we have τ (v) = 0. Thus, by using the decompo-

sition
V = V S1 ⊕ V ′, V ′ := (V S1

)⊥, (5.34)

we have that a G-equivariant map f : V → V is G-orthogonal, if and only if

〈f(x, u), (0, τ (u))〉 = 0,

for every v = (x, u) ∈ V = V S1 ⊕ V ′.

Summing up, in both cases (v ∈ V S1
and v 6∈ V S1

), G(v) admits a natural

orientation, although exhibits different algebraic and topological properties.
Hence, given an orthogonal map f , the orbits of f−1(0) belonging to V S1

and
those belonging to V \ V S1

contribute in equivariant homotopy properties of
f in different ways, and one needs to treat these contributions separately.

Definition 5.2.10. Let f : V → V be a G-orthogonal on Ω. Then, f is called
S1-normal on Ω if

∃δ>0 ∀x∈ΩS1 ∀u⊥V S1 ‖u‖ < δ =⇒ f(x+ u) = f(x) + u. (5.35)

Similarly, one can define the G-orthogonal S1-normal homotopy on Ω.

We have an S1-normal approximation theorem.
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Theorem 5.2.11. Suppose that f : V → V is a G-orthogonal map on Ω.

Then, for every ε > 0, there exists a G-orthogonal S1-normal on Ω map fo :
V → V such that

∀v∈Ω ‖f(v) − fo(v)‖ < ε. (5.36)

In addition, if f is Ω-admissible, then for ε < min
v∈∂Ω

‖f(v)‖, fo is also Ω-

admissible. Moreover, fo is G-orthogonally homotopic to f on Ω via a linear
G-orthogonal Ω-admissible homotopy.

Similarly, if h : [0, 1] × V → V is a G-orthogonal homotopy on Ω, then for
every ε > 0, there exists a homotopy ho : [0, 1]×V → V which is G-orthogonal
on Ω and S1-normal on Ω such that

∀(t,v)∈[0,1]×Ω ‖h(t, v) − ho(t, v)‖ < ε. (5.37)

In addition, if h(0, ·) =: f0 and h(1, ·) =: f1 are S1-normal on Ω, then the

homotopy ho can be constructed in such a way that ho(0, ·) = f0 and ho(1, ·) =
f1.

Proof: Consider the decomposition (5.34) of V . For v ∈ V , we write v =
(x, u), where x ∈ V S1

and u ∈ V ′. Given δ > 0, define the function ηδ : R → R
by

ηδ(ρ) :=





0 if ρ ≤ δ,
ρ−δ
δ

if δ < ρ < 2δ,

1 if ρ ≥ 2δ,

(see Figure 5.2.3).

δ 2δ

1

ρ

ηδ

Fig. 5.2. Bump function ηδ

Next, define the map fo : V → V by
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fo(v) = fo(x, u) := f(x, ηδ(‖u‖)u) + (1 − ηδ(‖u‖))u. (5.38)

By construction, fo is G-orthogonal and S1-normal on Ω (with δ as the S1-
normality constant).

Put εo := inf
v∈∂Ω

{‖f(v)‖}. By the Ω-admissibility of f , εo > 0. We can

assume ε ≤ εo
2

. Otherwise, replace ε with min{ε, εo
2
}. We claim that for every

such 0 < ε < εo
2

, there exists a proper δ > 0, such that the map fo defined by

(5.38) satisfies
∀v∈Ω ‖f(v) − fo(v)‖ < ε. (5.39)

Since for any v = (x, u) ∈ V with ‖u‖ ≥ 2δ, fo(v) = f(x, u) = f(v), it is
sufficient to show (5.39) for v = (x, u) ∈ Ω with ‖u‖ < 2δ.

By the uniform continuity of f on Ω, there exists δ1 > 0 such that

∀v,v′∈Ω ‖v − v′‖ < δ1 ⇒ ‖f(v) − f(v′)‖ < ε

2
.

Choose δ := min{ δ1
2
, ε

2
} > 0, thus for all v = (x, u) ∈ Ω with ‖u‖ < 2δ(<

δ1),

‖f(v) − fo(v)‖ = ‖f(x, u) − fo(x, u)‖
= ‖f(x, u) − f(x, ηδ(‖u‖)u) − (1 − ηδ(‖u‖))u‖
≤ ‖f(x, u) − f(x, ηδ(‖u‖)u)‖ + (1 − ηδ(‖u‖))‖u‖

<
ε

2
+ δ <

ε

2
+
ε

2
= ε.

By the assumption ε ≤ εo
2

,

∀v∈Ω ‖f(v) − fo(v)‖ < ε ≤ εo
2
.

Thus, for all v ∈ ∂Ω,

‖fo(v)‖ ≥ ‖f(v)‖ − ‖f(v) − fo(v)‖

≥ εo −
εo
2

=
εo
2
> 0.

Consequently, fo is Ω-admissible.
Define the homotopy h : [0, 1] × V → V by

h(t, v) := f(x, tu+ (1 − t)ηδ(‖u‖)u) + (1 − t)(1 − ηδ(‖u‖))u,



132 5 Euler Ring and Equivariant Degree for Gradient Maps

where t ∈ [0, 1]. It is clear that h(0, ·) = fo and h(1, ·) = f . Notice that for

v ∈ V with ‖u‖ ≥ 2δ, h(t, v) ≡ f(x, u) = f(v). To check the Ω-admissibility
of h(t, ·), it is enough to show that for all (t, v) ∈ [0, 1] × ∂Ω with ‖u‖ < 2δ,
we have ‖h(t, v)‖ > 0. Indeed,

‖h(t, v) − f(v)‖ ≤ ‖f(x, tu+ (1 − t)ηδ(‖u‖)u) − f(x, u)‖
+ ‖(1 − t)(1 − ηδ(‖u‖))u‖

<
ε

2
+ ‖u‖ ≤ ε

2
+
ε

2
= ε ≤ εo

2
,

thus
‖h(t, v)‖ ≥ ‖f(v)‖ − ‖h(t, v) − f(v)‖ > εo −

εo
2

=
εo
2
> 0.

Consequently, h is an Ω-admissible homotopy. In order to verify that h is
G-orthogonal on Ω, we notice that for (t, v) = (t, x, u) ∈ [0, 1] ×Ω,

〈h(t, x, u), (0, τ (u))〉 = 〈f(x, (t+ (1 − t)ηδ(‖u‖))u), (0, τ (u))〉
+ (1 − t)(1 − ηδ(‖u‖))〈u, (0, τ (u)))〉 = 0.

The proof for G-orthogonal homotopies is similar. �

We are now in a position to define an orthogonal degree and take a G-
orthogonal Ω-admissible map f : V → V . By Theorem 5.2.11, there exists

a map fo : V → V being G-orthogonal S1-normal on Ω and G-orthogonally
homotopic to f . Consider decomposition (5.34). Since fo is S1-normal, there
exists δ > 0 such that for all x ∈ Ω ∩ V S1

and u ∈ V ′,

fo(x+ u) = fo(x) + u, provided ‖u‖ < δ.

Take the set

Uδ := {(t, v) ∈ (−1, 1) ×Ω : v = x+ u, x ∈ V S1

, u ∈ V ′, ‖u‖ > δ}, (5.40)

and define f̃o : R ⊕ V → V by

f̃o(t, v) := fo(v) + tτ (v), (t, v) ∈ R ⊕ V, (5.41)

where τ (v) is given by (5.33). It is clear that f̃o is G-equivariant and Uδ-
admissible.

Set f̄o := fo|V S1 : V S1 → V S1
, which is G-equivariant and ΩS1

-admissible.
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Definition 5.2.12. Let G be a one-dimensional bi-orientable compact Lie

group. Consider a G-orthogonal Ω-admissible map f : V → V . Define the
orthogonal G-equivariant degree G-Deg o(f,Ω) of the map f to be an element
of A0(G) ⊕A+

1 (G) ⊂ A0(G) ⊕A1(G) =: U(G) given by

G-Deg o(f,Ω) :=
(

Deg0
G(f,Ω),Deg1

G(f,Ω)
)
, (5.42)

where

Deg0
G(f,Ω) := G-deg(f̄o, Ω

S1

) ∈ A0(G), (5.43)

and
Deg1

G(f,Ω) := G-Deg (f̃o, Uδ) ∈ A+
1 (G), (5.44)

where G-deg stands for the primary G-equivariant degree (cf. Chapter 3).

We claim that the definition (5.42)-(5.44) is independent of the choice of a
G-orthogonal S1-normal approximation fo. Indeed, assume that f ′

o : V → V is
another S1-normal approximation of f such that

∀v∈Ω ‖f(v) − f ′
o(v)‖ < ε :=

1

4
inf
v∈∂Ω

{‖f(v)‖}. (5.45)

Let δ′ be the S1-normality constant of f ′
o, and Uδ′ be given by (5.40). Define

F ′
o : R ⊕ V → V by

F ′
o(t, v) := f ′

o(v) + tτ (v), (t, v) ∈ R ⊕ V.

Put δ̄ := min{δ, δ′}, and define Uδ̄ by (5.40). By the excision property of the
primary degree, we have

G-Deg (Fo, Uδ̄) = G-Deg (Fo, Uδ),

and
G-Deg (F ′

o, Uδ̄) = G-Deg (F ′
o, Uδ′).

Also, by (5.45), we have that fo and f ′
o are G-orthogonally homotopic on Ω. In

particular, fo|V S1 and f ′
o|V S1 are Γ -homotopic on ΩS1

, thus, by the homotopy
property of the primary degree,

Γ -Deg(f̄o, Ω
S1

) = Γ -Deg(f̄ ′
o, Ω

S1

).

Moreover, Fo and F ′
o are G-orthogonally homotopic on Uδ̄, so by the homotopy

property of the primary degree, we have
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G-Deg (Fo, Uδ̄) = G-Deg (F ′
o, Uδ̄).

Therefore,
G-Deg (Fo, Uδ) = G-Deg (F ′

o, Uδ′).

In this way, we obtain the following

Theorem 5.2.13. Suppose that V is an orthogonal representation of the one-

dimensional bi-orientable compact Lie group G. For each pair (f,Ω), where
Ω ⊂ V is an open bounded G-invariant set in V and f : V → V is a G-
orthogonal Ω-admissible map, one can associate the orthogonal G-equivariant

degree G-Deg o(f,Ω) ∈ A0(G) ⊕A1(G) by (cf. (5.42)—(5.44)), which satisfies
the following properties:

(P1) (Existence) If G-Deg o(f,Ω) 6= 0, i.e. either

Deg0
G(f,Ω) =

∑

(H)∈Φ0(G)

nH(H) 6= 0,

or
Deg1

G(f,Ω) =
∑

(H)∈Φ1(G)

nH(H) 6= 0,

meaning that nHo 6= 0 for some (Ho) ∈ Φ0(G) or (Ho) ∈ Φ1(G), then there
exists xo ∈ Ω such that f(xo) = 0 and Gxo ⊃ Ho.

(P2) (Additivity) Suppose that Ω1 and Ω2 are two disjoint open G-invariant

subsets of Ω such that f−1(0) ∩Ω ⊂ Ω1 ∪ Ω2. Then,

G-Deg o(f,Ω) = G-Deg o(f,Ω1) +G-Deg o(f,Ω2).

(P3) (Homotopy) If h : [0, 1] × V → V is a G-orthogonal Ω-admissible homo-
topy, then

G-Deg o(ht, Ω) = constant, for all t ∈ [0, 1],

where ht(v) := h(t, v) for t ∈ [0, 1] and v ∈ V .

(P4) (Suspension) Let W be an orthogonal G-representation and O ⊂ W an
open bounded G-invariant neighborhood of 0 in W . Then,

G-Deg o(f × Id , Ω ×O) = G-Deg o(f,Ω).
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Proof: All the properties are direct consequences of the corresponding prop-

erties of the primary degree with one free parameter and primary degree with-
out free parameter (cf. Proposition 3.2.4). �

We complete this subsection with the following result connecting the or-
thogonal and G-gradient degree in the case G is a compact one-dimensional
bi-orientable Lie group.

Proposition 5.2.14. Let f : V → V be a G-gradient Ω-admissible map. Then,

∇G-deg (f,Ω) =
(

Deg0
G(f,Ω),−Deg1

G(f,Ω)
)
,

where Deg0
G(f,Ω) ∈ A0(G) is defined by (5.43) and Deg1

G(f,Ω) ∈ A+
1 (G) is

defined by (5.44).

Proof: Without lose of generality, we can assume that f is a generic gradient
map on Ω (cf. Theorem 5.2.4). Then, the zero set f−1(0) ∩ Ω is composed

of finitely many regular orbits. By the additivity property, we can assume
f−1(0) ∩Ω contains a single orbit G(xo), being of the orbit type (Ho). Let No

be a tubular neighborhood around G(xo). By the excision property, we have
that

∇G-deg (f,Ω) = ∇G-deg (f,No).

If xo ∈ ΩS1
, then Ho ⊃ S1 is of dimension 1. Thus, the orbit G(xo) ' G/Ho

is a finite set, which forces τxo(G(xo)) = {0}. Hence, we have the decomposition
(cf. (5.21))

V = τxoV(Ho) ⊕ νx = Wx ⊕ νx

and the corresponding block matrix

Df(xo) =

[
Kf(xo) 0

0 Id

]
.

Consequently,
∇G-deg (f,No) = sign detKf(xo) · (Ho).

On the other hand, since f is a generic map on No, it is also regular nor-

mal on No with (Ho) being the only orbit type. By the elimination property,
Deg1

G(f,Ω) = 0. To evaluate Deg0
G(f,Ω), observe that the slice Sxo at xo is

isomorphic to τxoVHo and positively oriented (cf. Definition 2.2.17). Moreover,

τxoVHo ' Wxo. Indeed, V(Ho) is a disjoint union of giVHog
−1
i for finitely many

gi 6∈ Ho. Therefore,
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Deg0
G(f,Ω) = G-Deg (f,N S1

o ) = nHo · (Ho),

where nHo = sign degDf(xo)|Sxo
= sign detKf(xo). Hence,

∇G-deg (f,Ω) = (Deg0
G(f,Ω), 0).

If xo 6∈ ΩS1
, then Ho 6⊃ S1 is of dimension 0. Thus, the orbit G(xo) ' G/Ho

is of dimension 1. Since f is a generic map on the tubular neighborhood No,

we have
∇G-deg (f,No) = sign detKf(xo) · (Ho).

Also, f is S1-normal on No. By the construction, the associated map F :

R ⊕ V → V is regular normal on Uδ (cf. (5.40)—(5.41)). In particular, F
is regular normal on (−η, η) × No for a small η > 0, which is a tubular
neighborhood around G(0, xo). By the elimination property, Deg0

G(f,Ω) = 0.
By the normalization property, we have

Deg1
G(f,Ω) = G-Deg (F, (−η, η) ×No) = nHo(Ho).

To determine nHo , observe that

R ⊕ τxoVHo = R ⊕
(
τxoVHo ∩ τxoV(Ho)

)

= R ⊕
(
τxoVHo ∩Wxo

)
⊕ τxo

(
W (Ho)(xo)

)
,

and the corresponding block matrix is

DF (xo) =

[
0 Kf(xo) 0
1 0 0

]
.

Notice that the slice Sxo is isomorphic to R ⊕
(
τxoVHo ∩ Wxo

)
is positively

oriented (cf. Definition 2.2.17). Therefore,

nHo = sign det(DF (xo)|Sxo
) = −sign det(Kf(xo)).

Hence,
∇G-deg (f,Ω) = (0,−Deg1

G(f,Ω)).

�

An immediate consequence of Proposition 5.2.14 is a multiplicativity prop-

erty of the orthogonal degree, inherited from the same property of the gradient
degree.
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Corollary 5.2.15. Let V and W be two orthogonal G-representations, (f,Ω)

and (f̃ , Ω̃) two gradient admissible pairs, where Ω ⊂ V and Ω̃ ⊂W . Then, we
have

(P4)(Multiplicativity) The product map f × f̃ : V ⊕W → V ⊕W is Ω × Ω̃-
admissible, and

G-Deg o(f × f̃ , Ω × Ω̃) = G-Deg o(f,Ω) ∗G-Deg o(f̃ , Ω̃),

where the multiplication ‘∗’ is taken in the Euler ring U(G).

A similar result as Proposition 5.2.14 was established in [152], for a special
case G = Γ × S1 with Γ being finite.

Corollary 5.2.16. For G = Γ ×S1 with Γ being a finite group, the multiplica-
tion in U(G), when restricted to A1(G)×A1(G), is trivial, i.e. for any twisted
subgroups (Hϕ1,l1), (Kϕ2,l2) ∈ Φ1(G), we have

(Hϕ1,l1) ◦ (Kϕ2,l2) = 0.

Proposition 5.2.17. Let G be a bi-orientable 1-dimensional compact Lie
group. Identify U(G) with A0(G) ⊕ A1(G). Then, the Euler ring multiplica-
tion table can be represented by Table 5.2.

∗ A0(G) A1(G)

A0(G) A0(G)-multip A0(G)-module multip

A1(G) A0(G)-module multip 0

Table 5.2. U(G)-Multiplication Table for One-dimensional Bi-orientable G

Proof: We divide the proof into several claims.

Claim 1. If (H), (K) ∈ Φ1(G), then (H) ∗ (K) = 0.

It is sufficient to notice that the proof of Proposition 5.1.14 is valid for a
1-dimensional compact Lie group G.

Claim 2. If (H) ∈ Φ0(G), (K) ∈ Φ1(G), then (H) ∗ (K) ∈ A1(G).

Take L ⊂ G such that (G/H×G/K)L 6= ∅. Then, by dimension restrictions,
dimW (L) = 1 (cf. Proposition 2.4.5(i)), i.e. (L) ∈ Φ1(G).
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Claim 3. If a, c ∈ A0(G), then a ∗ c ∈ A0(G).

Take (a, b), (c, d) ∈ A0(G) ⊕ A1(G) ' U(G). Let (f1, Ω1) and (f2, Ω2) be
gradient admissible pairs such that

∇G-deg (f1, Ω1) = a+ b,

∇G-deg (f2, Ω2) = c+ d.

By the multiplicativity property, we have

∇G-deg (f1 × f2, Ω1 ×Ω2) = (a+ b) ∗ (c+ d)

= a ∗ c+ a ∗ d + b ∗ c+ b ∗ d
= a ∗ c+ a ∗ d + b ∗ c, (5.46)

where the last equality is based on the Claim 1.

On the other hand, since G is a bi-orientable 1-dimensional compact Lie

group, it is possible to associate the orthogonal degree G-Deg o(fi, Ωi) to the
pair (fi, Ωi) for i = 1, 2 (cf. (5.42)—(5.44)). By Proposition 5.2.14, we obtain

G-Deg o(f1, Ω1) = (a,−b),
G-Deg o(f2, Ω2) = (c,−d).

By the multiplicativity property and Claim 1, we have

G-Deg o(f1 × f2, Ω1 ×Ω2) = a ∗ c− a ∗ d − b ∗ c. (5.47)

Comparing (5.46) with (5.47) and combining Proposition 5.2.14, we con-
clude that a ∗ c ∈ A0(G).

�

5.2.4 Computational Formulae of Gradient Γ × S1-Degree

In this subsection, G = Γ × S1, where Γ is a compact Lie group. It is our
interest to establish certain computational formulae for the computations of
G-gradient degree. As an example, basic gradient degrees for G = O(2) × S1

are computed.
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Take a G-gradient Ω-admissible map f : V → V . For every orbit type

(L) ∈ Φt1(G) in Ω, the map fL : V L → V L is a W (L)-equivariant map be-
ing admissible on ΩL. Following the passage described in Subsection 5.2.3,
one can associate to the admissible pair (fL, ΩL), the orthogonal degree

W (L)-Deg o(fL, ΩL). Combining Lemma 5.2.6 with Proposition 5.2.14, we ob-
tain

Proposition 5.2.18. Let f : V → V be a G-gradient Ω-admissible map, (L) ∈
Φt1(G) an orbit type in Ω. Assume

∇G-deg (f,Ω) =
∑

(K)∈Φ(G)

nK(K),

and
−W (L)-Deg o(fL, ΩL) =

∑

(H)∈Φ(W (L))

mH(H).

Then,
nL = mZ1,

where Z1 = {e} and e ∈ W (L) is the identity element.

To compute the basic gradient degrees (cf. Definition 5.2.7), we apply Propo-
sition 5.2.18 to the case when f is a linear symmetric isomorphism and Ω is
the unit ball in V .

Following the convention for the irreducible representations of G = Γ ×S1,
we distinguish two types of irreducible G-representations in the list {Wk},
k = 0, 1, 2, ... (cf. Table 2.1 for conventions used below).

(i) those, where S1 acts trivially, which can be identified with irreducible
Γ -representations and denoted by Vi, i = 0, 1, 2, ...);

(ii) those, where S1 acts non-trivially defined by an l-folded complex mul-
tiplication, which is denoted by Vj,l.

Theorem 5.2.19. Let Γ be a compact Lie group, G = Γ × S1, Vi be the i-
th irreducible G-orthogonal representation with the trivial S1-action and Vj,l be

the (j, l)-th irreducible G-orthogonal representation with a nontrivial S1-action
by an l-folded complex multiplication. Then,

(a) for Vi,
Deg Vi

= deg Vi
+ T∗;
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(b) for Vj,l,
Deg Vj,l

= (G) − deg Vj,l
+ T∗,

where deg Vi
∈ A0(G), deg Vj,l

∈ At
1(G) and T∗ ∈ A∗(G).

Proof: (a) This formula follows directly from the construction of G-gradient
degree. Indeed, assume

Deg Vj
=

∑

(L)∈Φ(G)

nL (L)

and
deg Vi

=
∑

(K)∈Φ0(G)

mK (K).

Since every generic approximation of −Id is regular normal, one can easily
observe that for (K) ∈ Φ0(G), one has nK = mK.

(b) This statement is a consequence of Proposition 5.2.18. Indeed, let

deg Vj,l
=

∑

(R)∈Φt
1(G)

mR (R) and

Deg Vj,l
:= ∇G-deg(−Id , Bj,l) =

∑

(L)∈Φ(G)

nL (L),

and put V := Vj,l. Since for (L) ∈ Φ0(G), V(L) = {0} if (L) = (G) and V(L) = ∅
otherwise,

nL =

{
1 if (L) = (G),

0 for all (L) ∈ Φ0(G) such that (L) 6= (G).
(5.48)

To compute the nL-coefficients of Deg Vj,l
for (L) ∈ Φt1(G), observe that the

map −Id is not S1-normal on V . Take the function ηδ : R → R given by

ηδ(ρ) :=





0 if ρ < δ,
ρ−δ
δ

if δ ≤ ρ ≤ 2δ,

1 if ρ > 2δ,

(5.49)

where δ > 0 is chosen to be sufficiently small, and correct −Id to the S1-normal

map fo : V → V by

fo(v) := ηδ(‖v‖)(−v) + (1 − ηδ(‖v‖))v = 1 − 2ηδ(‖v‖)v, v ∈ V.
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Next, define the map f̃o : R ⊕ V → V by formula (5.41). Combining a linear

change of variables on V with homotopy and excision property of the twisted
degree yields

deg Vj,l
= G-Deg t(f̃o, Uδ) (5.50)

where Uδ is defined by (5.40).
Take (L) ∈ Φt1(G) and put f̃Lo := f̃o|V L. Obviously, the primary degree

W (L)-Deg (f̃Lo , U
L
δ ) =

∑

(K)∈Φ+
1 (W (L))

m̂K (K) (5.51)

is correctly defined. Then, Proposition 4.4 from [15] yields

mL = m̂Z1, (5.52)

where Z1 = {e} and e ∈ W (L) is the identity element.

On the other hand, consider the W (L)-equivariant map −Id |V L. By identi-
fying S1 with the connected component of e in W (L), the above construction
utilizing (5.49) can be applied to the map −Id |V L, i.e. put

fL∗ (v) := ηδ(‖v‖)(−v) + (1 − ηδ(‖v‖))v = 1 − 2ηδ(‖v‖)v, v ∈ V L,

and define f̃L∗ : R ⊕ V L → V L by

f̃L∗ (t, v) := fL∗ (v) + tτ (v) (v ∈ V L).

Then, f̃Lo and f̃L∗ are homotopic by a UL
δ -admissible homotopy and

W (L)-Deg (f̃Lo , U
L
δ ) = W (L)-Deg (f̃L∗ , U

L
δ ).

Therefore, by Proposition 5.2.18, m̂Z1 = −nL and thus

mL = −nL. (5.53)

By combining (5.48) and (5.53), the conclusion follows. �

For the case G = Γ × S1, where Γ is a finite group, a similar result was
established in [152].

Corollary 5.2.20. Let G = Γ × S1 for Γ being a finite group, , Vi be the i-
th irreducible G-orthogonal representation with the trivial S1-action and Vj,l be

the (j, l)-th irreducible G-orthogonal representation with a nontrivial S1-action
by an l-folded complex multiplication. Then,
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(a) for Vi,
Deg Vi

= deg Vi
;

(b) for Vj,l,
Deg Vj,l

= (G) − deg Vj,l
,

where deg Vi
∈ A0(G) and deg Vj,l

∈ At
1(G).

Remark 5.2.21. In view of Theorem 5.2.19, the computations of Deg Vo
can

be completed by using again the ring homomorphism Ψ : U(G) → U(T n) and
establishing relations between the unknown coefficients and the values of the
gradient degrees.

Let us discuss the gradient basic maps for irreducible T n-representations. Since
T n is an abelian group every nontrivial irreducible representation of T n is two-

dimensional with only two orbit types (T n) and (H), where H is a subgroup of
T n. Suppose that Vo is a nontrivial irreducible representation of T n. By apply-
ing the standard arguments, one can easily construct a generic approximation
of −Id : Vo → Vo, which immediately gives that

T n-deg (−Id , B1(Vo)) = (T n) − (H).

Consequently, in order to compute the equivariant gradient T n-degree of −Id :
V → V , where V is an arbitrary orthogonal T n-representation, it is sufficient

to use the simple multiplication formula for the Euler ring U(T n).

By applying the above results, we obtain the basic gradient degrees for
O(2) × S1 (cf. Appendix A2.3.7).

Remark 5.2.22. Let V be an orthogonal G-representation. Notice that the
map −Id : V ⊕ V → V ⊕ V is G-homotopic (in the class of non-gradient
G-equivariant maps) to Id : V ⊕ V → V ⊕ V , thus

G-Deg (−Id , B(V ⊕ V )) = G-Deg (Id , B(V ⊕ V )) = (G).

On the other hand

G-Deg (−Id , B(V ⊕ V )) = [G-Deg (−Id , B(V ))]2 = (G),

thus G-Deg (−Id , B(V )) is an invertible element in A(G). We claim that

a := ∇G-deg (−Id , B(V ⊕ V )) ∈ U(G),
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is an invertible element in U(G). Indeed, since π0(a
2) = 1 ∈ A(G), 1 := (G),

we have

a2 = 1 + y1 + · · · + yk, where yi = ni(G/Ki), (G/Ki) ∈ A∗(G).

Since the elements yi are nilpotent (by Proposition 5.1.7) and U(G) is abelian
and the element x := −y1 − · · · − yi is nilpotent, thus a2 = 1 − x is invertible
with the inverse

a−2 = 1 + x+ x2 + · · · + xn−1,

for n sufficiently large, so

a−1 = a(1 + x+ x2 + · · · + xn−1).
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6

Hopf Bifurcation in Symmetric Systems of

Functional Differential Equations

In this chapter, we study the occurrence of Hopf bifurcations in a symmetric
system of delayed functional differential equations, by means of the (twisted)

primary equivariant degree methods. The considered type of system appears
in many important models in physics, chemistry, biology, engineering, etc. The
existence of symmetries often performs an enormous impact on a dynamical
process, which may result in formations of various patterns exhibiting par-

ticular symmetric properties, such as the appearance of turbulence in fluid
dynamics (cf. [62]), fluctuations in transmission lines (see [118, 13]), periodic
reoccurrence in epidemics (cf. [14]), and traveling waves in neural networks
(cf. [181]). The prediction and classification of the displaying and changing

patterns in those models are usually of a complex nature.

At the present moment, the standard method to study symmetric Hopf

bifurcation is based on a finite-dimensional Lyapunov-Schmidt/Central Man-
ifold theorem reduction and further use of the (equivariant) singularity the-
ory and normal forms (see, Golubitsky [76, 77, 79, 81, 121, 122, 123]). Al-
though very effective, this method is not easy to use as it requires a seri-

ous topological/analytical background (e.g. there are serious technical diffi-
culties if the multiplicity of a purely imaginary characteristic root is greater
than one). During the 80s, the method of singularities was already largely
developed and successfully applied to bifurcation problems with symmetries

(cf. [33, 160, 59, 60, 61, 81, 121, 122, 123]). We should also mention the
rational-valued homotopy invariants of “degree type” introduced by F.B.
Fuller [67], E.N. Dancer [40] and E.N. Dancer and J.F.Toland [42, 44, 43]

as important tools to study the Hopf bifurcation phenomenon (see also
[30, 121, 136, 122, 123, 175]). It is our belief that the twisted equivariant
degree method (cf. [15, 7, 6, 12, 16]) is able (by taking advantage of computer
routines) to handle a huge number of possible symmetry types of the bifur-

cating periodic solutions and is simple enough to be understood by applied
mathematicians.
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Consider an R-parameterized system of functional differential equations,

which is symmetric with respect to a finite∗ group Γ . Under a reasonable
nondegeneracy assumption, for an isolated bifurcation center (αo, 0) ∈ R ⊕W
(where W is chosen to be an appropriate functional space), and iβo (βo > 0)

denotes the purely imaginary characteristic root corresponding to (αo, 0), we
apply the equivariant degree method to analyze and classify the occurrence
of symmetric Hopf bifurcation. While the implicit function theorem provides
us with a necessary condition for the Hopf bifurcation to take place around

(αo, 0), we formulate a sufficient condition in terms of a topological invariant
ω(αo, βo) ∈ A1(Γ × S1), defined as a (twisted) primary Γ × S1-equivariant
degree. Suppose that

ω(αo, βo) = n1(H1) + n2(H2) + · · · + nko(Hko ).

The value of the element ω(αo, βo) contains information of a symmetric classi-

fication of bifurcating branches of non-constant periodic solutions. More pre-
cisely, a non-zero coefficient nk implies the existence of a bifurcating branch of
periodic solutions with the orbit types at least (Hk). Moreover, if (Hk) is the
so-called dominating orbit type (i.e. satisfying certain maximality condition

(cf. Definition 6.1.7)), then we can not only predict the existence of bifurcat-
ing branches of non-constant periodic solutions with the exact orbit type (Hk),
but also establish a lower estimate of the number of bifurcating branches.

To evaluate the invariant ω(αo, βo), we derive a computational formula (cf.
(6.41)), based on the multiplicativity property of the twisted primary degree
(cf. Proposition 4.2.6). As it turns out, the values of the twisted basic degrees

as well as the basic degrees without parameters, serve as building blocks for the
value of ω(αo, βo). The original system of equations contributes through the
characteristic operator of the linearized system, in terms of the Morse indices
and the so-called isotypical crossing numbers (cf. Definition 6.1.4).

The equivariant degree method, which we discussed for the local bifurcation
problem study, can be also applied to a global Hopf bifurcation problem. For the

same R-parametrized system of symmetric functional differential equations, we
formulate a similar result to predict an unbounded continuation of symmetric
branches of non-constant periodic solutions.

∗ This assumption makes the considered group G = Γ × S1 to be bi-orientable automatically.
However, the general methodology suggested here for the application to the Γ -symmetric Hopf
bifurcation problems is valid for Γ being an arbitrary compact Lie group.
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This chapter is organized as follows. In Section 6.1, we present a general

setting for studying Γ -symmetric Hopf bifurcation problem for a parametrized
system of (delayed) functional differential equations. For an isolated center
(αo, 0) corresponding to a characteristic root iβo, a local bifurcation invari-

ant ω(αo, βo) is constructed as a twisted Γ × S1-equivariant degree of certain
associated map in functional spaces. In Section 6.2, we derive a computa-
tional formula for ω(αo, βo) using the multiplicatitivity property of the twisted
primary degree. In Section 6.3, we provide a procedure to use the Maple c©,

as an example, the invariants are computed for an S4-symmetric system of R-
parametrized functional differential equations. The table of results is presented
in Appendix A4.1 (cf. Table A4.2). In Section 6.4, we study a global Hopf bi-
furcation problem in the same parametrized system of symmetric functional

differential equations. Examples for Γ = DN , A4 will be analyzed.

6.1 Hopf Bifurcation in Symmetric Systems of FDEs

Throughout this chapter, we assume Γ to be a finite group.

Let V be a Γ -orthogonal representation. For a constant τ ≥ 0, denote by

CV,τ := {ϕ : [−τ, 0] → V : ϕ is continuous}, (6.1)

which is equipped with the usual supremum norm

‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|, ϕ ∈ CV,τ. (6.2)

The Γ -action on V induces a natural isometric Banach representation of Γ on

the space CV,τ defined by:

(γϕ)(θ) := γ(ϕ(θ)), γ ∈ Γ, θ ∈ [−τ, 0]. (6.3)

Given a continuous function x : R → V and t ∈ R, define xt ∈ CV,τ by

xt(θ) = x(t+ θ), θ ∈ [−τ, 0]. (6.4)

Consider an R-parametrized family of delayed differential equations

ẋ(t) = f(α, xt), t ∈ R, (6.5)

where x : R → V is a continuous function and f : R ⊕ CV,τ → V satisfies
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(A1) f is continuously differentiable.

(A2) f is Γ -equivariant, where Γ acts trivially on R.
(A3) f(α, 0) = 0 for all α ∈ R.

In addition, to prevent the steady-state bifurcation, we assume

(A4) detDxf(α, 0)|V 6= 0 for all α ∈ R, where Dxf stands for the partial

derivative of f restricted to the space of constant functions x ∈ V .

Definition 6.1.1. A point (α, xo) ∈ R ⊕ V is said to be a stationary point of
(6.5), if f(α, xo) = 0. A stationary point (α, xo) is called nonsingular if the

restricted partial derivative Dxf(α, xo) : V → V is a linear isomorphism.

By (A3), (α, 0) is a stationary point of (6.5), for all α ∈ R.

Definition 6.1.2. We say that for α = αo, the system (6.5) has a Hopf bifurca-
tion occuring at (αo, 0) corresponding to the “limit period” 2π

βo
, if there exists

a family of ps-periodic non-constant solutions {(αs, xs(t))}s∈Λ (for a proper
index set Λ) of (6.5) satisfying the conditions:

(1)The set K :=
⋃
s∈Λ{(αs, xs(t)) : t ∈ R} contains a compact connected set

C such that (αo, 0) ∈ C;

(2)∀ε > 0, ∃ δ > 0 such that

∀(αs, xs(t)) ∈ C sup
t

‖xs(t)‖ < δ ⇒ ‖αo − αs‖ < ε and ‖ps −
2π

βo
‖ < ε.

6.1.1 Characteristic Equation

Let V c be a complexification of V , i.e. V c := C ⊗R V (cf. Subsection 2.2.2).

Then, V c has a natural structure of a complex Γ -representation defined by
γ(z ⊗ x) = z ⊗ γx, for z ∈ C and x ∈ V . Suppose that V allows the following
Γ -isotypical decomposition (cf. Table 2.1 in Subsection 2.2.2 for conventions)

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr. (6.6)

where Vi is modeled on the irreducible Γ -representation Vi. Similarly, V c has
a complex isotypical decomposition

V c = U0 ⊕ U1 ⊕ · · · ⊕ Us, (6.7)

where Uj is modeled on the complex irreducible Γ -representation Uj . Notice
that the number s of isotypical components in (6.7), may be different from
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the number r of isotypical components in (6.6), depending on the type of the

irreducible representations Vi (cf. [27]).

Let (α, xo) be a stationary point of (6.5). The linearization of (6.5) at (α, xo)

leads to the characteristic equation

detC 4(α,xo) (λ) = 0, (6.8)

where
4(α,xo)(λ) := λId −Dxf(α, xo)(e

λ··)

is a complex linear operator from V c to V c, with (eλ··)(θ, x) = eλθx and
Dxf(α, xo)(z⊗ x) = z⊗Dxf(α, xo)x for z⊗ x ∈ V c (cf. [180]). For simplicity,
we write

4α(λ) := 4(α,0)(λ).

Definition 6.1.3. A solution λo to (6.8) is called a characteristic root of (6.8)
at the stationary point (α, xo). A nonsingular stationary point (α, xo) is called

a center, if (6.8) has a purely imaginary root. We will call (α, xo) an isolated
center if it is the only center in some neighborhood of (α, xo) in R ⊕ V .

It is clear that (α, xo) is a nonsingular stationary point if and only if 0 is not a
characteristic root of (6.8) at the stationary point (α, xo). By (A2) and (A3),
the operator 4α(λ) : V c → V c, α ∈ R, λ ∈ C, is Γ -equivariant. Consequently,

for each isotypical component Uj is invariant with respect to 4α(λ). We put

4α,j(λ) := 4α(λ)|Uj . (6.9)

6.1.2 Isotypical Crossing Numbers

We assume that

(A5) There is an isolated center (αo, 0) for system (6.5) such that (6.8) permits
a purely imaginary root λ = iβo with βo > 0.

LetB := (0, δ1)×(βo−δ2, βo+δ2) ⊂ C. By (A5), the constants δ1 > 0, δ2 > 0
and ε > 0 can be chosen so small that for every α ∈ [αo− ε, αo + ε], if there is

a characteristic root u+ iv ∈ ∂B at (α, 0), then u+ iv = iβo and α = αo.

Note that 4α(λ) is analytic in λ ∈ C and continuous in α ∈ [αo− ε, αo + ε]

(see [85]). It follows that detC 4αo±ε(λ) 6= 0 for all λ ∈ ∂B. Define for 0 ≤ j ≤
s,
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t±j,1(αo, βo) := deg (detC 4α0±ε,j (·), B), (6.10)

where deg stands for the usual Brouwer degree. We can now introduce the
following important concept (cf. [53, 114, 116, 118], see also [36, 37, 105, 143,
144, 181]).

Definition 6.1.4. The Uj-isotypical crossing number of (αo, 0) corresponding
to the characteristic root iβo is defined as

tj,1(αo, βo) := t−j,1(αo, βo) − t+j,1(αo, βo), (6.11)

where Uj is the complex Γ -irreducible representation on which is modeled the

isotypical component Uj.

Remark 6.1.5. The crossing number tj,1 has a very simple interpretation. In
the case detC(4α,j(iβo)) = 0, the number t−j,1 counts in the set B all the Uj-

characteristic roots (with Uj -multiplicity) before α crosses the value αo, and
the number t+j,1 counts the Uj -characteristic roots in B after α crosses αo. The
difference, which is exactly the number tj,1, represents the net number of the
Uj-characteristic roots which ‘escaped’ (if tj,1 is positive) or ‘entered’ (if tj,1 is

negative) the set B when α was crossing αo.

For any integer l > 1, put

tj,l(αo, βo) := tj,1(αo, lβo). (6.12)

In order to establish the existence of small amplitude periodic solutions
bifurcating from the stationary point (αo, 0), i.e. the occurrence of the Hopf
bifurcation at the stationary point (αo, 0), and to associate with (αo, 0) a local

bifurcation invariant, we apply the standard steps for the degree-theoretical
approach described in next two subsections.

6.1.3 Normalization of the Period

By making a change of variable u(t) = x( p
2π
t), for t ∈ R, the system (6.5) is

transformed to
u̇(t) =

p

2π
f(α, u

t,
2π
p

), (6.13)

where u
t,

2π
p
∈ CV,τ is defined by
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u
t,

2π
p

(θ) = u
(
t+ 2π

p
θ
)
, θ ∈ [−τ, 0]. (6.14)

Clearly, u(t) is a 2π-periodic solution of (6.13) if and only if x(t) is a p-periodic

solution of (6.5). Put β := 2π
p

and write (6.13) as

u̇(t) =
1

β
f(α, ut,β). (6.15)

6.1.4 Setting in Functional Spaces

We identify S1 ' R/2πZ and introduce the operators

L :H1(S1;V ) → L2(S1;V ), Lu(t) = u̇(t), (6.16)

j :H1(S1;V ) → C(S1;V ), j(u(t)) = ũ(t), (6.17)

K :H1(S1;V ) → L2(S1;V ), Ku(t) =
1

2π

∫ 2π

0

u(s) ds, (6.18)

whereH1(S1;V ) (resp.C(S1;V )) denotes the first Sobolev space of 2π-periodic
V -valued functions (resp. the space of continuous 2π-periodic V -valued func-
tions equipped with the usual supremum norm). Put R2

+ := R×R+. It can be
easily verified that (L+K)−1 : L2(S1;V ) → H1(S1;V ) exists.

Define F : R2
+ ×H1(S1;V ) → H1(S1;V ) by

F(α, β, u) = (L+K)−1
[
Ku+ 1

β
Nf(α, β, j(u))

]
, (6.19)

where Nf : R2
+ × C(S1;V ) → L2(S1;V ) is defined by

Nf (α, β, v)(t) = f(α, vt,β). (6.20)

Notice that by the compactness of the embedding map j, the map F is a
compact field on any bounded domain.

Put W := H1(S1;V ). The space W is an isometric Hilbert representation
of the group Γ × S1 with the action given by

(γ, eiθ)x(t) = γ(x(t+ θ)), (γ, eiθ) ∈ Γ × S1, x ∈ W. (6.21)

The map F is clearly Γ × S1-equivariant.
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Notice that, (α, β, u) ∈ R2
+ ×W is a 2π-periodic solution of (6.15) if and

only if u = F(α, β, u). Consequently, the occurrence of a Hopf bifurcation
at (αo, 0) for the equation (6.5) is equivalent to a bifurcation of 2π-periodic
solutions of (6.15) from (αo, βo, 0) for some βo > 0. On the other hand, if a

bifurcation at (αo, βo, 0) ∈ R2
+ ×W takes place in (6.15), then we necessarily

have that the operator Id −DuF(αo, βo, 0) : W → W is not an isomorphism,
or equivalently, ilβo, for some l ∈ N, is a purely imaginary characteristic root
of (αo, 0), i.e. detC 4αo(ilβo) = 0.

6.1.5 Local Γ × S1-Invariant

It is convenient to identify R2
+ with a subset of C, i.e. an element (α, β) ∈ R2

+

will be written as λ = α + iβ, and put λo = αo + iβo. By (A5), (αo, 0) is an
isolated center, which implies that there exists δ > 0 such that Id −DuF(λ, 0) :
W → W is an isomorphism for 0 < |λ−λo| ≤ δ. Consequently, by the implicit

function theorem, there exists ρ, 0 < ρ < min{1, δ}, such that u−F(λ, u) 6= 0
for (λ, u) with |λ− λo| = δ and 0 < ‖u‖ ≤ ρ.

Define the subset Ω ⊂ R2
+ ×W by

Ω :=
{

(λ, u) ∈ R2
+ ×W : |λ − λo| < δ, ‖u‖ < ρ

}
(6.22)

and put

∂0 := Ω ∩
(
R2

+ × {0}
)

and ∂ρ := {(λ, u) ∈ Ω : ‖u‖ = ρ}.

Following the standard degree theory treatment of the bifurcation phe-

nomenon (see, for instance, [101, 96]), take an auxiliary function ς : Ω → R,
which is G-invariant and satisfies the conditions

{
ς(λ, u) > 0 for (λ, u) ∈ ∂ρ,

ς(λ, u) < 0 for (λ, u) ∈ ∂0.

Such a function ς can be easily constructed, for example,

ς(λ, u) = |λ− λo|(‖u‖ − ρ) + ‖u‖ − ρ

2
; (λ, u) ∈ Ω. (6.23)

Define the map Fς : Ω → R ⊕W , π(λ, u) = u, by

Fς(λ, u) =
(
ς(λ, u), u−F(λ, u)

)
, (λ, u) ∈ Ω, (6.24)
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which is an Ω-admissible Γ × S1-equivariant compact field.

Following the standard lines, one can extend the equivariant degree theory
to parametrized equivariant compact fields on Hilbert isometric G-represent-

ations (cf. [15] for more details). We use the same symbol to denote the ex-
tended equivariant degree.

Definition 6.1.6. Let Ω ⊂ R2
+×W be defined by (6.22) and Fς : Ω → R⊕W

be defined by (6.24). We call

ω(λo) := G-Deg (Fς , Ω) ∈ A1(G), (6.25)

the local Γ ×S1-invariant for the Γ -symmetric Hopf bifurcation of the system
(6.5) at (λo, 0).

6.1.6 Dominating Orbit Types

The concept of dominating orbit types plays an important role in obtaining a

lower estimate of bifurcating branches.

Definition 6.1.7. An orbit type (H) in W is called dominating, if (H) is a
maximal orbit type in the class of all ϕ-twisted 1-folded orbit types in W .

Assume that there is a solution uo ∈ W to (6.15) such that Guo ⊃ Ho. If
(Ho) is a dominating orbit type in W with the form Ho = Kϕ for K ⊂ Γ , then

(Guo) = (Kϕ,l) for an integer l ≥ 1. In this case, the G-orbit G(uo) is composed
of exactly |G/Guo |S1 different periodic functions, where |G/Guo |S1 denotes the
number of S1-orbits in G/Guo . In turn, |G/Guo |S1 can be evaluated by |Γ/K|,
where |X| stands for the number of elements in X. Moreover, let xo be a p-

periodic solution to (6.5) canonically corresponding to uo with Guo = Kϕ,l. It
follows that xo is also a p

l
-periodic solution to (6.5). The pair (xo,

p
l
) canonically

determines an element u′o ∈ W being a solution to (6.15) (for α = αo and some
β ′) satisfying the condition Gu′o = Ho. In this way, we obtain that (6.5) has at

least |Γ/K| different periodic solutions with the orbit type exactly (Ho).

6.1.7 Sufficient Condition for Symmetric Hopf Bifurcation

Following the same lines as in the proof of Theorem 3.2 from [53] (see also
[114] and [12]), one can easily establish
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Theorem 6.1.8. Given system (6.5), assume conditions (A1)—(A5) to be sat-

isfied. Take F defined by (6.19) and construct Ω according to (6.22). Let
ς : Ω → R be a G-invariant auxiliary function (see (6.23)) and let Fς be
defined by (6.24).

(i) Assume ωo(λo) = G-Deg (Fς , Ω) 6= 0, i.e.

G-Deg (Fς , Ω) =
∑

(H)

nH(H), and nHo 6= 0 (6.26)

for some (Ho) ∈ Φ1(G). Then, there exists a branch of non-trivial solutions

to (6.5) bifurcating from the point (αo, 0) (with the limit frequency lβo for
some l ∈ N). More precisely, the closure of the set composed of all non-
trivial solutions (λ, u) ∈ Ω to (6.15), i.e.

{(λ, u) ∈ Ω : F(λ, u) = 0, u 6= 0}

contains a compact connected subset C such that

(λo, 0) ∈ C and C ∩ ∂r 6= ∅, C ⊂ R2
+ ×WHo,

(λo = αo + iβo) which, in particular, implies that for every (α, β, u) ∈ C we
have Gu ⊃ Ho.

(ii) If, in addition, (Ho) is a dominating orbit type in W , then there exist
at least |G/Ho|S1 different branches of periodic solutions to the equation
(6.5) bifurcating from (αo, 0) (with the limit frequency lβo for some l ∈
N). Moreover, for each (α, β, u) belonging to these branches of (non-trivial)

solutions one has (Gu) = (Ho) (considered in the space W ).

Remark 6.1.9. It is usually the case that there are more than one dominating
orbit types in W contributing to the lower estimate of all bifurcating branches
of solutions. An additional contribution may come from a nontrivial (K)-term

for non-dominating orbit type, such that nH = 0 for all dominating orbit types
(H) > (K). Then, we can also predict the existence of multiple branches by
analyzing all the dominating orbit types (H) larger than (K). However, in such

case, the exact symmetry of the branches can not be determined.

6.2 Computation of the Local Γ × S1-invariant

We use a sequence of reductions based on the properties of the twisted primary

degree (cf. Proposition 4.2.7), to establish an effective computational formula
for ω(λo).
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6.2.1 Linearization Procedure

Let Ω ⊂ R2
+×W be given by (6.22). Define another auxiliary function ς̃ : Ω →

R by ( which is a slight modification of (6.23))

ς̃(λ, u) = |λ− λo|(‖u‖ − ρ) + ‖u‖ +
δ

2
ρ, (λ, u) ∈ Ω.

By direct verification, Fς and Fς̃ are G-homotopic on Ω by a linear homo-

topy. Thus, we have

G-Deg (Fς , Ω) = G-Deg (Fς̃ , Ω),

where Fς̃ : Ω → R ⊕W is defined by

Fς̃(λ, u) =
(
ς̃(λ, u), u−F(λ, u)

)
. (6.27)

An advantage of ς̃ over ς seems to be that it is positive, for λ very close to

λo in Ω. More precisely, for |λ− λo| ≤ δ
4

and ‖u‖ ≤ ρ, we have

ς̃(λ, u) = ‖u‖ +
δ

2
ρ− |λ− λo|(ρ− ‖u‖) ≥ δ

2
ρ− δ

4
ρ =

δ

4
ρ > 0.

Put

Ω1 :=
{

(λ, u) ∈ R2
+ ×W : ‖u‖ < ρ,

δ

4
< |λ− λo| < δ

}
. (6.28)

By excision property, we obtain

G-Deg (Fς̃ , Ω) = G-Deg (Fς̃ , Ω1).

Define the operator

a(λ, 0) := Id −DuF(λ, 0) : W → W, (6.29)

which is a linearization of the second component of Fς̃ with respect to u at
(λ, 0) (cf. 6.27), and Aς̃ : Ω1 → R ⊕W by

Aς̃(λ, u) := (ς̃(λ, u), a(λ, 0)u) (6.30)

which is clearly Ω1-admissible. By homotopy property, we have

G-Deg (Fς̃ , Ω1) = G-Deg (Aς̃, Ω1).
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6.2.2 Reduction Through Isotypical Decompositions

To take advantage of the multiplicativity properties of both the primary degree

without parameters (cf. Proposition 4.1.4) and the twisted primary degree (cf.
Proposition 4.2.6), we carry out a series of reduction based on the isotypical
decompositions of W .

Viewed as an S1-orthogonal representation, W admits an S1-isotypical de-
composition (cf. [15])

W = W S1 ⊕
∞⊕

l=1

Wl, (6.31)

where W S1 ' V is the subspace of the constant functions in W and each
Wl ' V c is a complex Γ -representation defined by

Wl = {eilt(xn + iyn) : xn, yn ∈ V }, l = 1, 2, . . . (6.32)

Consider the linear operator a(λ, 0) : W → W restricted to each isotypical
component in (6.31). By direct verification, we have

a(λ, 0)|WS1 = − 1

β
Dxf(α, 0),

a(λ, 0)|Wl
=

1

ilβ
4α (ilβ). (6.33)

Put Wo :=
∞⊕
l=1

Wl. Define Ωo ⊂ R2 ⊕Wo by

Ωo := Ω1 ∩ (R2 ⊕Wo)

=
{

(λ, u) ∈ R2
+ ×Wo : ‖u‖ < ρ,

δ

4
< |λ − λo| < δ

}
(6.34)

and a map Ao : Ωo → R ⊕Wo by

Ao(λ, uo) = (ς̃(λ, uo), a(λ, 0)uo), (λ, uo) ∈ Ωo,

which is clearly a G-equivariant Ωo-admissible compact field. Put

A := a(λo, 0)|WS1 .

By (A4), A is a (symmetric) linear isomorphism on V , thus is B1(V )-
admissible.
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Notice that the map Aς̃ is homotopic to the product map A×Ao on B1(V )×
Ωo. By multiplicativity property of twisted primary degree (cf. Proposition
4.2.6), we have

G-Deg (Aς̃, Ω1) = Γ -Deg(A,B1(V )) ◦G-Deg (Ao, Ωo), (6.35)

where ◦ is the multiplication taken in A0(Γ )-module A1(G).

Computations of Γ -Deg(A,B1(V ))

To compute Γ -Deg(A,B1(V )), we adopt the computational formula for the
primary degree without parameters for linear isomorphisms (cf. Subsection

4.1.3, (4.5)). Thus, we have

Γ -Deg (A,B1(V )) =
∏

µ∈σ−(A)

r∏

i=0

(
deg Vi

)mi(µ)

, (6.36)

where the multiplication is taken in the Burnside ring A0(Γ ).

Computations of G-Deg (Ao, Ωo)

To evaluate G-Deg (Ao, Ωo), consider further isotypical decomposition of Wo.

Since each Wl ' V c, the isotypical decomposition (6.7) of V c induces the
corresponding G-isotypical decomposition of Wl

Wl = V0,l ⊕ V1,l ⊕ · · · ⊕ Vs,l, (6.37)

where each Vj,l is modeled on the irreducible representation Vj,l (cf. Table 2.1
for convention). The linear operator a(λ, 0) defined by (6.33), when restricted

on each Vj,l gives

a(λ, 0)|Vj,l
=

1

ilβ
4α,j (ilβ), (6.38)

where 4α,j is defined by (6.9).

Define Ωj,l := Ωo ∩ Vj,l and Aj,l : Ωj,l → R ⊕ Vj,l by

Aj,l(λ, u) := (ς̃(λ, u), a(λ, 0)u), (λ, u) ∈ Ωj,l.

By the splitting lemma (cf. Lemma 3.3.4), we obtain
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G-Deg (Ao, Ωo) =
∑

j,l

G-Deg (Aj,l, Ωj,l)

=
∑

j,l

deg
(
detC ◦ a(·, 0)|Vj,l

, S1
)
· deg Vj,l

, (6.39)

where a(·, 0)(λ) := a(λ, 0) (cf.(6.38)), ‘deg ’ stands for the Brouwer degree and

deg Vj,l
is the twisted basic degree of Vj,l (cf. Definition 4.2.8). Moreover, each

coefficient in (6.39) can be evaluated by (cf. [15])

deg
(
detC ◦ a(λ, 0)|Vj,l

, S1
)

= tj,l.

Therefore, we have

G-Deg (Ao, Ωo) =
∑

j,l

tj,l(αo, βo)deg Vj,l
, (6.40)

where the summation is taken over only finitely many (j, l)’s. Indeed, tj,l = 0

for all l such that ilβo is not a characteristic root of (6.8) at the stationary
point (αo, 0).

Combining (6.35)—(6.36) and (6.40), we obtain

G-Deg (Aς̃, Ω1) =
∏

µ∈σ−(A)

r∏

i=0

(
deg Vi

)mi(µ)

·
∑

j,l

tj,l(αo, βo) deg Vj,l
. (6.41)

6.3 Computational Example

We consider the following system of delayed differential equations

d

dt
x(t) = −αx(t) + αH(x(t)) · C(G(x(t− 1))), (6.42)

where x := (x1, x2, . . . , xn)T , H(x) := (h(x1), h(x2), . . . , h(xn))T , G(x) :=

(g(x1), g(x2), . . . , g(xn))T , and the product ‘·’ is defined on the vectors by
component-wise multiplication.

Assume that

(G1) The functions h, g : R → R are continuously differentiable, h(t) 6= 0 for
all t ∈ R, g(0) = 0, g′(0) > 0 and C is a symmetric n × n-matrix, which
commutes with an orthogonal Γ -representation.
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6.3.1 Characteristic Values

Consider the linearization of the system (6.42) at (α, 0) by

d

dt
x(t) = −αx(t) − αh(0)g′(0)C(x(t− 1)), (6.43)

and put
η := h(0)g′(0). (6.44)

Thus, the assumption (A4) amounts to

n∏

i=1

[
− α− αηξi

]
6= 0. (6.45)

Moreover,
4α(λ) = (λ + α)Id + αηe−λC,

and a number λ ∈ C is a characteristic root of (6.8) at the stationary point
(αo, 0) if and only if

detC 4α (λ) =
n∏

i=1

[
λ+ α + αηξie

−λ
]

= 0, (6.46)

where ξ1, ξ2, . . . , ξn are the eigenvalues of the matrix C.

For ξo ∈ σ(C), rewrite λ+ α + αηξoe
−λ = 0 into the system

{
u+ α + αηξoe

−u cos v = 0

v − αηξoe
−u sin v = 0,

(6.47)

where λ = u + iv. Solving for λ = iβo, we arrive at the following relations
between α and β (cf. [15]),

{
cosβ = − 1

ηξo

sinβ = 1
αηξo

β,
(6.48)

for a nonzero ξo ∈ σ(C). If
∣∣∣ 1
ξoη

∣∣∣ < 1, then there exists βo ∈ (0, π] such

that cosβo = − 1
ηξo

, and it is also possible to find a unique αo = −βo cotβo.
Therefore, we assume that

(G2) | 1
ξη
| < 1 for all non-zero ξ ∈ σ(C).
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6.3.2 Isotypical Crossing Numbers

To determine the value of the crossing number associated with a purely imag-
inary characteristic root λo = iβo, we carry out an implicit differentiation to

compute d
dα
u(α), where u is viewed as a function of α (cf. (6.47)). By direct

calculation, we obtain

d

dα
u|α=αo =

β2
o

αo((αo + 1)2 + β2
o)
, (6.49)

thus

sign
d

dα
u|α=αo = sign αo. (6.50)

Therefore, we have (cf. [15])

if αo > 0 then tj,1(αo, βo) = −mj(iβo)

if αo < 0 then tj,1(αo, βo) = mj(iβo),

where mj(iβo) is the multiplicity of 0 viewed as an eigenvalue of the charac-
teristic operator 4αo,j(iβo), i.e.

mj(iβo) = dim ker4αo ,j(iβo)/dimVj,1. (6.51)

To have a definiteness of the signum of αo, we assume that

(G3) h(0) > 0.

Then, we have η = h(0)g′(0) > 0 and thus from (6.48), it follows that
signαo = sign ξo. Therefore,

tj,1(αo, βo) = −sign (ξo)mj(iβo). (6.52)

6.3.3 Computational Scheme

The local bifurcation invariant ω(λo) defined by (6.25) provides a complete
description of the symmetric Hopf bifurcation at (αo, 0) (cf. Theorem 6.1.8(i)).
However, instead of computing the entire value of ω(λo) according to (6.41),

for simplicity, we will restrict our computations to the coefficients nHo for the
twisted 1-folded orbit types (Ho), and denote the corresponding part of ω(λo)
by ω(λo)1. Clearly, ω(λo)1 can be computed by
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ω(λo)1 =
∏

µ∈σ−(A)

r∏

i=0

(
deg Vi

)mi(µ)

·
∑

j

tj,1(αo, βo) deg Vj,1
. (6.53)

Based on the discussion in Subsection 6.3.1—6.3.2, we summarize a com-

putational scheme to conduct efficient computation of ω(λo)1.

I Take a non-zero ξo ∈ σ(C) and find a solution (αo, βo) to the system (6.48).
In this way, we obtain an isolated center (αo, 0) and a purely imaginary root
iβo such that detC 4αo (iβo) = 0.

I Determine ker4αo,j(iβo) by taking ker4αo(iβo) ∩ Vj,l and compute the
multiplicity number mj(iβo) by (6.51).

I Evaluate the isotypical crossing numbers by (6.52).

I Identify σ−(A) by σ−(A) = {µ : α − αηξ < 0, ξ ∈ σ(C)}. For each µ ∈
σ−(A), take the corresponding ξ ∈ σ(C) and compute the Vi-multiplicity of

ξ by mi(µ) := dim
(
E(ξ) ∩ Vi

)
/dimVi.

I Insert the numbers mi(µ) and tj,1(αo, βo) into the formula (6.53), together
with the basic degrees prepared in the catalogue (cf. Appendix A2).

6.3.4 Usage of Maple c© Routines

We will briefly describe how to use the Maple c© procedure to obtain immediate

values of ω(λo)1, especially what data need to be prepared in advance for the
input and in which format.

In all the computational examples considered in this thesis, the following
conditions verify automatically:

(R1) The Decomposition (6.6) contains isotypical components modeled only
on irreducible representations of real type. In particular, r = s in (6.6)—
(6.7).

(R2) For each ξo ∈ σ(C) there exists a single isotypical component Vj in (6.6)
which contains the eigenspace E(ξo) completely.

To simplify the input data for the computations of Γ -Deg(A,B1(V )), ob-

serve that (deg V)2 = (Γ ) for any basic degrees deg V without parameters.
Therefore, we define the sequence (ε0, ε1, . . . , εr) by
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εi =
∑

µ∈σ−(A)

mi(µ) (mod 2).

Then, the formula (6.36) can be reduced to

Γ -Deg(F̄,B) =
r∏

i=0

(
deg Vi

)εi
.

On the other hand, under the condition (R2), we have

ω(α0, βo)1 =

r∏

i=0

(
deg Vi

)εi
·
(
− sign (ξ jo )

)
mj(iβo)deg Vj,1

,

where the notation ξ jo = ξo is to emphasize the index j such that E(ξo) ⊂ Vj
(cf. (R2)). For simplicity, we assume that ξ jo < 0. Then, we have

ω(α0, βo)1 =

r∏

i=0

(
deg Vi

)εi
·mj(iβo)deg Vj,1

. (6.54)

In this way, the input data for the Maple c© procedure consists of the two
sequences:

{ε0, ε1, . . . , εr}, {t0, t1, . . . , tr},

where tj = tj,1(αo, βo), j = 0, 1, . . . , r. The command for the computation is

ω(αo, βo)1 = showdegree [Γ ](ε0, ε1, . . . , εr, t0, t1, . . . , tr).

In Appendix A4.1, we present a table of computational results for an S4-
symmetric Hopf bifurcation problem in the considered system (6.42), which is

listed in a form of a matrix

ξ jo εi1, εi2, . . . , εim ω(αo, βo)1 # Branches

where in the sequence {εi1, εi2, . . . , εim} ⊂ {ε0, ε1, . . . , εr}, we only list those
εj which can realize the value 1, and the last colum lists a lower estimate of

the number of branches of nonconstant periodic solutions to the system (6.42).
More computational examples can be found in [6].
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6.4 Global Hopf Bifurcation in Symmetric Functional

Differential Equations

In this section, we apply the twisted primary degree method to a global Hopf

bifurcation problem in a system of Γ -symmetric functional differential equa-
tions, to analyze a continuation of symmetric branches of non-constant periodic
solutions.

6.4.1 Abstract Setting

Let F : R2⊕W →W be a G-equivariant map satisfying the following assump-
tions

(H1) F is a compact vector field of class C1 and F (λ, 0) = 0 for all (λ, 0) ∈
R2 ⊕W ;

(H2) The set Λ := {λ ∈ R2 : DwF (λ, 0) : W → W is not an isomorphism} is
discrete in R2;

(H3) DwoF |R2⊕WS1 (λ, 0) is an isomorphism from W S1
to W S1

for all λ ∈ R2

and wo ∈ W S1
.

We are interested in solutions to the equation

F (λ,w) = 0, (λ,w) ∈ R2 ⊕W. (6.55)

By (H1), the points (λ, 0) are called trivial solutions to (6.55). All other so-

lutions will be called nontrivial. By implicit function theorem, (λo, 0) is a bi-
furcation point only if λo ∈ Λ. By (H2), we obtain that the set of bifurcation
points is discrete in R2.

Let S be the closure of the set of all nontrivial solutions to (6.55). Notice
that (λo, 0) is a bifurcation point of (6.55) iff (λo, 0) ∈ S. Take a connected
component C ⊂ S. If C contains a bifurcation point (λ, 0), C is clearly G-

invariant. Notice that, in general, C may be composed of several orbit types,
i.e. C = ∪(H)C(H), and the global behavior of C(H) can be different for different
orbit types (H), for example, some of the branches C(H) may be bounded, while
the others are unbounded.

The following result can be proved in a standard way and considered as a
global bifurcation theorem.
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Theorem 6.4.1. Assume F : R2 ⊕W → W satisfies the assumptions (H1)—

(H3) and let C(Ho) be a bounded connected component of S(Ho) such that C(Ho)∩
R2×{0} = {(λ1, 0), (λ2, 0), . . . , (λN , 0)} 6= ∅, where (Ho) is a dominating orbit
type in W (cf. Definition 6.1.7 ). Suppose that ω(λk) =

∑
(H)

nkH(H), where ω(λk)

are the local Γ × S1-invariants around λk. Then
N∑
k=1

nkHo
= 0.

Corollary 6.4.2. Assume F : R2 ⊕W →W satisfies the assumptions (H1)—
(H3) and let C(Ho) be a connected component of S(Ho) such that C(Ho) ∩ R2 ×
{0} = {(λ1, 0)}, where (Ho) is a dominating orbit type in W . Suppose that

ω(λ1) =
∑
(H)

n1
H(H), and n1

Ho
6= 0. Then C(Ho) is unbounded.

6.4.2 Computational Examples

The results obtained above will be applied to a DN -symmetric and a A4-
symmetric system for the study of the symmetric Hopf bifurcation problems.

Global Hopf Bifurcation in a DN -Symmetric System

We consider here the system of equations (6.42) with the N ×N -matrix C (N

an even number) of the type

C =




−3 1 0 . . . 0 1
1 −3 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 −3


 . (6.56)

This system is symmetric with respect to the dihedral group Γ = DN acting
on V = RN by permuting the coordinates of vectors.

Theorem 6.4.3. (i) Consider system (6.42) with C given by (6.56) and sup-
pose η := h(0)g′(0) > 1. Assume:

(A1)
tg(t)

h(t)
> 0 for all t 6= 0; lim

t→∞

tg(t)

h(t)
= ∞.

Then the branch C(Dd
N) of periodic solutions bifurcating from (αn

2
, βn

2
, 0) is un-

bounded in R2 ⊕W .

(ii) Assume, in addition, the following condition is satisfied:
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(A2) There exist constants A, B > 0 and δ, γ > 0 with 1 > δ + γ such that

|h(t)| ≤ A+B|t|δ, |g(t)| ≤ A+B|t|γ. (6.57)

Then,

[αn/2,∞) ⊂
{
α : (α, β, x) ∈ C(Dd

N )

}
.

Proof: (i) Suppose that (α, β, x) is a solution to (6.42) belonging to C(Dd
N ).

Recall that

Dd
N = {(1, 1), (γ,−1), . . . , (γn−1,−1), (κ, 1), (κγ,−1), . . . , (κγn−1,−1)},

where γ is 2 × 2 matrix representing the complex multiplication by e
2πi
n and

κ =

[
1 0
0 −1

]
is the operator of complex conjugation. Then, the symmetry

properties of x(t) can be translated as follows: x(t) =




x0(t)
x1(t)

...
xn−1(t)


 is a 2π

β
-

periodic solution such that

xk(t) = xk+1

(
t− π

β

)
(mod n), (6.58)

and

xk(t) = xn−k−1

(
t− π

β

)
(mod n). (6.59)

Combining (6.58), (6.59) with condition (A1) and applying the same argument
as in [117], one can easily show that the periods p = 2π

β
of solutions (α, β, x) ∈

C(Dd
N) satisfy the inequality 2 < p < 4. This fact immediately implies C(Dd

n) ∩
R2 × {0} = (αn

2
+1, βαn

2
+1, 0) and ω(αn

2
+1, βαn

2
+1) = ω(αn

2
+1, βαn

2
+1)1.

However, (Dd
n) is a dominating orbit type in W and deg Vn

2 +1,1
= (Dd

n),

hence ω(αn
2
+1, βαn

2
+1)1 contains a nontrivial coefficient related to (Dd

n), and
Corollary 6.4.2 is applied.

(ii) By construction and argument given in (i), C(Dd
N ) ⊂ R × (π/2, π) ×

W . Further, using assumption (A2), one can easily show that there exists a
constant M > 0 such that for every periodic solution x(t) to (6.42) we have
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sup{‖x(t)‖ : t ∈ R} ≤ M . Indeed, assume that x(t) is a periodic solution of

(6.42) and consider the function r(t) := ‖x(t)‖2. Since r(t) is periodic, we have
that there exists to ∈ R such that

r(to) = sup{r(t) : t ∈ R}, and r′(to) = 0,

i.e. we have

0 =
dr

dt
|t=to = 2x(to) • x′(to) = 2x(to) •

(
− αx(to) + αH(x(to)) · C(G(x(to − 1)))

)

= −2α‖x(to)‖2 + 2αx(to) •
(
H(x(to)) · C(G(x(to − 1))

)
,

where • stands for the inner product in V . Therefore, by (A2) we get

‖x(to)‖2 ≤
∣∣∣x(to) •

(
H(x(to)) · C(G(x(to − 1))

)∣∣∣

≤ ‖x(to)‖ ‖C‖
(
A+B‖x(to)‖δ)

)(
A+B‖x(to + 1)‖γ)

)

≤ c0 + c1‖x(to)‖δ+1 + c2‖x(to)‖γ+1 + c3‖x(to)‖δ+γ+1,

for certain constants c0, c1, c2, c3 > 0. Since δ+γ+1 < 2, it follows that there
exists a constant M > 0 such that every solution s of the inequality

s2 − c3|s|δ+γ+1 − c2|s|γ+1 − c1|s|δ+1 − c0 ≤ 0,

satisfies the inequality |s| ≤M . Consequently,

sup{‖x(t)‖ : t ∈ R} = ‖x(to)‖ ≤M.

Thus, C(Dd
N) ⊂ R × (π/2, π) × {x ∈ W : ‖x‖ ≤M}. Finally, system (6.42)

has no non-constant periodic solution for α = 0, from which it follows C(Dd
N ) ⊂

(0,∞)× (π/2, π)×{x ∈ W : ‖x‖ ≤M}. However, by (i), the connected com-
ponent C(Dd

N ) is unbounded, therefore [αn/2,∞) ⊂ {α : (α, β, x) ∈ C(Dd
N )}.

�

Global Hopf Bifurcation in a A4-Symmetric System

We consider here the system of equations (6.42) with the matrix C given by

C =




−4 1 1 1
1 −4 1 1
1 1 −4 1
1 1 1 −4


 . (6.60)
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This system is symmetric with respect to the tetrahedral group Γ = A4 acting

on V = R4 by permuting the coordinates of vectors. We have σ(C) = {ξ0 =
−1, ξ1 = −5}. The isotypical decomposition of V takes the form: V = V0⊕V1,
where V0 (spanned by the vector 〈1, 1, 1, 1〉) is the fixed-point subspace of the

A4-action, and V1 is equivalent to the natural three-dimensional representation
of A4. These two subspaces are the eigenspaces of the matrix C: the subspace
V0 corresponds to ξ0 and V1 to ξ1. One can verify that the dominating orbit
types in W are (Zt1

3 ) , (Zt2
3 ), and (V −

4 ). Assuming η > 1, we are interested in the

global behavior of the branch C(V−
4 ) of periodic solutions to (6.42) bifurcating

from (α1, β1, 0) ∈ Λ× {0}.
Suppose that (α, β, x) is a solution to (6.42) belonging to C(V−

4 ). Recall that

V −
4 = {((1), 1), ((12)(34), 1), ((13)(24),−1), ((14)(23),−1)}.

Then the symmetry properties of x(t) can be translated as follows: x(t) =


x1(t)
x2(t)
x3(t)
x4(t)


 with

x2(t) = x1

(
t− π

β

)
, x4(t) = x2

(
t− π

β

)
, (6.61)

x4(t) = x1

(
t− π

β

)
, x3(t) = x2

(
t− π

β

)
(6.62)

Using (6.61), (6.62) and following the same lines as in the case of dihedral

symmetries, one can easily establish

Theorem 6.4.4. (i) Consider system (6.42) with C given by (6.60) and sup-
pose η := h(0)g′(0) > 1. Assume condition (A1) is satisfied. Then the branch

C(V−
4 ) of periodic solutions bifurcating from (α1, β1, 0) is unbounded in R2⊕W .

(ii) Assume, in addition, condition (A2) is satisfied. Then

[α1,∞) ⊂
{
α : (α, β, x) ∈ C(V−

4 )

}
.





7

Hopf Bifurcation in Symmetric Systems of

Neutral Functional Differential Equations

In this chapter, we present another application of the (twisted) primary equiv-
ariant degree method to a Γ -symmetric Hopf bifurcation problem for a system

of neutral functional differential equations, motivated by a model of two types
of symmetrically coupled configurations of the lossless transmission lines. The
standard degree-theoretical treatment, which was introduced in Section 6.1, is
adapted to this type of systems. We follow exactly the same steps as in Sec-

tion 6.1, namely, we inspect the characteristic equation for the occurrence of
purely imaginary roots (to identify the isolated centers), analyze the equivari-
ant spectral properties of the characteristic operator to determine the isotypical
crossing numbers and multiplicities of the negative eigenvalues (associated to

the considered center). Then, the local bifurcation invariant can be computed
according to a similar formula as (6.41) (cf. (7.9)). Finally, exact values of
the bifurcation invariants can be evaluated with the assistance of the Maple c©

routines. Computational sample results for the local Γ × S1-invariants can be

found in Appendix A4.2, for Γ = D4, A5.

The chapter is organized as follows. In Section 7.1, we state the symmetric

Hopf bifurcation problem in a system of neutral functional differential equa-
tions and set up a framework for the standard degree-theoretical approach. A
local bifurcation invariant is associated to an isolated center and we derive a
computational formula (cf. (7.9)). In Section 7.2, we discuss models for two sys-

tems of symmetrically coupled (internally and externally) lossless transmission
lines, based on the telegrapher’s equation. Motivated by the two generic cou-
plings, we consider in Section 7.3, we consider a symmetric system of NFDEs,

for which we carry out an analysis for the occurrence of the symmetric Hopf
bifurcation. Th concrete computational results for Γ = D4, A5 are summarized
in Appendix A4.2.
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7.1 Hopf Bifurcation in Symmetric Systems of NFDEs

Throughout this chapter, we assume that G = Γ × S1, where Γ is a finite
group.

Suppose that V is a Γ -orthogonal representation. For a given constant τ ≥
0, let CV,τ be an isometric Banach Γ -representation defined by (6.1)—(6.3). We
consider an R-parametrized system of neutral functional differential equations

d

dt

[
x(t) − b(α, xt)

]
= f(α, xt), (7.1)

where x : R → V is a continuous function∗ , xt ∈ CV,τ is defined by (6.4), and

b, f : R ⊕ CV,τ → V satisfy the following assumptions

(A1) b, f are continuously differentiable;
(A2) b, f are Γ -equivariant;
(A3) b(α, 0) = 0, f(α, 0) = 0 for all α ∈ R.

Also, to prevent the occurrence of the steady-state bifurcation, assume

(A4) detDxf(α, 0)|V 6= 0 for all α ∈ R.

In addition, assume that

(A5) b satisfies the Lipschitz condition with respect to the second variable, i.e.

∃κ 0 ≤ κ < 1, s.t. ‖b(α,ϕ) − b(α,ψ)‖ ≤ κ‖ϕ− ψ‖∞ (7.2)

for all ϕ, ψ ∈ CV,τ , α ∈ R.

Similar as in Section 6.1, we call (α, xo) ∈ R⊕V a stationary point to (7.1),
if f(α, xo) = 0. By assumption (A3), (α, 0) is a stationary point for all α ∈ R.
A stationary point (α, xo) is said to be nonsingular if Dxf(α, xo) : V → V is a

linear isomorphism.

7.1.1 Characteristic Equation

Let (α, xo) be a stationary point of (7.1). The linearization of (7.1) at (α, xo)
leads to the characteristic equation

detC4(α,xo)(λ) = 0, (7.3)

∗ Formally speaking, we only need to require x(t) − b(α, xt) to be continuously differentiable.
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where

4(α,xo)(λ) := λ
[
Id −Dxb(α, xo)(e

λ··)
]
−Dxf(α, xo)(e

λ··) (7.4)

is a complex linear operator from V c to V c.

Similar definitions of characteristic roots, centers and isolated centers will
be adopted from Section 6.1. The same notations used in Subsection 6.1.1—
6.1.2 concerning the characteristic operator and the isotypical decompositions
will be kept without further notice.

We will assume additionally that

(A6) The system (7.1) has an isolated center (αo, 0) for some αo ∈ R, with
the corresponding purely imaginary characteristic root iβo, for βo > 0.

Our interesting problem is to study the Γ -symmetric Hopf bifurcation prob-
lem in the system (7.1) around an isolated center (αo, 0), including the detec-
tion of nonconstant periodic solutions and the symmetric classification of the
solution set according to different subsymmetries. We will follow the similar

procedure described in Subsection 6.1.3— 6.1.5 and associate a local bifurca-
tion invariant in terms of a twisted Γ × S1-primary equivariant degree, to the
system (7.1) at the isolated center (αo, 0).

7.1.2 Normalization of Period

We transform the problem of finding a p-periodic solution to a problem of
finding a 2π-periodic solution by making the change of variable x(t) = u(βt),

where β := 2π
p

is an additional parameter. Then, from the system (7.1), we
obtain the following

d

dt

[
u(t) − b(α, ut,β)

]
=

1

β
f(α, ut,β), (7.5)

where ut,β ∈ CV,τ is defined by (6.14). Evidently, u(t) is a 2π-periodic solution
of (7.5) if and only if x(t) is a p-periodic solution of (7.1).

7.1.3 Setting in Functional Spaces

We use the standard identification S1 ' R/2πZ and define W := H1(S1;V ),
which is naturally an isometric Hilbert representation of G (cf. (6.21)).
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Put R2
+ := R×R+. Let the operations L, j, K and Nf be given by (6.16)—

(6.18) and (6.20) respectively. For u ∈ W , v ∈ C(S1;V ), t ∈ R, define Nb :
R2

+ × C(S1;V ) → L2(S1;V ) by

Nb(α, β, v)(t) = b(α, vt,β).

Moreover, define the map F : R2
+ ×W → W by

F(α, β, u) = (L+K)−1
[ 1

β
Nf (α, β, u)+K(u−Nb(α, β, u))

]
+Nb(α, β, u), (7.6)

which is a condensing map. Indeed, the map F is a sum of two maps, where
the first map

(α, β, u) 7→ (L+K)−1
[ 1

β
Nf (α, β, u) +K(u−Nb(α, β, u))

]
,

is completely continuous, and the second map (α, β, u) 7→ Nb(α, β, u) is a
Banach contraction with constant κ (0 ≤ κ < 1) (cf. (A1) and (A5)).

7.1.4 Sufficient Condition for Symmetric Hopf Bifurcation

Following the same construction outlined in Subsection 6.1.5, we define a re-

gion Ω ⊂ R2
+ ×W by (6.22), an auxiliary function ς by (6.23) and a map Fς

by (6.24), which is clearly an Ω-admissible G-equivariant condensing field (cf.
Section 2.7). By the standard Nussbaum-Sadovskii extension, one can define
the equivariant degree theory to equivariant condensing fields on Hilbert iso-

metric G-representations (cf. [15] for more details). We use the same symbol
to denote this extended equivariant degree.

Definition 7.1.1. Let Ω, ς,Fς be defined by (6.22), (6.23) and (6.24) respec-
tively. We call

ω(λo) := G-Deg (Fς , Ω) ∈ A1(G), (7.7)

the local G-invariant for the Γ -symmetric Hopf bifurcation of the system (7.1)
at (λo, 0).

Similarly to Theorem 6.1.8, we have the following result for the symmetric

Hopf bifurcation problem in (7.1).

Theorem 7.1.2. Given system (7.1), assume conditions (A1)—(A6) to be sat-

isfied. Let F be defined by (7.6) and Ω, ς, Fς given by (6.22)—(6.24) respec-
tively.
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(i) Assume ω(λo) 6= 0 (cf. (7.7)), i.e.

ω(λo) =
∑

(H)

nH(H) and nHo 6= 0 (7.8)

for some (Ho) ∈ Φ1(G). Then, there exists a branch of non-trivial solutions
to (7.1) bifurcating from the point (αo, 0) (with the limit frequency lβo for
some l ∈ N). More precisely, the closure of the set composed of all non-
trivial solutions (λ, u) ∈ Ω to (7.5), i.e.

{(λ, u) ∈ Ω : F(λ, u) = 0, u 6= 0}

contains a compact connected subset C such that

(λo, 0) ∈ C and C ∩ ∂r 6= ∅, C ⊂ R2
+ ×WHo,

(λo = αo + iβo) which, in particular, implies that for every (α, β, u) ∈ C we
have Gu ⊃ Ho.

(ii) If, in addition, (Ho) is a dominating orbit type in W , then there exist
at least |G/Ho|S1 different branches of periodic solutions to the equation
(7.1) bifurcating from (αo, 0) (with the limit frequency lβo for some l ∈
N). Moreover, for each (α, β, u) belonging to these branches of (non-trivial)

solutions one has (Gu) = (Ho) (considered in the space W ).

7.1.5 Computational Formula for the Local Invariant

To apply Theorem 7.1.2, we need to establish an effective computational for-

mula for ω(λo). Notice that the linearization procedure and the reduction
through isotypical decompositions discussed in Section 6.2, do not wear spe-
cific restrictions from the functional setting and thus apply effectively to the
current setting.

Therefore, we have the following computational formula for ω(λo) (cf.
(6.41))

ω(λo) =
∏

µ∈σ−(A)

r∏

i=0

(
deg Vi

)mi(µ)

·
∑

j,l

tj,l(αo, βo) deg Vj,l
, (7.9)

where mi(µ) is the Vi-multiplicity of µ (cf. (4.4)), tj,l are the isotypical cross-
ing numbers (cf. (6.10)—(6.12)) and deg Vi

, deg Vj,l
are the basic degrees (cf.

Subsection 4.1.3 and 4.2.4).
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7.2 Symmetric Configurations of Lossless Transmission

Line Models

In this section, we consider two simple generic types of symmetric configura-

tions for the lossless transmission line models, and derive symmetric systems
of neutral functional differential equations, which give insight of reasonable
symmetries one could expect in such models.

7.2.1 Configuration 1: Internal Coupling

Consider first a cube of symmetrically coupled lossless transmission line net-
works between two recipients and two power stations. Assume all coupled
networks are identical, each of which is a uniformly distributed lossless trans-

mission line with the inductance Ls and parallel capacitance Cs per unit length.
To derive the network equations, we place the x-axis in the direction of the
line, with two ends of the normalized line at x = 0 and x = 1 (cf. Figure 7.1)∗.

A1 B1

C1D1

A2 B2

C2D2

E

+

−

R

C

f(v)

C

f(v)

+

−
E

Ri1

i
2

i4

i
3

Fig. 7.1. Symmetric Model of Transmission Lines: Internal Coupling

Denote by ij(x, t) the current flowing in the j-th line at time t and distance x
down the line and vj(x, t) the voltage across the line at t and x, for j = 1, 2, 3, 4.

∗ This example of internal coupling can be easily generalized for a coupling of N recipients and
N power stations with an N > 2.
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It is well-known that (see, for instance, [129]) the functions ij := ij(x, t) and

vj := vj(x, t) obey the following partial differential equations (Telegrapher’s
equation) {

∂vj

∂x
= −Ls ∂ij

∂t
,

Cs
∂vj

∂t
= −∂ij

∂x
.

(7.10)

When these networks are coupled symmetrically in the way shown in Figure
7.1, the vertical lines have coupling terms from the preceding and succeeding
lines at each end x = 0 and x = 1, thus it gives rise to the boundary conditions





E = v1
0 + (i10 + i20)R,

i11 + i31 = f(v1
1) + C

dv11
dt
,

E = v3
0 + (i30 + i40)R,

i21 + i41 = f(v2
1) + C

dv21
dt
,

v1
0 = v2

0, v3
0 = v4

0,

v1
1 = v3

1, v2
1 = v4

1,

(7.11)

where ijδ = ijδ(t) := ij(δ, t), vjδ = vjδ(t) := vj(δ, t) for δ ∈ {0, 1}, E is the
constant direct current voltage and f(vj1) is the current through the nonlinear
resistor in the direction shown in Figure 7.1.

For mathematical simplicity, we assume that

(E1) the boundary value problem (7.10)-(7.11) admits a unique solution

(vj∗, i
j
∗) := (vj∗(x, t), i

j
∗(x, t)), for j = 1, 2, 3, 4 such that ∂ij∗

∂x
= ∂vj

∗
∂x

= 0 (the
so-called equilibrium point).

Thus, the equilibrium point (vj∗, i
j
∗), j = 1, 2, 3, 4 satisfies the following equilib-

rium equations: 



E = v1
∗ + (i1∗ + i2∗)R,

i1∗ + i3∗ = f(v1
∗) + C dv1∗

dt
,

E = v3
∗ + (i3∗ + i4∗)R,

i2∗ + i4∗ = f(v2
∗) + C dv2∗

dt
.

(7.12)

Now, subtract the first four equations in (7.11) by (7.12), we obtain




0 = v1
0 − v1

∗ + (i10 − i1∗ + i20 − i2∗)R,

i11 − i1∗ + i31 − i3∗ = f(v1
1) − f(v1

∗) + C d
dt

(v1
1 − v1

∗),

0 = v3
0 − v3

∗ + (i30 − i3∗ + i40 − i4∗)R,

i21 − i2∗ + i41 − i4∗ = f(v2
1) − f(v2

∗) + C d
dt

(v2
1 − v2

∗).

(7.13)
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By changing variables, let X j
δ = vjδ − vj∗, Y

j
δ = ijδ − ij∗ (for δ = 0, 1) and put

g(X j
1 ) := f(X j

1 + vj∗) − f(vj∗) = f(vj1) − f(vj∗), (7.14)

we have the boundary conditions (7.11) reduce to





0 = X 1
0 + (Y1

0 + Y2
0 )R,

Y1
1 + Y3

1 = g(X 1
1 ) + C

dX 1
1

dt
,

0 = X 3
0 + (Y3

0 + Y4
0 )R,

Y2
1 + Y4

1 = g(X 2
1 ) + C

dX 2
1

dt
,

X 1
0 = X 2

0 , X 3
0 = X 4

0 ,

X 1
1 = X 3

1 , X 2
1 = X 4

1 .

For simplicity, we replace the symbols X j
δ and Yj

δ with vjδ and ijδ respectively
(for δ = 0, 1), 




0 = v1
0 + (i10 + i20)R,

i11 + i31 = g(v1
1) + C

dv11
dt
,

0 = v3
0 + (i30 + i40)R,

i21 + i41 = g(v2
1) + C

dv21
dt
,

v1
0 = v2

0, v3
0 = v4

0,

v1
1 = v3

1, v2
1 = v4

1.

(7.15)

Our goal is to reduce the boundary value problem (7.10) and (7.15) to a

system of symmetric NFDEs. To this end, recall that the general solution to
(7.10) (the so-called d’Alembert solution) takes the form:

{
vj(x, t) = 1

2
[φj(x− at) + ψj(x+ at)],

ij(x, t) = 1
2b

[φj(x− at) − ψj(x+ at)],
(7.16)

where

a =
1√
LsCs

, b =

√
Ls
Cs

(7.17)

are respectively the propagation velocity of waves and the characteristic
impedance of the line, and φj ∈ C1((−∞, 1]; R), ψj ∈ C1([0,∞); R) (see,
for instance, [169]).

Next, we will essentially use the identity
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ij(x, t) + ij
(
x, t− 2

a

)
= ij

(
x− 1, t− 1

a

)
+ ij

(
x+ 1, t− 1

a

)
, (7.18)

supported by the following verification

ij(x, t) =
1

2b
[φj(x− at) − ψj(x+ at)]

=
1

2b

[
φj
(
x− 1 − a(t− 1

a
)
)
− ψj

(
x+ 1 + a(t− 1

a
)
)]

=
1

2b

[
φj
(
x− 1 − a(t− 1

a
)
)
− ψj

(
x− 1 + a(t− 1

a
)
)]

+
1

2b

[
ψj
(
x− 1 + a(t− 1

a
)
)
− φj

(
x+ 1 − a(t− 1

a
)
)]

+
1

2b

[
φj
(
x+ 1 − a(t− 1

a
)
)
− ψj

(
x+ 1 + a(t− 1

a
)
)]

=
1

2b

[
φj
(
x− 1 − a(t− 1

a
)
)
− ψj

(
x− 1 + a(t− 1

a
)
)]

− 1

2b

[
φj
(
x− a(t− 2

a
)
)
− ψj

(
x+ a(t− 2

a
)
)]

+
1

2b

[
φj
(
x+ 1 − a(t− 1

a
)
)
− ψj

(
x+ 1 + a(t− 1

a
)
)]

= ij
(
x− 1, t− 1

a

)
− ij

(
x, t− 2

a

)
+ ij

(
x+ 1, t− 1

a

)
.

In particular, by substituting x = 1 in (7.18), we have

ij
(

2, t− 1

a

)
= ij1(t) + ij1

(
t− 2

a

)
− ij0

(
t− 1

a

)
. (7.19)

Return to the boundary conditions (7.15). Using (7.16), we obtain:

{
φ1(−at) = R−b

R+b
ψ1(at) − 2bR

R+b
i20(t),

φ3(−at) = R−b
R+b

ψ3(at) − 2bR
R+b

i40(t).

Consequently,

C
dv1

1

dt
= i11 + i31 − g(v1

1)

=
φ1(1 − at) − v1

1

b
+
φ3(1 − at) − v3

1

b
− g(v1

1)

=
φ1(−a(t− 1

a
)) − v1

1

b
+
φ3(−a(t− 1

a
)) − v3

1

b
− g(v1

1)
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=
R−b
R+b

ψ1(at− 1) − 2bR
R+b

i20(t− 1
a
) − v1

1

b

+
R−b
R+b

ψ3(at− 1) − 2bR
R+b

i40(t− 1
a
) − v3

1

b
− g(v1

1) (7.20)

Similarly, we also have

C
R − b

R + b

dv1
1

dt
(t− 2

a
)

=
R− b

R + b

[
i11(t−

2

a
) + i31(t−

2

a
) − g(v1

1(t− 2

a
))
]

=
R− b

R + b

[v1
1(t− 2

a
) − ψ1(1 + a(t− 2

a
))

b

+
v3

1(t− 2
a
) − ψ3(1 + a(t− 2

a
))

b
− g(v1

1(t− 2

a
))
]

=
1

b

R− b

R + b
[v1

1(t− 2

a
) + v3

1(t− 2

a
)]

− 1

b

R − b

R + b
[ψ1(at− 1) + ψ3(at− 1)] − R− b

R + b
g(v1

1(t− 2

a
)). (7.21)

Combining (7.20) and (7.21) results in

C
[dv1

1

dt
+
R − b

R + b

dv1
1

dt
(t− 2

a
)
]

= − 2R

R+ b
[i20(t−

1

a
) + i40(t−

1

a
)] − 1

b
(v1

1 + v3
1)

+
1

b

R− b

R + b
[v1

1(t− 2

a
) + v3

1(t− 2

a
)] − g(v1

1) − R − b

R + b
g(v1

1(t− 2

a
)). (7.22)

On the other hand, since by (7.16),

i20(t−
1

a
) =

1

2b
[φ2(1 − at) − ψ2(at− 1)]

=
1

2b
[2v2

1 − ψ2(1 + at) − ψ2(at− 1)]

=
1

b
v2

1 −
1

2b
[ψ2(1 + at) + ψ2(at− 1)]

=
1

b
v2

1 −
1

2b
[ψ2(1 + at) + 2v2

1(t− 2

a
) − φ2(3 − at)]

=
1

b
v2

1 −
1

b
v2

1(t− 2

a
) +

1

2b
[φ2(3 − at) − ψ2(1 + at)]

=
1

b
v2

1 −
1

b
v2

1(t− 2

a
) + i2(2, t− 1

a
),
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it follows from (7.19) that

i20(t−
1

a
) =

1

2b
v2

1 −
1

2b
v2

1(t− 2

a
) +

1

2
[i21(t) + i21(t−

2

a
)]. (7.23)

Symmetrically, a similar statement is valid for i40, i.e.

i40(t−
1

a
) =

1

2b
v4

1 −
1

2b
v4

1(t− 2

a
) +

1

2
[i41(t) + i41(t−

2

a
)]. (7.24)

Using the boundary conditions (7.15) and (7.23)—(7.24), we have

i20(t−
1

a
) + i40(t−

1

a
)

=
1

b
v2

1 −
1

b
v2

1(t− 2

a
)

+
1

2
[g(v2

1) + C
dv2

1

dt
+ g(v2

1(t− 2

a
)) + C

dv2
1

dt
(t− 2

a
)]. (7.25)

Therefore, by substituting (7.25) into (7.22) and using the last equality from

(7.15), we obtain:

C
[dv1

1

dt
+
R − b

R + b

dv1
1

dt
(t− 2

a
)
]

= − 2R

R+ b
[
1

b
v2

1 −
1

b
v2

1(t− 2

a
)] − R

R+ b
[g(v2

1) + C
dv2

1

dt

+ g(v2
1(t− 2

a
)) + C

dv2
1

dt
(t− 2

a
)] − 2

b
v1

1 +
2

b

R− b

R + b
v1

1(t− 2

a
)

= −g(v1
1) − R− b

R + b
g(v1

1(t− 2

a
)) − C

R

R + b
[
dv2

1

dt
+
dv2

1

dt
(t− 2

a
)]

− 2

b
v1

1 +
2

b

R − b

R + b
v1

1(t− 2

a
) − g(v1

1) − R − b

R + b
g(v1

1(t− 2

a
))

− 2R

R + b
[
1

b
v2

1 −
1

b
v2

1(t− 2

a
)] − R

R + b
[g(v2

1) + g(v2
1(t− 2

a
))],

which, after rearrangement, yields

C
[dv1

1

dt
+

R

R + b

dv2
1

dt
+
R − b

R + b

dv1
1

dt
(t− 2

a
) +

R

R+ b

dv2
1

dt
(t− 2

a
)
]

= −2

b
v1

1 +
2

b

R− b

R + b
v1

1(t− 2

a
) − 2

b

R

R + b
[v2

1 − v2
1(t− 2

a
)]

− g(v1
1) − R − b

R + b
g(v1

1(t− 2

a
)) − R

R+ b
[g(v2

1) + g(v2
1(t− 2

a
))]. (7.26)
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By the same argument, we obtain:

C
[dv2

1

dt
+

R

R + b

dv1
1

dt
+
R − b

R + b

dv2
1

dt
(t− 2

a
) +

R

R+ b

dv1
1

dt
(t− 2

a
)
]

= −2

b
v2

1 +
2

b

R− b

R + b
v2

1(t− 2

a
) − 2

b

R

R + b
[v1

1 − v1
1(t− 2

a
)]

− g(v2
1) − R − b

R + b
g(v2

1(t− 2

a
)) − R

R+ b
[g(v1

1) + g(v1
1(t− 2

a
))]. (7.27)

In terms of matrices, the system (7.26)—(7.27) can be rewritten as

C

[
S1

d

dt
x(t) − S2

d

dt
x(t− r)

]

= −S3x(t) − S4x(t− r) − S5G(x(t)) + S6G(x(t− r)), (7.28)

where

r =
2

a
, x(t) =

[
v1

1(t)
v2

1(t)

]
, G(x(t)) =

[
g(v1

1(t))
g(v2

1(t))

]
,

S1 =

[
1 R

R+b
R
R+b

1

]
, S2 =

[
b−R
R+b

− R
R+b

− R
R+b

b−R
R+b

]
,

S3 =

[
2
b

2
b

R
R+b

2
b

R
R+b

2
b

]
=

2

b
S1, S4 =

[
−2
b
R−b
R+b

−2
b

R
R+b

−2
b

R
R+b

−2
b
R−b
R+b

]
=

2

b
S2,

S5 =

[
1 R

R+b
R
R+b

1

]
= S1, S6 =

[
b−R
R+b

− R
R+b

− R
R+b

b−R
R+b

]
= S2.

Multiplying (7.28) by S−1
1 (recall that b 6= 0 (see (7.17))), we arrive at

d

dt
[x(t) −Qx(t− r)]

= − 2

bC
x(t) − 2

bC
Qx(t− r) − 1

C
G(x(t)) +

1

C
QG(x(t− r)), (7.29)

where Q = S−1
1 S2.

Notice that the system (7.28) embodies the symmetric situation, namely
the internal coupling, in the following way: let Γ := D2 act on V := R2 by

permuting the coordinates of vectors x =

[
v1

v2

]
∈ V , then the system (7.28) is

symmetric with respect to the Γ -action on V .
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7.2.2 Configuration 2: External Coupling

A second example of symmetric coupling was considered in [180] , where N
recipients are mutually coupled via lossless transmission line network which
are interconnected by a common resistor Ro between neighboring recipients,
and extensively connected with N power stations.

A1 B1

C1D1

A2

B2

C2D2

+

−
E

R

C

f(v)

C

f(v)

C

f(v)

C

f(v)

+

−
E

R

+

−
E

R

+

−
E

R

i1

i
2

ij

i
N

Fig. 7.2. Symmetric Model of Transmission Lines: External Coupling

Denote by ij(x, t) the current flowing in the j-th line at time t and dis-

tance x down the line and vj(x, t) the voltage across the line at t and x, for
j = 1, . . . , N . The same Telegrapher’s equation (7.10) holds for ij(x, t) and
vj(x, t). However, the boundary conditions need to be modified for this exter-
nal coupling. For j = 1, · · · , N , we have





E = vj0 + ij0R,

ij1 = f(vj1) + C
dvj

1

dt
− (Ij−1(t) − Ij(t)),

vj1 − vj+1
1 = Ij(t)Ro,

(7.30)

where I0(t) := IN(t), vN+1 := v1, Ij’s are the so-called coupling terms (see
[180]).

For mathematical simplicity, we assume that (cf. (E1))

(E2) the boundary value problem (7.10) and (7.30) admits a unique equilib-
rium point (vj∗, i

j
∗) := (vj∗(x, t), i

j
∗(x, t)), for j = 1, · · · , N .
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By a change of variables provided by (7.14), the boundary conditions (7.30)

can be translated to
{

0 = vj0 + ij0R,

ij1 = g(vj1) + C
dvj

1

dt
− 1

Ro
(vj+1

1 − 2vj1 + vj−1
1 ).

(7.31)

We are now in a position to reduce the boundary value problem (7.10) and
(7.31) to a symmetric system of FDEs. By (7.31) and (7.16), we have

φj(−at) =
R − b

R + b
ψj(at),

and

C
dvj1
dt

= ij1 − g(vj1) +
1

Ro
(vj+1

1 − 2vj1 + vj−1
1 )

=
φj(1 − at) − vj1

b
− g(vj1) +

1

Ro
(vj+1

1 − 2vj1 + vj−1
1 )

=
φj(−a(t− 1

a
)) − vj1

b
− g(vj1) +

1

Ro
(vj+1

1 − 2vj1 + vj−1
1 )

=
R−b
R+b

ψj(at− 1) − vj1
b

− g(vj1) +
1

Ro
(vj+1

1 − 2vj1 + vj−1
1 ).

Similarly, we get

C
R − b

R + b

dvj1
dt

(t− 2

a
)

=
R − b

R + b
ij1(t−

2

a
) − R− b

R + b
g(vj1(t−

2

a
))

+
1

Ro

R − b

R + b
(vj+1

1 − 2vj1 + vj−1
1 )

R − b

R + b

vj1(t− 2
a
) − ψj(at− 1))

b

= −R − b

R + b
g(vj1(t−

2

a
)) +

1

Ro

R − b

R + b
(vj+1

1 − 2vj1 + vj−1
1 ).

Therefore,

C
[dvj1
dt

+
R − b

R + b

dvj1
dt

(t− 2

a
)
]

= −1

b
vj1 +

1

b

R − b

R + b
vj1(t−

2

a
) − g(vj1) −

R − b

R + b
g(vj1(t−

2

a
))

+
1

Ro
(vj+1

1 − 2vj1 + vj−1
1 ) +

1

Ro

R − b

R + b
(vj+1

1 − 2vj1 + vj−1
1 ). (7.32)
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In terms of matrices, we rewrite (7.32) as

d

dt
[x(t) − αx(t− r)]

= − 1

bC
Px(t) − 1

bC
αPx(t− r) − 1

C
G(x(t)) +

1

C
αG(x(t− r)), (7.33)

where

r =
2

a
, x(t) =



v1

1(t)
...

vN1 (t)


 , G(x(t)) =



g(v1

1(t))
...

g(vN1 (t))


 ,

α = −R − b

R + b
, P =




1 + 2b
Ro

− b
Ro

0 · · · 0 − b
Ro

− b
Ro

1 + 2b
Ro

− b
Ro

· · · 0 0
...

. . .
...

...
− b
Ro

0 0 · · · − b
Ro

1 + 2b
Ro


 .

Notice that the system (7.33) is a Γ := DN -symmetric system in the fol-
lowing sense: consider Γ acting on V := RN by permuting the coordinates of

vectors x =



v1

...
vN


 ∈ V , then the system (7.33) is symmetric with respect to

the Γ -action on V .

7.3 Hopf Bifurcation Results for Symmetric

Configurations of Transmission Line Models

Motivated by the two generic models of symmetric couplings (cf. (7.29), (7.33)),

we present a general symmetric system of functional differential equations and
provide details in obtaining several important elements in computations of the
associated bifurcation invariant, which are the prerequisite for the usage of our
Maple c© package.

7.3.1 Statement of the Problem

We are interested in studying the Hopf bifurcation problem in the following
R-parametrized system of symmetric functional differential equations
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d

dt
[x(t) − αQx(t− r)]

= −P1x(t) − αQP2x(t− r) − aG(x(t)) + aαQG(x(t− r)), (7.34)

where a and r are positive constants, α is the bifurcation parameter and x(t) =
[x1(t), . . . , xn(t)]T ∈ Rn, G(x(t)) = [g(x1(t)), . . . , g(xn(t))]T ∈ Rn. In addition,
we assume

(H1) g : R → R is continuously differentiable, g(0) = g′(0) = 0.
(H2) V := Rn is a Γ -orthogonal representation, where Γ acts by permuting

the coordinates of vectors x ∈ V .
(H3) (i) Q, P1, P2 are n× n-matrices, which commute pairwisely.

(ii) Q, P1, P2 commute with the Γ -action on V .
(H4) |α| · ‖Q‖ < 1.

Remark 7.3.1. By (H3), Q, P1, P2 are pairwisely commuting matrices, thus
they can be diagonalized simultaneously. In other words, Q, P1, P2 share the
same eigenspaces with respect to a certain choice of a basis of V . We will use

the symbols ξ, ζ and η to denote the eigenvalues of Q, P1, and P2 (respectively)
corresponding to the same eigenvector v ∈ V . Further, assume that ζ and η
satisfy the following

(H5) In the case ζη > 0,
√
ζη 6= 2k+1

2r
π for any k ∈ Z.

By (H4), the system (7.34) satisfies (A5). It is clear that the system (7.34)

is symmetric with respect to the Γ -action on V and (α, 0) is a stationary point
for all α. In this way, we are dealing with a Γ -symmetric system of neutral
functional differential equations.

7.3.2 Isolated Centers

By linearizing the system (7.34) at x = 0, we obtain

d

dt
[x(t) − αQx(t− r)] = −P1x(t) − αQP2x(t− r).

Substituting x = eλtv for λ ∈ C, 0 6= v ∈ V , we have

λeλtv − αQλeλ(t−r)v = −P1e
λtv − αQP2e

λ(t−r)v,

i.e.
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[
λId − αQλe−λr + P1 + αQP2e

−λr] v = 0.

Therefore, we have the following characteristic equation for the system (7.34)

detC 4(α,0) (λ) = 0, (7.35)

where

4(α,0)(λ) := (λId − αQλe−λr) + P1 + αQP2e
−λr.

To find isolated centers with their corresponding purely imaginary roots iβ
for β > 0, we write (7.35) into algebraic equations using the eigenvalues of Q,

P1 and P2. By Remark 7.3.1, when restricted to the same eigenspace of Q, P1

and P2, the characteristic equation (7.35) reduces to the following algebraic
equation

(λ + ζ)eλr − αξ(λ − η) = 0. (7.36)

By replacing in (7.36) λ with iβ for some β 6= 0, and separating the real and
imaginary parts, we obtain

{
ζ cos(βr) − β sin(βr) = −ηαξ,
ζ sin(βr) + β cos(βr) = βαξ,

(7.37)

which leads to

tan(βr) =

{
β(ζ+η)
β2−ζη , if β2 6= ζη,

∞, if β2 = ζη.
(7.38)

However, it can be verified that by (H5), the second case in (7.38) can not
occur.

Hence, we have the following

sin(βr) = δ
β(ζ + η)

ζ2 + β2

√
ζ2 + β2

η2 + β2
, cos(βr) = δ

β2 − ζη

ζ2 + β2

√
ζ2 + β2

η2 + β2
. (7.39)

where δ ∈ {±1} depending on the range of βr. Also, observe that in the case
ξ = 0, (7.37) does not permit any non-zero solution of β. So we suppose ξ 6= 0,
then (7.37) yields:

α =
δ

ξ

√
ζ2 + β2

η2 + β2
. (7.40)

Using (7.40), we simplify (7.39) to
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sin(βr) =
αξβ(ζ + η)

ζ2 + β2
, cos(βr) =

αξ(β2 − ζη)

ζ2 + β2
. (7.41)

Clearly, the assumption (A6) is satisfied for the system (7.34). We summarize
the corresponding information in the statement following below (the needed

arguments can be easily deducted from graphing (7.38)).

Lemma 7.3.2. Given system (7.34) satisfying (H1) and (H3), fix a triple of
reals ζ, η and ξ as in Remark 7.3.1 satisfying (H5). Then the equation

tan(βr) =
β(ζ + η)

β2 − ζη

has infinitely many positive solutions βk’s (k ∈ N), such that

(a) 0 < βk < βl for k < l;
(b) lim

k→∞
βk = ∞;

(c) for each βk, the point (αk, 0) is an isolated center for system (7.34), where

αk =
δ

ξ

√
ζ2 + β2

k

η2 + β2
k

, δ = ±1.

Moreover,

(1) In the case ζη > 0, we put ko := b r
√
ζη
π

+ 1
2
c, where the symbol b·c stands

for the greatest integer function, we have
(1d) If ko = r

√
ζη
π

, then

βk ∈
{

(2k−1
2r
π, k

r
π) for k < ko

(k
r
π, 2k+1

2r
π) for k ≥ ko

(1d’) Otherwise,

βk ∈
{

(2k−1
2r
π, k

r
π) for k ≤ ko

(k−1
r
π, 2k−1

2r
π) for k > ko

(2) In the case ζη < 0 and ζ + η < 0, we have
(2d)βk ∈ (2k−1

2r
π, k

r
π) for k ∈ N.

(3) In the case ζη < 0 and ζ + η > 0, we have

(3d) If ζ + η ≤ −ζη, then βk ∈ (k
r
π, 2k+1

2r
π) for k ∈ N;

(3d’) Otherwise, βk ∈ (k−1
r
π, 2k−1

2r
π) for k ∈ N.
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7.3.3 Negative Spectrum

To use the computational formula (7.9), we need the information on the neg-
ative spectrum σ−(A) of the linear operator A = − 1

β o
Dxf(αo, 0).

By (H1), we have that

− 1

β o
Dxf(αo, 0) =

1

β o
(P1 + αoQP2) : V → V,

for each isolated center (αo, 0).

To verify (A4), we will assume for a fixed triple of ξ, ζ, η that (cf. Remark
7.3.1)

(H6) ζ + αoξη 6= 0.

The negative spectrum σ−(A) can be determined by

σ−(A) = {µ =
1

β o
(ζ + αoξη) :

1

β o
(ζ + αoξη) < 0}

(7.40)
= {µ =

1

β o
(ζ + αoξη) :

1

β o
(ζ + δ

√
ζ2 + β2

o

η2 + β2
o

η) < 0}

= {µ =
1

β o
(ζ + αoξη) : ζ

√
η2 + β2

o + δη
√
ζ2 + β2

o < 0}

= {µ =
1

β o
(ζ + αoξη) : ζ + δη < 0}. (7.42)

7.3.4 Isotypical Crossing Numbers

To proceed with the computational formula (7.9), we need to obtain the iso-

typical crossing numbers tj,l(αo, βo), which can be computed by (cf. [15])

tj,l(αo, βo) = −sign (
d

dα
u(αo))mj(ilβo). (7.43)

To determine ‘sign ( d
dα
u(αo))’, we substitute λ = u+ iv in (7.36) and sepa-

rating the real and imaginary parts. Thus, we obtain
{
eur(u+ ζ) cos(vr) − eurv sin(vr) = ξα(u − η),

eur(u+ ζ) sin(vr) + eurv cos(vr) = ξαv.
(7.44)
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By implicit differentiation of (7.44) with respect to α at αo, u = 0, v = βo, we

obtain {
A du
dα

(αo) −B dv
dα

(αo) = −ηξ,
B du
dα

(αo) +A dv
dα

(αo) = βoξ,
(7.45)

where
{
A = r(ζ cos(βor) − βo sin(βor)) + (cos(βor) − αoξ),

B = r(ζ sin(βor) + βo cos(βor)) + sin(βor).
(7.46)

Substituting (7.41) into (7.46) leads to

{
A = − αoξ

ζ2+β2
o

[ηr(ζ2 + β2
o) + ζ(ζ + η)] ,

B = αoξ
ζ2+β2

o
[βor(ζ

2 + β2
o) + βo(ζ + η)] .

(7.47)

Thus, it follows from (7.47) and (7.45) that

du

dα
(αo) =

1

A2 +B2
(−ηξA+ βoξB)

=
αoξ

2

A2 +B2

[
r(η2 + β2

o) +
1

ζ2 + β2
o

(ηζ + β2
o)(ζ + η)

]
. (7.48)

Lemma 7.3.3. Let (αo, 0) be an isolated center for system (7.34) and iβ the
corresponding characteristic root. Assume that for α close to αo, the charac-

teristic roots have the form u(α) + iv(α). Assume, finally,

(i) r ≥ 1;
(ii) β > 1.

Then, we have

sign (
du

dα
(αo)) = sign (αo).

Proof: Directly from (7.48), it suffices to show

Υ (η, ζ) := r(η2 + β2
o) +

1

ζ2 + β2
o

(ηζ + β2
o)(ζ + η) > 0.

Put

Φ(η, ζ) := η2 + β2
o +

1

ζ2 + β2
o

(ηζ + β2
o)(ζ + η).

By assumption (i), Υ (η, ζ) ≥ Φ(η, ζ) for all η, ζ, thus we only need to show
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Φ(η, ζ) > 0.

Case 1. If η = 0, Φ(0, ζ) = β2
o + 1

ζ2+β2
o
β2
oζ = β2

o
ζ2+ζ+β2

o

ζ2+β2
o

(ii)
> 0.

Case 2. If η 6= 0, then we can write (η, ζ) = (η, tη) for a unique t ∈ R. Thus,

Φ(η, tη) = η2 + β2
o +

1

t2η2 + β2
o

(tη2 + β2
o)(t+ 1)η.

Seeking a contradiction, assume

Φ(ηo, toηo) ≤ 0 (7.49)

at some (ηo, toηo) and put

Ψ(t) := Φ(ηo, tηo).

Since lim
t→±∞

Ψ(t) = η2
o + β2

o + ηo
(ii)
> 0, it follows from (7.49) that Ψ(t) has a

non-positive minimum value at some tmin. An elementary calculus argument
implies:

tmin =

{
βo

ηo
if ηo < 0,

−βo

ηo
if ηo > 0.

Thus,

Ψ(tmin) =

{
η2
o + β2

o + (ηo+βo)2

2βo
if ηo < 0,

η2
o + β2

o −
(ηo−βo)2

2βo
if ηo > 0.

Clearly, in the case ηo < 0, Ψ(tmin) > 0, and for ηo > 0

Ψ(tmin) = η2
o + β2

o −
(ηo − βo)

2

2βo

(ii)
> η2

o + β2
o −

(ηo − βo)
2

2
=

(ηo + βo)
2

2
≥ 0,

and a contradiction arises, which asserts the conclusion. �

Thus, by Lemma 7.3.3 and (7.43), we have that

tj,l(αo, βo) = −sign (αo)mj(ilβo).

Without loss of generality, we can assume αo < 0. Therefore, we obtain

tj,l(αo, βo) = mj(ilβo). (7.50)
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7.3.5 Computational Results

Similarly to Subsection 6.3.3—6.3.4, we keep the specific computational re-
straints, including only computing the first coefficient part ω(λo)1 of the local

invariant and the condition (R1)—(R2).

Following the computational scheme outlined in Subsection 6.3.3, we pre-

pare the input data sequence (cf. Subsection 6.3.4)

{ε0, ε1, . . . , εr}, {t0, t1, . . . , tr}.

Then, using the computational formula

ω(α0, βo)1 =
r∏

i=0

(
deg Vi

)εi
·mj(iβo)deg Vj,1

, (7.51)

is equivalent to calling the command

ω(αo, βo)1 = showdegree(ε0, ε1, . . . , εr, t0, t1, . . . , tr).

In Appendix A4.2, we present quantative results for Γ = D4, A5.



8

Symmetric Hopf Bifurcation in Functional

Partial Differential Equations

As the primary equivariant degree method proves to be effective in studying
Hopf bifurcation problems in symmetric systems of ODEs, FDEs and NFDEs

(cf. Chapters 6—7), in this chapter, we adapt this method to a setting appro-
priate for studying parabolic partial differential equations with delays.

Anticipating more potential applications, in Section 8.1, we establish a pro-
cedure for studying symmetric bifurcation in abstract parameterized coinci-
dence equations involving unbounded Fredholm operators (depending contin-
uously on a parameter). For technical reasons, it is convenient to consider such

continuously parameterized family of Fredholm operators as a locally triv-
ial Banach vector bundle over the parameter space. Using the vector bundle
structure one can construct the so-called equivariant resolvent, which allows a
conversion (in a standard way) of the coincidence problem into a fixed-point

problem.

In Section 8.2, the standard abstract setting is adapted to a symmetric

Hopf bifurcation problem in a system of functional parabolic partial differential
equations. Section 8.3 is dealing with an application of the equivariant degree
method to study the occurrence of symmetric Hopf bifurcation in the system
of G.E. Hutchinson’s parabolic equations with delay, modeling an interactive

community ecosystem in a heterogeneous environment. A detailed analysis
of equivariant spectral properties of the linearized system is presented, along
with the important elements for the computational scheme. Using the Maple c©

routines, we establish quantative results in a format of the associated local

bifurcation invariants, providing the lower estimate of bifurcating branches of
solutions and their symmetries, for Γ = D3, A4, which are listed in Appendix
A4.3.
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8.1 Bifurcation in a Parametrized Equivariant

Coincidence Problem

Throughout this section, G = Γ × S1 with Γ being a compact Lie group.

8.1.1 Functional Setting

Let E and F be isometric Banach G-representations. Consider the space E⊕F
equipped with the norm ‖(x, y)‖E⊕F := ‖x‖E + ‖y‖F, where ‖ · ‖E (resp. ‖ · ‖F)
denotes the norm on E (resp. F), together with the diagonal G-action on E⊕F
by g(x, y) := (gx, gy) for g ∈ G. Then, E ⊕ F becomes an isometric Banach

G-representation.

For a (linear) operator L from E to F, denote by Dom (L) and Im (L) the

domain and the range of L respectively. An operator L : Dom (L) ⊂ E → F
is called closed, if its graph Gr (L) := {(x,Lx) : x ∈ Dom (L)} is a closed
subspace of E ⊕F. If L is additionally a G-equivariant (closed) operator, then
the graph Gr (L) is G-invariant (closed) subspace of E ⊕ F, which naturally

becomes an isometric Banach G-subrepresentation of E ⊕ F.

Denote by OpG(E; F) the set of all closed G-equivariant operators from E
to F. Define a metric dist (·, ·) on Op G(E; F) by

dist (L1, L2) := dH

(
S(Gr(L1)), S(Gr(L2))

)
,

where Li ∈ Op G(E; F), S(Gr(Li)) denotes the unit sphere in Gr(Li) (i = 1, 2)
and dH(·, ·) is the Hausdorff metric on the space of all closed bounded subsets
of E⊕F. More precisely, for two closed bounded subsets X, Y of E⊕F, define

D(X,Y ) := inf{r > 0 : Y ⊂ X +Br(E ⊕ F)}.

Then, the Hausdorff metric dH is given by

dH(X,Y ) := max{D(X,Y ),D(Y,X)}.

Recall the definition of the Fredholm operator as follows.

Definition 8.1.1. An operator L : Dom(L) → F defined on a dense subspace
Dom (L) ⊂ E, is called a Fredholm operator, if

(i) L is a closed operator;
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(ii) Im(L) is a closed subspace of F;

(iii) dim kerL <∞ and codim ImL := dim F/ImL <∞.

The number ind(L) := dim kerL− codim L is called the index of L.

Let FrG0 (E; F) ⊂ OpG(E; F) be the set of all G-equivariant Fredholm operators
of index zero from E to F. It can be verified that the set FrG0 (E; F) of all G-

equivariant Fredholm operators of index zero is an open subset of OpG(E; F)
with respect to the metric dist (·, ·) (cf. [15]). In particular, for any Lλo ∈
FrG0 (E; F) and sufficiently small ε > 0, we have that dist (Lλ, Lλo) < ε implies
Lλ ∈ FrG0 (E; F). Moreover, if dist (Lλ, Lλo) is sufficiently small, then there

exists a G-equivariant linear isomorphism between Gr (Lλ) and Gr (Lλo) (cf.
[15]).

Consider a continuous family of G-equivariant Fredholm operators of index
zero, {Lλ}λ∈P ⊂ FrG0 (E; F) parameterized by a topological space P. Define a
triple (E, p1,P) as follows. Put

E := {(λ, x, y) ∈ P × (E ⊕ F) : (x, y) ∈ Gr (Lλ)},

which is a G-invariant subset in P × (E ⊕ F) (with the trivial G-action on

P). Define p1 : E → P by p1(λ, x, y) := λ for (λ, x, y) ∈ E, which is G-
equivariant projection map onto P. Notice that each p−1

1 (λ) ' Gr (Lλ) has a
structure of an isometric Banach G-representation, for λ ∈ P. Moreover, the
continuity of the family {Lλ}λ∈P implies that for any λo ∈ P, there exists an

open neighborhood Uo of λo such that for all λ ∈ Uo, dist (Lλ, Lλo) is sufficiently
small, which, in turn, gives rise to a G-equivariant linear isomorphism between
Gr (Lλ) and Gr (Lλ′). Indeed, it was shown in [54] that (E, p1,P) is a locally
trivial G-vector bundle.

Further, it turns out to be convenient to identify (E, p1,P) with yet another
G-vector bundle defined as follows. For L ∈ FrG(E; F), define the graph norm

on Dom (L) by

‖x‖L := ‖x‖E + ‖Lx‖F, x ∈ Dom (L).

Consequently, (Dom (L), ‖·‖L) is canonicallyG-isomorphic to (Gr (L), ‖·‖E⊕F).
For convenience, we write

EL := (Dom(L), ‖ · ‖L),



196 8 Symmetric Hopf Bifurcation in Functional Partial Differential Equations

which is an isometric Banach G-representation, under the identification with

(Gr (L), ‖ · ‖E⊕F).

Define a triple (E, p,P) by the following. Put

E := {(λ, x) ∈ P × E : x ∈ ELλ
},

and define p : E → P by p(λ, x) := λ. Notice that each p−1(λ) ' ELλ
, for

λ ∈ P. Through the identification between ELλ
and Gr (Lλ), one argues that

(E, p,P) is indeed a locally trivial G-vector bundle. Moreover, the map ψ :
E → E given by ψ(λ, x, y) := (λ, x) provides a G-vector bundle isomorphism

between (E, p1,P) and (E, p,P).

We are now in a position to formulate a parameterized G-equivariant co-

incidence problem (cf. [113]). Define a G-vector bundle morphism L : E → F
by

L(λ, u) = Lλu, (λ, u) ∈ E, (8.1)

where F is viewed as a trivial G-vector bundle over a singleton. Given a com-

pletely continuous G-equivariant map F : E → F, we are interested in finding
solutions to the following parameterized G-equivariant coincidence problem

Lλu = F (λ, u), (λ, u) ∈ E|X×Dom(Lλ), (8.2)

where X ⊂ P is an appropriately chosen subset on which it is possible to
convert (8.2) to a G-equivariant fixed-point problem.

The following notion of an equivariant resolvent is a key to convert (8.2) to
a G-equivariant fixed-point problem.

Definition 8.1.2. Let X ⊂ P be a subset and L be given by (8.1). An equiv-
ariant resolvent of L over X is a G-vector bundle morphism K : E|X×E → F
such that

(i) for every λ ∈ X, Kλ : ELλ
→ F is a finite-dimensional operator;

(ii) for every λ ∈ X, Lλ +Kλ : ELλ
→ F is a linear G-isomorphism.

Denote by RG(L,X) the set of all equivariant resolvents of L over X. In con-
trast to the non-equivariant case, it might happen that RG(L, {λo}) = ∅, for
some λo ∈ P. In general, even RG(L, {λ}) 6= ∅ for each λ ∈ X, it is possible

that RG(L,X) = ∅. However, we have the following
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Lemma 8.1.3. (cf. [113]) Let X ⊂ P be a compact contractible set containing

a point λ∗ such that RG(L, {λ∗}) 6= ∅. Then, RG(L,X) 6= ∅.

Throughout this section, we assume that

(H1) There exists a compact subset X ⊂ P such that RG(L,X) 6= ∅.

Fix an equivariant resolvent K ∈ RG(L,X). For each λ ∈ X, put

Rλ := (Lλ +Kλ)
−1, (8.3)

which is a linear G-isomorphism. Therefore, (8.2) can be converted to a G-
equivariant fixed-point problem

y = F(λ, y), (λ, y) ∈ X × F, (8.4)

where
F(λ, y) = F

(
λ,Rλy

)
+Kλ

(
Rλy

)
, (λ, y) ∈ X × F.

By the compactness of X (cf. (H1)), F : X×F → F is a completely continuous

map.

8.1.2 Bifurcation Invariant for the Equivariant Coincidence
Problem

Let P = R × R+ and E,F isometric Banach G-representations. Suppose that
{Lλ}λ∈P is a continuous family of G-equivariant Fredholm operators of index
zero satisfying (H1). Fix K ∈ RG(L,X) and let Rλ be defined by (8.3), for
λ ∈ X.

Motivated by the parametrized parabolic system to be discussed in the next
section, we assume that

(H2) (i) there exists another real isometric Banach G-representation Ê and an
injective G-vector bundle morphism J : E → P × Ê such that Jλ := J(λ, ·)
is a compact linear operator for every λ ∈ P;
(ii) there exists an equivariant C1-map F̂ : P × Ê → F.

Define
F := F̂ ◦ J, (8.5)

which is a G-equivariant completely continuous map by (H2)(i). Consider the

coincidence problem (8.2) with F defined by (8.5). Assume, in addition, that
there exists a two-dimensional submanifold M ⊂ P × EG satisfying:
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(H3) M is a subset of the solution set of (8.2);

(H4) for (λo, uo) ∈M , there exists an open neighborhood Uλo ⊂ X of λo and
Uuo ⊂ EG of uo and a C1-map χ : Uλo → EG such that

M ∩ (Uλo × Uuo) = Gr(χ).

We call each (λ, u) ∈M a trivial solution of (8.2). All the other solutions will
be called nontrivial. A point (λo, uo) ∈ M is called a bifurcation point, if in
each neighborhood of (λo, uo), there exists a nontrivial solution of (8.2). We are
interested in studying the bifurcation problem of (8.2), including establishing

the existence of nontrivial solutions bifurcating from the surface M .

Notice that (λ, u) is a solution of the system (8.2) if and only if (λ, y) is

a solution of the system (8.4), for y = (Lλ + Kλ)u. Moreover, the set of the
trivial solutions to (8.4) can be expressed by

M̃ := {(λ, y) ∈ X × F : (λ,Rλ(y)) ∈M}.

Thus, the assumption (H4) is equivalent to

(H4)’ if (λo, yo) ∈ M̃ , then there exists an open neighborhood Uλo ⊂ X of λo
and Uyo ∈ FG of yo and a C1-map χ̃ : Uλo → FG such that

M̃ ∩ (Uλo × Uyo) = Gr(χ̃).

Define the projection map π : X × F → F by π(λ, y) = y. Then, the system
(8.4) can be reformulated as

(π −F)(λ, y) = 0, (λ, y) ∈ X × F, (8.6)

By the assumption (H2), π−F is a G-equivariant completely continuous field
of class C1. Consider the differential operator

Dy(π −F) = Id −
(
DuF

(
λ,Rλ(y)

)
Rλ +KλRλ

)
,

which is a bounded G-equivariant Fredholm operator of index zero (cf. (H2)).

Notice that, by implicit function theorem, if (λo, yo) ∈ M̃ is a bifurcation point,

then Dy(π−F) is not an isomorphism at (λo, yo). A point (λo, yo) ∈ M̃ is called
L-singular, if Dy(π−F) is not an isomorphism at (λo, yo). An L-singular point

(λo, yo) is isolated, if it is the only L-singular point in some neighborhood of

(λo, yo) in M̃ .

We assume that
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(H5) there exists an isolated L-singular point (λo, yo) ∈ M̃ .

Given an isolated L-singular point (λo, yo) ∈ M̃ , following the same construc-

tion as in Subsection 6.1.5, we define an isolating neighborhood U(r) ⊂ X ×F
around (λo, yo) and a G-equivariant auxiliary function ς : U (r) → R. Based
on the auxiliary function, a completely continuous field Fς : U(r) → R ⊕ F is
constructed to define a local bifurcation invariant ω(λo, yo) using the twisted

primary equivariant degree.

More precisely, take a neighborhood Dλo of (λo, yo) in M̃ such that (λo, yo)

is the only L-singular point in Dλo and Dλo ⊂ M̃ ∩ (Uλo × Uyo) (cf. (H4)’).

For a small r > 0, define U(r) ⊂ X × F by

U(r) := {(λ, y) ∈ X × F : (λ, χ̃(λ)) ∈ Dλo , ‖y − χ̃(λ)‖ < r}. (8.7)

Put

∂U0 := {(λ, y) ∈ U(r) : (λ, χ̃(λ)) ∈ ∂Dλo} ⊂ ∂U(r).

By (H5) and the implicit function theorem, we can choose r > 0 sufficiently

small that
y −F(λ, y) 6= 0, for (λ, y) ∈ ∂U0 \ M̃ .

Let ς : U(r) → R be a G-invariant auxiliary function such that

{
ς(λ, y) > 0, if ‖y − χ̃(λ)‖ = r,

ς(λ, y) < 0. if (λ, y) ∈ Dλo.
(8.8)

Define the map Fς : U(r) → R ⊕ F by

Fς(λ, y) := (ς(λ, y), (π −F)(λ, y)), (8.9)

which is clearly a U(r)-admissible G-equivariant completely continuous vector
field.

Definition 8.1.4. Let U(r), ς,Fς be defined by (8.7), (8.8) and (8.9) respec-

tively. We call
ω(λo, yo) := G-Deg t(Fς , U(r)) ∈ At

1(G) (8.10)

the local bifurcation invariant for the parametrized equivariant coincidence
problem (8.2) at (λo, yo).
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The following theorem provides us with a sufficient condition for the exis-

tence of nontrivial solutions of (8.2) bifurcating from (λo, yo). For the ideas of
the proof, we refer to [15].

Theorem 8.1.5. (Local Bifurcation Theorem) Suppose that the assumptions
(H1)—(H5) are satisfied, ω(λo, uo) is given by (8.10) (with Fς defined by (8.9),

U(r) by (8.7) and ς satisfying (8.8)). If

ω(λo, yo) =
∑

(H)

nH (H) 6= 0,

i.e., there is nHo 6= 0 for some orbit type (Ho), then there exists a branch of

non-trivial solutions (λ, y) to the equation (8.2) bifurcating from (λo, yo) such
that Gy ⊃ Ho.

8.2 Hopf Bifurcation in Symmetric Systems of

Functional Parabolic Differential Equations

Let V := Rn be an orthogonal Γ -representation and Ω ⊂ Rm an open bounded
set such that ∂Ω is C2-smooth. The space L2(R × Ω;V ) of L2-integrable V -
valued functions is an isometric Banach Γ -representation with the Γ -action

given by
(γu)(t, x) = γ(u(t, x)), u ∈ L2(R ×Ω;V ), γ ∈ Γ.

8.2.1 Statement of the Problem

Consider a system of functional parabolic differential equations on R ×Ω
{

∂
∂t
u(t, x) + P (α, x)u = f(α, ut)(x) (t, x) ∈ R ×Ω,

B(α, x)u(t, x) = 0 (t, x) ∈ R × ∂Ω,
(8.11)

where u ∈ L2(R × Ω;V ) satisfies appropriate differentiability requirements,∗

ut(θ, x) := u(t + θ, x) for θ ∈ [−τ, 0] (τ > 0 is a fixed constant), α ∈ R is a
(bifurcation) parameter, f : R × C([−τ, 0];L2(Ω;V )) → L2(Ω;V ) is a map of
class C1, which is bounded on bounded sets, P (α, x) = [Pi(α, x)]ni=1 is a vector

with components being second-order uniformly elliptic operators, i.e.

∗ u is weakly differentiable with respect to t ∈ R and has weak derivatives of order 2 with respect
to x ∈ Ω.
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Pi(α, x) = ∇TAi(α, x)∇ + ai(α, x),

with Ai(α, x) being a continuously differentiable (with respect to α and x)
n× n symmetric positive definite matrix satisfying

∃c1, c2 > 0 ∀(α, x) ∈ R ×Ω ∀y ∈ V ′ c1‖y‖ ≤ yTAi(α, x)y ≤ c2‖y‖,

where ∇ stands for the gradient operator, and ai(α, x) is continuous. The
boundary operator B(α, x) is defined by either (Dirichlet conditions)

B(α, x)u(t, x) = u(t, x)

or (mixed Dirichlet/Neumann conditions)

B(α, x)u(t, x) = b(α, x)u(t, x) +
∂

∂n
(α, x) u(t, x),

where b ∈ C1(R × ∂Ω; R), ∂
∂n

(α, x) = [νT (x)Ai(α, x)∇]ni=1 and ν(x) is the
outward normal vector to ∂Ω at x.

We assume that

(C1) the operators P , B and the map f are Γ -equivariant.

Use the standard identification S1 ' R/2πZ and introduce the following no-
tation

H1,2
B(α) = {ϕ ∈ H1,2(S1 ×Ω;V ) : B(α, x)ϕ = 0}, (8.12)

where Hk,`(S1×Ω;V ) stands for the Sobolev space of V -valued functions with
weak L2-integrable derivatives of order k in S1 and of order l in Ω. Put

E = F := L2(S1 ×Ω;V ), (8.13)

P := R × R+,

Ê := C
(
S1;L2(Ω;V )

)
,

where Ê is equipped with the usual supremum norm.
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8.2.2 Normalization of the Period

Let β := 2π
p

and v(t, x) := u( 1
β
t, x). Then, the problem (8.11) of finding a

p-periodic solution is equivalent to finding a 2π-periodic solution (α, β, v) of

the system





∂
∂t
v(t, x) +

1

β
P (α, x)v =

1

β
f(α, vt,β)(x) (t, x) ∈ R ×Ω,

B(α, x)v(t, x) = 0 (t, x) ∈ R × ∂Ω,

v(t, x) = v(t+ 2π, x) (t, x) ∈ R ×Ω,

(8.14)

where
vt,β(θ, x) := v(t+ βθ, x) for (θ, x) ∈ [−τ, 0] ×Ω.

8.2.3 Setting in Functional Spaces

Following the discussion in Section 8.1.1, we reformulate the system (8.14) as
a parameterized equivariant coincidence problem.

For λ := (α, β) ∈ P, define the subspace

Dom
(
Lλ
)

:= {u ∈ E : u ∈ H1,2
B(α)},

and the operator Lλ : Dom(Lλ) ⊂ E → E by

Lλv(t, x) :=
∂

∂t
v(t, x) +

1

β
P (α, x)v,

(cf. (8.12), (8.13) and (8.14)).

Notice that E,H1,2(S1×Ω;V ) and Ê are isometric BanachG-representations,

where S1 acts in a standard way by shifting the time argument t. It is also clear
(cf. [127]) that each (unbounded) linear operator Lλ, for λ ∈ P, is a closed
G-equivariant Fredholm operator of index zero. Moreover, the orthogonal pro-
jection on the (finite-dimensional) kernel of Lλ is a G-equivariant resolvent K

of Lλ. Therefore, RG(L, {λ}) 6= ∅ for any λ ∈ P. Thus, by Lemma 8.1.3, the
condition (H1) is satisfied for every compact subset X ⊂ P.

On the other hand, since 1
β
f(α, vt,β) ∈ L2(Ω;V ) for vt,β ∈ C

(
[−τ, 0];

L2(Ω;V )
)
, we have the continuous map Nf : P × Ê → L2(Ω,V ) with
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Nf (α, β, v)(t) :=
1

β
f(α, vt,β).

Define F̂ : P × Ê → F by

F̂ (λ, v)(t, x) := j ◦Nf (α, β, v)(t)(x) =
1

β
f(α, vt,β)(x), λ = (α, β),

where j denotes the natural embedding Ê ↪→ F. The continuous differentia-
bility of f implies that F̂ is continuously differentiable. Since the following

composition of the embeddings

H1,2(S1 ×Ω;V ) ↪→ H
2
3
,0(S1 ×Ω;V ) ↪→ C

(
S1;L2(Ω;V )

)
= Ê

is compact (cf. [127]), we have the following embedding

J : E −→ P × Ê

where Jλ : ELλ
→ Ê is a compact operator for all λ ∈ P. Thus F̂ and J satisfy

the condition (H2) from Section 8.1.2. In particular, F : E → F defined by

F = F̂ ◦ J is a G-equivariant completely continuous map of class C1.

As a consequence, we obtain that finding a periodic solution v ∈ H1,2(S1 ×
Ω;V ) for the system (8.14) is equivalent to solving the following parameterized

coincidence problem (cf. (8.2))

Lλv = F (λ, v), λ ∈ X, (8.15)

where X is a given compact subset of P.

8.2.4 Γ -Symmetric Steady-State Solutions

Observe that the constant (with respect to t) functions u(t, x) ∈ H1,2(S1 ×
Ω;V ) can be identified with functions u(x) ∈ H2(Ω;V ), which is the space of
V -valued functions with weak L2-integrable derivatives of order 2 inΩ. Clearly,

for u(x) ∈ H2(Ω;V ), we have ut(θ, x) ≡ u(θ, x) for t ∈ R.

To describe the set of trivial solutions to (8.11), we introduce the following

Definition 8.2.1. A solution (αo, uo) of (8.11) is called a Γ -symmetric steady-
state solution, if it satisfies

(i) uo ∈ H2(Ω,V );
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(ii) γuo = u0 for all γ ∈ Γ ;

(iii)

{
P (αo, x)uo = f(αo, uo)(x) in Ω,

B(αo, x)uo = 0 on ∂Ω.

Denote the following spaces by

Bαo := {ω ∈ H2(Ω;V ) : B(αo, x)ω = 0},
Bc
αo

:= {ω ∈ H2(Ω;V c) : B(αo, x)ω = 0},
Cτ := C([−τ, 0];L2(Ω;V )),

Ccτ := C([−τ, 0];L2(Ω;V c)).

Notice that we can view L2(Ω;V ) ⊂ Cτ is the subspace of constant L2(Ω;V )-

valued functions. Similarly, L2(Ω;V c) ⊂ Ccτ is the subspace of constant
L2(Ω;V c)-valued functions.

Put f̄ := f |R×L2(Ω;V ) and

Lαo := P (αo, x) −Duf̄(αo, uo) : Bαo → L2(Ω;V ). (8.16)

We will use the same symbols to denote the complexified operators P (α, x),
Duf̄(αo, uo) and B(αo, x).

Definition 8.2.2. A Γ -symmetric steady-state solution (αo, uo) of (8.11) is
called nonsingular, if 0 /∈ σ(Lαo), where σ(L(αo)) is the spectrum of Lαo .

Assume that

(C2) there exists a nonsingular Γ -symmetric steady-state solution (αo, uo) of
(8.11).

Thus, by implicit function theorem, there exists a small η > 0 and a C1-
function u(α) for |α−αo| < η such that (α, u(α)) is a Γ -symmetric steady-state
solution to (8.11) for each α.

Throughout the rest of this section, we assume that

{(α, u(α)) : |α− αo| < η} ⊂ P × EG,

is a fixed family of steady-state Γ -symmetric solutions through (αo, uo), and

each (α, β, u(α)) is called a trivial solution of (8.11). Moreover, we can define
the map χ : (αo−η, αo+η)×R → EG by χ(α, β) = (α, β, u(α)). Consequently,
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the set of Γ -symmetric steady-state solutions to (8.11) gives rise to a manifold

M ⊂ P × EG, which is defined locally by

M := {(α, β, u(α)) : α ∈ (αo − η, αo + η), β ∈ R}

and M satisfies (H3) and (H4).

8.2.5 Characteristic Equation

Let (α, u(α)) be a nonsingular Γ -symmetric steady-state solution of (8.11)

near (αo, uo). The linearization of (8.11) at (α, u(α)) leads to the characteristic
equation

4α;u(α)(λ)w := λw + P (α, x)w −Duf̄(α, u(α))(eλ·w) = 0, λ ∈ C, (8.17)

where the characteristic operator 4α;u(α)(λ) : Bc
α → L2(Ω;V c) is defined using

the complexifications of P (α, x) and Duf̄ (α, u(α)).

Notice that 4α;u(α)(λ) is a closed (unbounded) Fredholm operator of in-
dex zero from L2(Ω;V c) to itself. Indeed, the embedding Bc

α ↪→ L2(Ω;V c)

is compact with respect to the H2-norm on Bc
α. The operator P (α, x) be-

ing elliptic self-adjoint, is a (bounded) Fredholm operator of index zero, and
Duf̄(α, u(α))(eλ··) is a bounded linear operator. Therefore, 4α;u(α)(λ) is a
(bounded) Fredholm operator of index zero from Bc

α (equipped with the H2-

norm) to L2(Ω;V c). Consequently, 4α;u(α)(λ) is a closed (unbounded) Fred-
holm operator of index zero from L2(Ω;V c) to itself.

Similar as in Subsection 6.1.1, we define the characteristic root, center and
isolated center.

Definition 8.2.3. A number λ ∈ C is called a characteristic root of the system
(8.11) at a Γ -symmetric steady-state solution (α, u(α)), if ker4α;u(α)(λ) 6= {0}.
A nonsingular Γ -symmetric steady-state solution (αo, uo) is a center, if it has
a purely imaginary characteristic root iβo for βo > 0. A center (αo, uo) is called

isolated, if it is the only center in some neighborhood of (αo, uo) in R⊕L2(Ω;V ).

We assume that

(C3) there exists an isolated center (αo, uo) ∈ R ⊕ L2(Ω;V ) such that iβo is
a characteristic root of (8.11) for βo > 0, i.e. ker4αo;uo(iβo) 6= {0}.
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By (C3), the condition (H5) from Subsection 8.1.2 is satisfied. Also, (C3)

provides a necessary condition for the occurrence of the Hopf bifurcation at
(αo, uo). The condition (C2) excludes the appearance of the “steady-state”
bifurcation.

Denote by σα ⊂ R the spectrum of P (α, x) : Bc
α → L2(Ω;V c). Since P (α, x)

is a uniformly elliptic differential operator, the spectrum σα is discrete and each
eigenvalues µαk ∈ σα is real and of finite multiplicity. Suppose that

µα0 < µα1 < · · · < µαk < . . . .

For any fixed r > 0, observe that ir 6∈ σα. Thus, we define an auxiliary
operator S : L2(Ω;V c) → L2(Ω;V c) by

Sw = irw, w ∈ L2(Ω;V c),

which is a Γ -equivariant resolvent of P (α, x). In particular, inverse map

R̃α,r := [P (α, x) + S]−1

is a bounded Γ -equivariant operator from L2(Ω;V c) to Bc
α (equipped with the

H2-norm). Moreover, since the embedding Bc
α ↪→ L2(Ω;V c) is compact, we

obtain that R̃α,r is a compact Γ -equivariant operator from L2(Ω;V c) to itself.

Using the inverse operator R̃α,r, (8.17) can be re-written as

4̃r
α;u(α)(λ)w := w + (λ− ir)R̃α,r(w) −Duf̄(α, u(α))

(
eλ·R̃α,r(w)

)
= 0. (8.18)

It is clear that λ ∈ C is a characteristic root of the system (8.11) at
the steady-state solution (α, u(α)) if and only if ker 4̃r

α;u(α)(λ) 6= {0}. Since

4̃r
α;u(α)(λ) is an analytic function in λ (cf. [180]), all the characteristic roots λ

are isolated. Moreover, 4̃r
α;u(α)(λ) is a Γ -equivariant compact field, thus it is

a bounded Γ -equivariant Fredholm operator of index zero.

Denote by Eα
k ⊂ L2(Ω;V c) the eigenspace of P (α, x) corresponding to µαk ∈

σα. Let pαk : L2(Ω;V c) → Eα
k be the orthogonal projection map. Consequently,

for every w ∈ L2(Ω;V c) we can write w =
∞∑

k=0

pαk (w). Then, (8.18) is equivalent

to
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∞∑

k=0

[
pαk (w) +

λ − ir

µαk + ir
pαk (w) − 1

µαk + ir
Duf̄ (α, u(α))

(
eλ·pαk (w)

)]
= 0. (8.19)

Let F α
k be the subspace of Cτ spanned by functions of the type t→ ϕ(t)w,

where ϕ ∈ C
(
[−τ, 0]; C

)
and w ∈ Eα

k . We assume additionally (cf. [113, 139])

(C4) Duf̄(α, u(α))(F α
k ) ⊂ Eα

k for all steady-state solutions (α, u(α)) and
k = 0, 1, 2, . . . .

Remark 8.2.4. The assumption (C4) is required mainly to simplify the com-
putation of the characteristic roots through a reduction to isotypical com-

ponents of L2(Ω,V c) (see also [137, 138]). One can check that the reaction-
diffusion systems with delay of the type considered in [35, 36, 37] satisfy (C4).
In the case of a parabolic system of Γ -symmetric PDEs without delay, or the
reaction-diffusion logistic equation with delay , (C4) is automatically satisfied

(cf. [95]).

Under the assumption (C4), the equation (8.19) can be reduced to

pαk (w) +
λ− ir

µαk + ir
pαk (w) − 1

µαk + ir
Duf̄ (α, u(α))

(
eλ·pαk (w)

)
= 0, (8.20)

for k = 0, 1, . . . . The equation (8.20) can be re-written as

(µαk + λ)pαk (w) +Duf̄(α, u(α))
(
eλ·pαk (w)

)
= 0, k = 0, 1, . . . . (8.21)

8.2.6 Local Bifurcation Invariant and Its Computation

Under the assumptions (C1)—(C4), for any compact subsetX ⊂ P, the system

(8.11) leads to a parameterized equivariant coincidence problem of the type
(8.2) satisfying (H1)—(H5). Following the construction outlined in Section
8.1.2, given an isolated center (αo, uo) with the corresponding characteristic
root iβo, we associate to (αo, βo, uo) a local bifurcation invariant ω(αo, βo, uo) ∈
At

1(Γ × S1) (cf. Definition 8.1.4).

To establish an effective computational formula for ω(αo, βo, uo), we need

to obtain information about the negative spectrum and the isotypical crossing
numbers.
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Negative Spectrum

Assume that Γ is a finite group. Suppose that V (resp. V c) takes the isotypical
decomposition (6.6) (resp. (6.7)). Then, it induces the Γ -isotypical decompo-

sitions

L2(Ω;V ) =
r⊕

i=0

Vi, L2(Ω;V c) =
s⊕

j=0

Uj, (8.22)

where Vi := L2(Ω;Vi) (resp. Uj := L2(Ω;Uj)) is modeled on Vi (resp. Uj).

Consider the operator P (αo, x) : Bαo → L2(Ω;V ) and let K be the orthog-

onal projection on its kernel. Then, K is a Γ -equivariant resolvent of P (αo, x).
Put R̃αo := [P (αo, x) +K]−1 and define

A := Id − 1

βo
R̃αo ◦Duf̄ (αo, uo) − R̃αoK : L2(Ω;V ) → L2(Ω;V ). (8.23)

Denote by σ−(A) the set of all negative eigenvalues of the operator A. Since

A is a compact field, the set σ−(A) is finite and each eigenvalue is of finite
multiplicity. Thus, for µ ∈ σ−(A), define

E(µ) :=
∞⋃

k=1

ker[A− µ Id ]k,

Ei(µ) :=
∞⋃

k=1

ker[A|Vi
− µ Id |Vi

]k,

mi(µ) := dimEi(µ)/dimVi, (8.24)

where the subspace E(µ) refers to a generalized eigenspace of the operator A
and the integer mi(µ) will be called the Vi-multiplicity of µ.

In all the examples considered in the next section, the condition (R1) from
Subsection 6.3.4 is satisfied, as well as the following

(R2)’ For each µ ∈ σ−(A), there exists a single isotypical component Vi for
i = iµ in (8.22), which contains E(µ) completely.

Therefore, the formula (8.24) of the Vi-multiplicity mi(µ) reduces to

mi(µ) =

{
dimE(µ)/dimVi i = iµ,

0 i 6= iµ.
(8.25)
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Crossing Numbers

Put 4̃r
α;u(α),j(λ) := 4̃r

α;u(α)(λ)|Uj . For a characteristic root λ of the system
(8.11) at the Γ -symmetric steady-state solution (α, u(α)), we use the following
notations

Ej(λ) :=
∞⋃

k=1

ker[4̃r
α;u(α),j(λ)]k,

mj(λ) := dimEj(λ)/dimUj , (8.26)

where the subspace Ej(λ) is referred to as a generalized kernel of the operator

4̃r
α;u(α),j(λ) and the integer mj(λ) will be called the Uj-multiplicity of the

characteristic root λ. Since 4̃r
α;u(α),j(λ) is a Fredholm operator of index 0,

mj(λ) <∞ for each λ.

Let (αo, uo) ∈ R ⊕ L2(Ω;V ) be an isolated center with iβo (βo > 0) being
a corresponding characteristic root as assumed in (C3) from Subsection 8.2.5.
Define the set

S = {τ + iβ : 0 < τ < δ, |β − βo| < ε} ⊂ C,

where δ > 0 and ε > 0 are so small numbers that for all τ + iβ ∈ ∂S and

α ∈ [αo− ε, αo+ ε], ker4α;u(α)(τ + iβ) 6= {0} implies α = αo and τ + iβ = iβo.
Put α± := αo± ε and denote by s± the set of all characteristic roots λ ∈ S for
α = α±, i.e.

s± := {λ ∈ S : ker4α±;u(α±)(λ) 6= {0}}.

Since ker4α±;u(α±)(λ) = ker 4̃α±;u(α±)(λ) and 4̃α±;u(α±)(λ) is an analytic func-
tion in λ, the sets s± are finite.

For j = 0, 1, 2, . . . , s, put

t±j (αo, βo, uo) :=
∑

λ∈s±

mj(λ), (8.27)

(cf. (8.26).

Definition 8.2.5. The Uj-isotypical crossing number of (αo, βo, uo) is defined

as
tj,1(αo, βo, uo) := t−j (αo, βo, uo) − t+j (αo, βo, uo), (8.28)

where t±j (αo, βo, uo) are given by (8.27). In the case lβo is also a characteristic
root of (8.11) at (αo, uo) for some integer l > 1, put (cf. [15, 6])

tj,l(αo, βo, uo) := tj,1(αo, lβo, uo).
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Similar as in Subsection 6.3.2, we have cf. [15]

tj,l(αo, βo, uo) = −sign
d

dα
w(α)|α=αomj(ilβo), (8.29)

where w(α) stands for the real part of the characteristic root of (8.11) at
(α, u(α)).

By (R2’), each E(iβo) is completely contained in a single isotypical compo-
nent Uj for some j = jβo in (8.22). Thus,

mj(iβo) =

{
dim C E(iβo)/dim C Uj , j = jβo

0, j 6= jβo.

Based on (8.25) and (8.29), using further homotopy and multiplicativity
properties of the twisted primary degree (cf. Section 4.2), following a similar
derivation in Section 6.2, one can establish the following computational formula

ω(αo, βo, uo) :=
 ∏

µ∈σ−(A)

(deg Vi
)miµ(µ)


 ·

∑

l

(−sign
d

dα
w(α)|α=αomjβo

(ilβo))deg Vj,l
. (8.30)

For simplicity, we will restrict our computations for the first coefficient part
of ω(αo, βo, uo) (cf. Subsection 6.3.3), i.e.

ω(αo, βo, uo)1 :=
 ∏

µ∈σ−(A)

(deg Vi
)miµ(µ)


 · (−sign

d

dα
w(α)|α=αomjβo

(iβo))deg Vj,1
. (8.31)

Combining the concept of the dominating orbit types with Theorem 8.1.5,

one can easily establish a similar result stated in Theorem 6.1.8

Theorem 8.2.6. Suppose that the system (8.11) satisfies the assumption (C1)
and (C4), and suppose that (αo, uo) is a Γ -symmetric steady-state solution to
(8.11) (cf. Definition 8.2.1) satisfying (C2)—(C3), ω(αo, βo, uo) is given by

(8.10) (with λo = (αo, βo), Fς defined by (8.9), U(r) by (8.7) and ς satisfying
(8.8)). Assume (cf. (8.30)) ω(αo, βo, uo) 6= 0, i.e.
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ω(αo, βo, uo) =
∑

(H)

nH(H) and nHo 6= 0 (8.32)

for some (Ho) ∈ Φ1(G).

(i) Then, there exists a branch of non-trivial solutions to (8.11) with sym-
metries at least Ho (considered in the space F) bifurcating from the point
(αo, uo) (with the limit frequency lβo for some l ∈ N).

(ii) If, in addition, (Ho) is a dominating orbit type in F, then there exist
at least |G/Ho|S1 different branches of periodic solutions to the equation
(8.11) bifurcating from (αo, uo). Moreover, for each (α, β, u) belonging to

these branches of (non-trivial) solutions one has (Gu) = (Ho) (considered
in the space F).

Remark 8.2.7. The setting presented in this section for the functional parabolic
differential equations can be extended to a more general situation when
Γ = Γ1 × Γ2, where Γ1 and Γ2 are finite groups acting orthogonally on V ′

and V respectively, and Ω ⊂ V ′ is an open bounded Γ1-invariant set with C2-

smooth boundary. Then, the Banach space L2(R×Ω;V ) is again an isometric
Γ -representation with the Γ -action given by

(γu)(t, x) = γ2(u(t, γ1x)), γ = (γ1, γ2) ∈ Γ1 × Γ2.

8.3 Symmetric System of Hutchinson Model in
Population Dynamics

8.3.1 A Hutchinson Model of an n Species Ecosystem

We start with the standard model for the dynamics of a simple (single)

population∗ in terms of its density — the Verhulst equation (cf. [93, 84])

v̇ = αv
(

1 − v

K

)
,

which is based on the idea that the population grows exponentially at low
densities and saturates towards the carrying capacity K (of resources) at high

densities. By taking into account a delayed response to the remaining resources,
the Hutchinson’s model (of a single species) is obtained

∗ For population ecology background, we refer to [93, 162, 66].
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v̇(t) = αv(t)

(
1 − v(t− τ )

K

)
, (8.33)

where τ > 0 is a presumed delay constant and α refers to the intrinsic growth
rate.

Now, we consider an ecosystem composed of n species interacting with
each other (according to a certain symmetry) by competing (or cooperating)
over shared resources such as food and habitats, while maintaining a self-

inhibiting nature (meaning self-limiting in respond to rare resources and self-
reproducing to abundant resources). A mathematical treatment for such a
community model was developed by Levins in [126], where one attaches a loop
diagram in order to carry out a loop analysis for this community type situation

(cf. Figure8.1).

an1 a1n

v1

a21a12

v2

a32

a23v3

vn−1an−1,n

an,n−1

vn

vj

an−1,n−1 ann

a11ajj

a22a33

Fig. 8.1. System with dihedral symmetries
‘

In Figure 8.1, ajj describes the self-inhibiting nature of the j-th species, and
aij < 0 (resp. aij > 0) is the competing (resp. cooperating) coefficient between
species i and j. Also, observe that aij = aji. We introduce

C =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 (8.34)

and call it the community matrix. We describe this community ecosystem by
the following equations,
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v̇(t) = αCv(t) ·
(

1 − v(t− τ )

K

)
, (8.35)

where ‘·’ is the component-wise multiplication u · v := [u1v1, . . . , unvn]
T for

u = [u1, . . . , un]
T and v = [v1, . . . , vn]

T .

By applying the standard transformation

v(t) = K(1 + u(t)), (8.36)

to the system (8.35), one obtains the equivalent system

u̇(t) = −α Cu(t− τ ) · [1 + u(t)], (8.37)

where u(t) = v(t)
K

− 1 is, in fact, a population saturation index with respect to
the available resources.

Finally, to study the system (8.37) in a heterogeneous environment, we add
to (8.37) a spatial diffusion term, which leads to the following reaction-diffusion

equations

∂

∂t
u(x, t) = d

∂2

∂x2
u(x, t) − αCu(x, t− 1)[1 + u(x, t)], (8.38)

where d > 0 is a spatial diffusion coefficient.

8.3.2 A Symmetric System of the Hutchinson Model

We consider a symmetric system of n species Hutchinson model of the form
(8.38) (for t > 0 and x ∈ (0, π))

{
∂
∂t
u(x, t) = d ∂2

∂x2u(x, t) − αCu(x, t− 1) · [1 + u(x, t)],
∂
∂x
u(x, t) = 0, x = 0, π,

(8.39)

where u : [0, π] × R → Rn is a population saturation index (cf. (8.37)), ‘·’
is the component-wise multiplication, d > 0 is a spatial diffusion coefficient
and α 6= 0 is the intrinsic growth rate (cf. (8.33)), which is considered as a
bifurcation parameter, and C is a (symmetric) community matrix describing
the interaction among the species.

Assume that
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(A1) The geometrical configuration described by the system (8.39) has a sym-

metry group Γ . The group Γ permutes the vertices of the related polygon or
polyhedron, which means it acts on Rn by permuting the coordinates of the
vectors x ∈ Rn. The matrix C commutes with this Γ -action and 0 /∈ σ(C).

Under the assumption (A1), the space V := Rn becomes an orthogonal
Γ -representation and the condition (C1) from Subsection 8.2.1 is satisfied by
the system (8.39).

8.3.3 Characteristic Equation and Isolated Centers

At a Γ -symmetric steady-state solution (α, 0), the system (8.39) has the lin-
earization {

∂
∂t
u(x, t) = d ∂2

∂x2u(x, t) − αC u(x, t− 1),
∂
∂x
u(x, t) = 0, x = 0, π.

(8.40)

Since the matrix C is symmetric, it is completely diagonalizable with re-
spect to a basis composed of its eigenvectors. Consider the spectrum σ(C) =
{ξ1, ξ2, . . . , ξq} of the matrix C and denote by E(ξk) ⊂ V the eigenspace of ξk.

Then,

L2([0, π];V ) =

q⊕

k=1

L2([0, π];E(ξk)), (8.41)

and w ∈ L2([0, π];V ) can be represented as w(x) =
∑

k

wk(x), where wk ∈

L2([0, π];E(ξk)). Similarly, we have

L2([0, π];V c) =

q⊕

k=1

L2([0, π];Ec(ξk)), (8.42)

where Ec(ξk) denotes the complexification of the eigenspace E(ξk).

Notice that (αo, 0) is a Γ -symmetric steady-state solution to (8.39) for all

α 6= 0. Thus, we can take the set {(α, β, 0) : α 6= 0}, for the manifold
M ⊂ P ×EG described in Subsection 8.1.2. Moreover, (αo, 0) is nonsingular if
0 /∈ σ(Lαo), where

Lαo := d
∂2

∂x2
− αoC : H2

0 ([0, π];V ) → L2([0, π);V ]
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with H2
0 ([0, π];V ) being the subspace of H2([0, π];V ) consisting of functions u

satisfying u(0) = u(π) = 0. One can easily verify that if

−αoξk
d

6= m2 for all k = 1, 2, . . . , q, and m = 0, 1, 2, . . . ,

then (αo, 0) is a nonsingular Γ -symmetric steady-state solution, i.e. (αo, 0)
satisfies the condition (C2) from Subsection 8.1.2.

A number λ ∈ C is a characteristic root of the system (8.39) at a Γ -
symmetric steady-state solution (α, 0) ∈ R ⊕ V if there exists a nonzero func-
tion v ∈ L2([0, π];V c) such that

4α(λ)v(x) := λv(x) − d
∂2

∂x2
v(x) + αe−λC v(x) = 0, (8.43)

where we put 4α := 4α;0 (cf. (8.17)).

By using the decomposition (8.42), v can be written as v(x) =
∑
k

vk(x), for

vk(x) ∈ E(ξk). Consequently, (8.43) yields

4α(λ)v(x) =
∑

k

(
λvk(x) − d

∂2

∂x2
vk(x) + αe−λξk vk(x)

)
= 0. (8.44)

Next, by using the point spectrum {ζm := dm2}∞m=0 of the (scalar-valued)

Laplace operator L := −d ∂2

∂x2 and the corresponding eigenspaces E(ζm) , we
can write vk(x) =

∑
m

vk,m(x), for vk,m ∈ E(ζm), thus

4α(λ)v(x) =
∑

k, m

(
λvk,m(x) + dm2vk,m(x) + α e−λξk vk,m(x)

)
= 0. (8.45)

Therefore, one obtains that λ ∈ C is a characteristic root of (8.40) at the

Γ -symmetric steady-state solution (α, 0), if

λ + dm2 + α ξke
−λ = 0, for k = 1, . . . , q and m = 0, 1, . . . (8.46)

8.3.4 Computations for the Local Bifurcation Γ × S1-Invariant

In order to find the values αo for which the condition (C3) from Subsection 8.2.5
holds, we need to find purely imaginary roots λ = iβ (β > 0) of (8.46). Assume



216 8 Symmetric Hopf Bifurcation in Functional Partial Differential Equations

that (α, 0) is a nonsingular steady-state solution to (8.39) (in particular, α 6=
0).

• Computation for purely imaginary roots λ = iβ (β > 0)

By substituting λ = iβ into (8.46), we obtain

{
dm2 + αξk cos β = 0,

β − αξk sinβ = 0.
for k = 1, . . . , q. (8.47)

In the case m = 0, we have

{
β := βν,0,k = π

2
+ νπ,

α := αν,0,k = (−1)ν β
ξk
,

for k = 1, . . . , q and ν = 0, 1, . . . . Consequently,

signαν,0,k = (−1)νsign ξk. (8.48)

In the case m 6= 0 (thus cos β 6= 0 by the first equation in (8.47)), we obtain

tan β = − β

dm2
, (8.49)

α = − dm2

ξk cos β
, (8.50)

The equation (8.49) has infinitely many positive solutions, which will be de-
noted by {βν,m,k}∞ν=1 (see Figure 8.2). The corresponding solution α of (8.50)

will be denoted by αν,m,k.

Also, we notice that sign cos βν,m,k = (−1)ν, thus by (8.50),

signαν,m,k = (−1)ν+1sign ξk. (8.51)

• Computation for sign d
dα
w(α)|α=αν,m,k

Put αo := αν,m,k and βo := βν,m,k. In order to determine the value of the
crossing number tj,1(αo, βo, 0), we need to compute d

dα
w(α)|α=αo by implicit

differentiation.

By substituting λ = w + iv into (8.46),
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b

b

b

b

y
=

ta
n
β

y = − β
dm2

β1,m,k β2,m,k

y

β
π
2

3π
2

Fig. 8.2. Purely imaginary roots of the characteristic equation.

{
w + dm2 + αξke

−w cos v = 0,

v − αξke
−w sin v = 0,

(8.52)

then, differentiating (8.52) with respect to α, we obtain
{
dw
dα

− αξke
−w(dw

dα
cos v + dv

dα
sin v) = −ξke−w cos v,

dv
dα

+ αξke
−w(dw

dα
sin v − dv

dα
cos v) = ξke

−w sin v,
(8.53)

which is equivalent to
{
dw
dα

(αξke
−w − cos v) + dv

dα
sin v = ξke

−w,
dw
dα

sin v + dv
dα

(cos v − αξke
−w) = 0.

(8.54)

Thus, we obtain

dw

dα
= − ξke

−w(cos v − αξke
−w)

α2ξ2
ke

−2w − 2αξke−w cos v + 1
. (8.55)

By substituting α = αo, w = 0 and v = βo, we have

dw

dα
|α=αo = − ξk(cos βo − αoξk)

α2
oξ

2
k − 2αoξk cosβo + 1

= − ξk cosβo − αoξ
2
k

α2
oξ

2
k − 2αoξk cosβo + 1

.

Replacing ξk cos βo with −dm2

αo
in the last equality (cf. (8.50)), we obtain

dw

dα
|α=αo =

1

αo
· dm2 + α2

oξ
2
k

α2
oξ

2
k + 2dm2 + 1

.
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Consequently,

sign
dw

dα
|α=αo = signαo.

Hence, by (8.48) and (8.51), we obtain

sign
dw

dα
|α=αo=αν,m,k

=

{
(−1)νsign ξk, if m = 0,

(−1)ν+1sign ξk if m = 1, 2, . . .
(8.56)

Therefore, combining (8.56) with (8.29), we have for m 6= 0∗

tj,1(αo, βo) =

{
(−1)νsign ξk dim C E

c(iβo)/dim C Uj , j = jβo

0, j 6= jβo .
(8.57)

8.4 Usage of Maple c© Package and Computational

Results

In this section, assuming the conditions (C1)—(C4) to be satisfied by the
system (8.39), we prepare the input data for using the Maple c© routines. The

quantative results will be presented in Appendix A4.3, for Γ being the dihedral
group D3 and the tetrahedral group A4.

Recall that (cf. (8.31))

ω(αo, βo, 0)1 = ωΓ · ωG,

where
ωΓ =

∏

µ∈σ−(A)

(deg Vi
)miµ (µ),

and

ωG = (−sign
d

dα
w(α)|α=αomjβo

(iβo))deg Vj,1
,

with A being defined for (αo, βo) = (αν,m,k, βν,m,k) (cf. Subsection 8.2.6).

By formula (8.25), we have

∗ Throughout the rest of this section, we carry out the computation of the local Γ ×S1-invariant
ω(αo, βo, uo)1 = ω(αν,m,k , βν,m,k , 0)1 for m 6= 0. In the case m = 0, one only needs to change the
formula for sign dw

dα
|α=αo according to (8.56).
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ωΓ =
r∏

i=0

(
deg Vi

) ∑
µ∈σ−(A)

mi(µ)

. (8.58)

Since
(
deg Vi

)2
= (Γ ) for i = 0, 1, . . . , r, we can associate with σ−(A) the

sequence (ε0, ε1, . . . , εr) defined by

εi :=
∑

µ∈σ−(A)

mi(µ) (mod 2), i = 0, 1, · · · , r.

Then, the formula (8.58) can be reduced to

ωΓ =

r∏

i=0

(
deg Vi

)εi
.

Clearly, the sequence {ε0, ε1, . . . , εr} permits only possibly finitely many dif-
ferent values.

By formula (8.57),

ωG = (−1)νdim CE
c(iβν,m,k)/dim C Ujβν,m,k

deg Vjβν,m,k
,1
.

We will use the notation mjβν,m,k
:= dim C E

c(iβν,m,k)/dim C Ujβν,m,k
, which

stands for the Uj-multiplicity of iβν,m,k. Thus mjβν,m,k
also permits only possibly

finitely many different values.

Therefore, we have the following formula for the first coefficients of the local
bifurcation invariant

ω(αν,m,k, βν,m,k, 0)1 = (−1)ν
r∏

i=0

(
deg Vi

)εi
· mjβν,m,k

· deg Vjβν,m,k
,1

(8.59)

The input data for the computation of the local invariant thus consists of

two finite sequences:

{ε0, ε1, . . . , εr}, {m0,m1, . . . ,mr},

which are forwarded to the following command from the Maple c© package

ω(αν,m,k, βν,m,k, 0)1 := (−1)νshowdegree[Γ](ε0, ε1, . . . , εr,m0,m1, . . . ,mr).
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Remark and Notation 8.4.1 Given ξo ∈ σ(C) and assuming (R2)’ to be

satisfied, in what follows we will use the notation ξio to indicate that Ẽ(ξo) ⊂ Vi
and jξo, when E(ξo) ⊂ Uj (here we consider the matrix C acting on V c). In such
a case we will also write jξio. Since the value of mjβν,m,k

, by the condition (R), is

equal to the Ujβν,m,k
-multiplicity dim C (Ec(ξk) ∩ Ujβν,m,k

)/dim C Ujβν,m,k
, of the

eigenvalue jβν,m,k ξk of the complexified matrix C, and E(iβν,m,k) ⊂ Ujβν,m,k
, it

is convenient to present our quantitative results in a form of a matrix

jξo εi1, εi2, . . . , εil ω(λo)1 # Branches

where we only list {εi1, εi2, . . . , εil} ⊂ {ε0, ε1, . . . , εr} for those εiι, which can
realize the value 1.

Remark 8.4.2. Although we are dealing with infinitely many isolated centers

(αo, βo, 0) ∈ {(αν,m,k, βν,m,k, 0)}ν,m,k,

only finitely many different values of ω(αo, βo, 0)1 may occur, which is related
to the fact that the value of ω(αo, βo, 0)1 is determined by only possibly finitely

many different choices of the values of the two sequences {ε0, ε1, . . . , εr} and
{m0,m1, . . . ,mr}.



9

Existence of Periodic Solutions to Symmetric

Lotka-Volterra Type Systems

In the previous chapters (cf. Chapters 6—8), the primary equivariant degree
method was adapted to study the Hopf bifurcation problem in the symmet-

ric (neutral) functional differential equations and parabolic partial differential
equations. In this chapter, we extend the scope of the applications of the pri-
mary degree to the existence problem of nonstationary periodic solutions in a
symmetric system of functional differential equations. In particular, we discuss

the existence of periodic solutions to a symmetric Lotka-Volterra system with
delays, which falls out of the category of symmetric variational problems. It
should be pointed out that while a large variety of effective topological meth-
ods and techniques can be applied to symmetric variational problems (cf. [19]

and references therein), in the case of symmetric non-variational problems,
there are only few topological methods which are traditionally used. Unfortu-
nately, some of those methods (eg. Leray-Schauder degree) are ineffective for
detecting nonstationary periodic solutions.

The Lotka-Volterra equation, being the simplest model of predator-prey
interactions, plays an important role in the population dynamics. In this

chapter, we are interested in exploring the symmetric aspect of such model
by considering a symmetrically configured community of N -species compet-
ing/cooperating for the shared resources, described by a symmetric Lotka-
Volterra type system (cf. (9.1)). Following the original idea in [90], we intro-

duce additional (homotopy) parameters to the system and establish a priori
bounds for the parametrized systems (9.2α) and (9.2αρ). Based on a priori
bounds, using a standard homotopy argument, we define a topological invari-

ant ‘ ’ (cf. Definition 9.1.1), which contains information about the existence
of multiple nonstationary periodic solutions of (9.1).

Although, hardly anything in biological systems is exactly symmetric, when
dealing with models of limited accuracy, one can place the considered models in
a symmetric setting, which allows us to explore and better understand certain
symmetric impact on the dynamics of such systems. Being able to establish

the existence of multiple periodic solutions in such a system, provides us with
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a third eye in observing the complexity of its dynamics, including explaining

the appearance of patterns in synchronized fluctuations of populations.

This chapter is organized as follows. In Section 9.1, we present a general

framework for studying the existence of nonstationary periodic solutions to
a Γ -symmetric system of delayed differential equations. Based on a priori
bounds assumed for parametrized (by additional parameters) systems (which
are applied to construct an appropriate admissible homotopy), we define a

Γ ×S1-equivariant topological invariant ‘ ’ containing structural information
about the solution set of our considered system. The existence and multiplic-
ity results can be easily extracted from ‘ ’. Computational formula is derived

based on the multiplicativity and homotopy property of the twisted primary
degree. In Section 9.2, we apply the general framework to a Γ -symmetric Lotka-
Volterra system. Especially, the required a priori bounds are established step
by step using specific properties of the parametrized systems. Consequently, the

equivariant topological invariant is associated to the symmetric Lotka-Volterra
system and evaluated according to the computational formula discussed pre-
viously. In Section 9.3, we briefly explain the usage of the Maple c© routines.
The sample computations are included in Appendix A4.4, for Γ = Q8,D8, S4.

9.1 Existence Problem in Symmetric Delayed
Differential Equations

We present a general framework for studying the existence of nonstationary
periodic solutions to a system of symmetric delayed differential equations.
Throughout this section, assume that Γ is a compact Lie group and V is
an orthogonal Γ -representation.

9.1.1 Statement of the Problem

For a given constant τ > 0 , consider the Banach space CV,τ defined by (6.1)
equipped with the norm given by (6.2), which is a natural isometric Banach
representation of Γ (cf. (6.3)). For a continuous function x : R → V and t ∈ R,

define xt ∈ CV,τ by (6.4).

Assume that

(A1) A : CV,τ → V is a bounded Γ -equivariant linear operator. Moreover,
B := A|V is a linear isomorphism from V to V .
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(A2) R : CV,τ → V is a continuously differentiable Γ -equivariant map, such

that R (0) = 0 and DR (0) = 0.

We are interested in finding a continuously differentiable function u : R → V
satisfying the following autonomous functional differential equation

{
u̇(t) = A(ut) + R (ut),

u(0) = u(p),
(9.1)

where p > 0 is the unknown period of u.

9.1.2 Normalization of Period

By normalization of the period in (9.1), we understand the following change
of variable x(t) = u(λt), where λ = p

2π
is considered to be a new parameter.

We obtain the following equation, which is equivalent to (9.1)

{
ẋ(t) = λ [A(xt,λ) + R (xt,λ)] ,

x(0) = x(2π),
(9.2)

where x : R → V , xt,λ ∈ CV,τ is defined by xt,λ(θ) := x
(
t+ θ

λ

)
, θ ∈ [−τ, 0].

9.1.3 Setting in Functional Spaces

By using the standard identification of R/2πZ with S1, we consider the first
Sobolev space of 2π-periodic functions

H := H1(S1;V ), (9.3)

which is equipped with the inner product

〈u, v〉H1 :=

∫ 2π

0

u̇(t)v̇(t)dt+

∫ 2π

0

u(t)v(t)dt, u, v ∈ H,

and the induced norm will be denoted by ‖ · ‖H1. Notice that H is a natural
isometric Hilbert G-representation for G = Γ × S1 (cf. (6.21)).

The existence result for the equation (9.1) under the assumptions (A1) and
(A2), can be obtained by the means the twisted primary G-equivariant degree

using the standard homotopy argument and a priori bounds for the following
two equations
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{
ẋ(t) = αλ[A(xt,λ) + R (xt,λ)]

x(0) = x(2π),
(9.2α)

and {
ẋ(t) = αλ[A(xt,λ) + ρR (xt,λ)]

x(0) = x(2π),
(9.2αρ)

where ρ ∈ [0, 1], α ∈ (0, 1] and λ ∈ [λ1, λ2] for fixed constants 0 < λ1 < λ2.

More precisely, we rewrite the equation (9.2αρ) in functional spaces as

Lx = αλ[NA(λ, j(x)) + ρNR (λ, j(x))], (9.4)

where L, j are defined by (6.16)—(6.17) and

NA : R+ × C(S1;V ) → L2(S1;V ), NA(λ, x)(t) = A(xt,λ), (9.5)

NR : R+ × C(S1;V ) → L2(S1;V ), NR (λ, x)(t) = R (xt,λ). (9.6)

Using the (finite-dimensional) operator K : H → L2(S1;V ) defined by (6.18),
the equation (9.2αρ) is equivalent to

x− αλ(L +K)−1[NA(λ, j(x)) + ρNR (λ, j(x)) +Kx] = 0, x ∈ H. (9.7)

9.1.4 A Priori Bounds

To define a G-equivariant topological invariant for (9.2αρ) which is valid for
any ρ ∈ [0, 1] using admissible homotopy argument, we need to establish the a

priori bounds for (9.2α) and (9.2αρ). As it turns out, the a priori bounds are
closely related to the properties of A and R . In this general setting, we only
describe the required properties of the a priori bounds (cf. (P1)—(P5)), and
define the region of the admissible homotopy based on the a priori bounds.

We assume

(P0) There exists an open G-invariant set C ⊂ H such that 0 ∈ C and for
every solution x ∈ C to (9.2α), we have

∫ 2π

0

x(t)dt = 0.

We also assume that the following a priori bounds for (9.2α) and (9.2αρ).
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(P1) There exists αo ∈ (0, 1) such that for all 0 ≤ α ≤ αo, ρ ∈ [0, 1] and

λ ∈ [λ1, λ2] the system (9.2αρ) has no nontrivial solution in C.

(P2) There exist an open bounded G-invariant set Ũ ⊂ C such that for a small

ε > 0 and
U := {x ∈ H : dist(x, Ũ) < ε},

the following inclusion is satisfied

0 ∈ Ũ ⊂ U ⊂ C.

Moreover, every nontrivial solution in C to (9.2αρ) belongs to Ũ , for α ∈ (0, 1]
and λ ∈ [λ1, λ2].

Since we do not specify here exactly what is the set Ũ , we should explain that
we expect that it is of “good” type, for example a star-shaped open set around
the origin in H.

In order to control the solutions near the origin, we assume that

(P3) There exists m1 > 0 such that (9.2αρ) for α = 1 and ρ ∈ [0, 1], has no

nontrivial solution in B := {x ∈ H : ‖x‖H1 ≤ m1} ⊂ Ũ .

Finally, we also need

(P4) The system (9.2αρ), for α = 1 and ρ = 0, does not have nontrivial
solutions in H.

(P5) For λ = λi, i = 1, 2, the system (9.2αρ) has no nontrivial solution in U .

Let λ1, λ2 be given by (P5) and the sets U , B be given by (P2), (P3)

respectively. Define

Ωλ1,λ2 := {(λ, x) : λ1 < λ < λ2, x ∈ U \B}. (9.8)

9.1.5 Control Function β

Choose α1 with 0 < α1 < αo, to be sufficiently small and take a continuous
function ξ : [0,∞) → [α1, 1] such that (see Figure 9.1)

ξ(t) =





1, if t = 0,

strictly decreasing if 0 ≤ t ≤ ε,

α1, if t > ε.

(9.9)
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ε

1

α1

t

ξ(t)

Fig. 9.1. Bump function ξ : [0, +∞) → [α1, 1]

Define β : H → R+ by

β(x) = ξ(dist (x, Ũ)). (9.10)

Next replace α in (9.2αρ) by β(x), i.e. consider the equation

{
ẋ(t) = β(x)λ[A(xt,λ) + ρR (xt,λ)]

x(0) = x(2π).
(9.2βρ)

Notice that for ρ = 1, (9.2βρ) has exactly the same solution set in Ωλ1,λ2 as
(9.2). The considered sets and the function β are illustrated on Figure 9.2.

β(x) = α1 β(x) = 1

∂U

∂B

α1 < β(x) < 1

H \ C
C

Fig. 9.2. The sets U \ B, ∂U and ∂B.

9.1.6 Admissible Homotopy

Define for ρ ∈ [0, 1],
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Fρ(λ, x) := x− β(x)λ(L+K)−1[NA(λ, j(x)) + ρNR (λ, j(x)) +Kx], (9.11)

which is an Ωλ1,λ2-admissible homotopy by (P1)—(P5). Indeed, observe that
for x ∈ ∂U , β(x) = α1 < αo, thus by (P1), Fρ(λ, x) 6= 0 for λ ∈ [λ1, λ2]. On
the other hand, by (P3), Fρ(λ, x) 6= 0 for x ∈ ∂B. Therefore, one only needs
to show that for λ = λi, i = 1, 2, Fρ(λi, x) 6= 0 for x ∈ U and ρ ∈ [0, 1], which

is guaranteed by (P5).

9.1.7 Existence Result

Under the assumptions (P0)—(P5), the twisted primary G-equivariant degree
G-Deg (Fρ, Ωλ1,λ2) is well defined and does not depend on the homotopy pa-

rameter ρ ∈ [0, 1].

Definition 9.1.1. We introduce the following notation

:= G-Deg (F0, Ωλ1,λ2),

we will call the G-equivariant topological invariant∗ for the system (9.2).

We have the following result

Theorem 9.1.2. Under the assumptions (P1)—(P5), if the G-equivariant
topological invariant

=
∑

(H)

nH(H)

is nonzero, i.e. there exist a coefficient nH 6= 0 with H = Kϕ,l, then there

exists (λ, x) ∈ Ωλ1,λ2 such that F1(λ, x) = 0 with Gx ⊃ H. In other words,
there exists a nonconstant 2π-periodic solution to (9.2) for some λ ∈ [λ1, λ2],
and consequently, there is a p-periodic solution to (9.1) with p = 2πλ. In
addition, if H = Kϕ,l is such that Kϕ is a dominating type in H, then there

exists a nontrivial periodic solution x = x(t) to (9.1) (and consequently a whole
G-orbit of solutions) with the exact symmetries Kϕ.

∗ We use here the Chinese symbol (húı), which means ‘return’, i.e. it returns the topological
information about the solution set.
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9.1.8 Computations of the Equivariant Topological Invariant

Since Fρ is a G-equivariant Ω-admissible homotopy, we have that

= G-Deg (F1, Ωλ1,λ2) = G-Deg (F0, Ωλ1,λ2),

where F0 is a linearized map given by

F0(λ, x) := x− β(x)λ(L+K)−1 [NA(λ, j(x)) +Kx] ,

on Ωλ1,λ2. To compute G-Deg (F0, Ωλ1,λ2), we apply a series of reduction
through isotypical decompositions and homotopy deformations. For simplic-
ity, assume Γ is a finite group.

Isotypical Decomposition and Related Transformations

Consider the S1-isotypical decomposition of the space H

H = HS1 ⊕ H∗

where HS1 ' V is composed of constant V -valued functions and H∗ is the
orthogonal complement of HS1

.

Put Ω∗
λ1,λ2

= Ωλ1,λ2 ∩
(
(λ1, λ2) × H∗). For λ ∈ [λ1, λ2], define

F∗
0(λ, ·) := F0(λ, ·)|H∗.

Recall that B = A|V (cf. (A1)). For (λ, x) ∈ (λ1, λ2) × V , we have

F0(λ, x) ≡ −β(x)B(x).

Taking into account β(x) ∈ [α1, 1] (α1 > 0), we have that F0|HS1 is G-
homotopic to −B. Therefore, the map F0 can be viewed as a product map
−B ×F∗

0 on B1(HS1
)×Ω∗

λ1,λ2
. By multiplicativity property of twisted primary

degree (cf. Proposition 4.2.6), we obtain

G-Deg (F0, Ωλ1,λ2) = Γ -Deg(−B, B1(HS1

)) ·G-Deg (F∗
0, Ω

∗
λ1,λ2

).

Moreover, Γ -Deg(−B, B1(HS1
)) can be evaluated by (cf. Subsection 4.1.3)

Γ -Deg(−B, B1(HS1

)) =
∏

µ∈σ−(−B)

r∏

i=0

(
deg Vi

)mi(µ)

, (9.12)
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where mi(µ) is the Vi-multiplicity of µ (cf. (4.4)) and deg Vi
is the basic degree

without parameters associated with Vi (cf. Definition 4.1.5).

In order to compute G-Deg (F∗
0, Ω

∗
λ1,λ2

), we make convenient modifications

of the involved maps under admissible homotopies and the sets using excision
property. We can assume that

Ω∗
λ1,λ2

= (λ1, λ2) ×
(
B2(H∗) \B 1

2
(H∗)

)

and the function β is given by

β(x) =





1 if ‖x‖H1 ≤ 1,

2 − α1 − (1 − α1)‖x‖H1 if 1 < ‖x‖H1 < 2,

α1 if ‖x‖H1 ≥ 2.

(9.13)

Consider the further isotypical decomposition

H∗ =
∞⊕

l=1

Hl, (9.14)

where each Hl consists of the functions of form eiltz, z ∈ V c (cf. (6.32)).
Since F∗

0(λ, ·) is S1-equivariant, we have F∗
0(λ, ·)(Hl) ⊂ Hl for each l > 0. For

λ ∈ [λ1, λ2], define Al(λ) : Hl → Hl by

Al(λ) := F0(λ, ·)|Hl
.

Let x(t) = eiltz for z ∈ V c, then

Al(λ)(eiltz) = eiltz − β(z)λL−1A(eil(t+
θ
λ
)z)

= eilt
(
z − β(z)λ

il
A(e

ilθ
λ z)

)
. (9.15)

Based on a similar argument of the splitting lemma (cf. Lemma 3.3.4), we

have
G-Deg (F∗

0, Ω
∗
λ1,λ2

) =
∑

l>0

G-Deg (Al, Ω
∗
λ1,λ2

∩ Hl).

Using the identification Hl ' V c, define the linear operator Al(λ, ·) : V c →
V c by

Al(λ, z) := A(e
ilθ
λ z), z ∈ V c.

To simplify the computations, we assume that
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(B1) For each l > 0, the operator Al(λ) is completely diagonalizable. Ev-

ery eigenvalue µl,k(λ) ∈ σ(Al(λ)), for k = 1, . . . , ko, the corresponding

eigenspace Ẽ(µl,k(λ)) does not depend on λ ∈ [λ1, λ2].

Denote by Ẽl,k := Ẽ(µl,k(λ)). Then, Hl allows a G-isotypical decomposition

Hl =
⊕

k

Ẽl,k,

and we can write
Al(λ) =

⊕

k

µl,k(λ)Id .

Put

Al,k(λ, z) := z − β(z)

il
µl,k(λ)z, z ∈ Ẽl,k, (9.16)

and define the sets

Ul,k := {z ∈ Ẽl,k :
1

2
< ‖z‖ < 2}, Ωl,k := (λ1, λ2) ×Ul,k.

Based on a splitting lemma argument (cf. Lemma 3.3.4), we have

G-Deg (F∗
0, Ω

∗
λ1,λ2

) =
∑

l>0

ko∑

k=1

G-Deg (Al,k, Ωl,k). (9.17)

Reduction to Basic Maps

To compute G-Deg (Al,k, Ωl,k), introduce the function

ϕl,k(λ, t) := 1 − 2 − α1 − (1 − α1)t

il
µl,k(λ),

Then, Al,k can be rewritten as

Al,k(λ, z) = ϕl,k(λ, ‖z‖)z, z ∈ Ẽl,k. (9.18)

Using homotopy property of the twisted primary degree, we may assume
that the functions ϕl,r : (λ1, λ2) ×

(
1
2
, 2
)
→ C are continuously differentiable

and the sets ϕ−1
l,r (0) are composed of a finite number of regular points.

We need the following lemma for the computation of G-Deg (Al,k, Ωl,k).
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Lemma 9.1.3. Let U ⊂ R × R+ be an open bounded set and ϕ : R2 → C
a continuously differentiable and U-admissible map such that the set Λ :=
ϕ−1(0) ∩ U is composed of regular points of ϕ. Put

T := max{|t| : ∃λ (λ, t) ∈ Λ} + 1, τ :=
1

2
max{|t| : ∃λ (λ, t) ∈ Λ}.

Consider a G-representation Vj,l modeled on Vj,l, l > 0, and define the set

Ω := {(λ, v) ∈ R ⊕ Vj,l : (λ, |v|) ∈ U, τ < ‖v‖ < T},

and the G-equivariant map A : R ⊕ Vj,l → Vj,l by

A(λ, v) = ϕ(λ, ‖v‖) · v.

Then A is Ω-admissible G-equivariant map and

G-Deg (A, Ω) =
∑

(λ,t)∈Λ

sign detDϕ(λ, t)deg Vj,l
.

Proof: For every point (λo, to) ∈ Λ we define a small neighborhood Ωo of
the zero set {(λo, v) : ‖v‖ = to} in the space R ⊕ Vj,l by

Ωi := {(λ, v) : |λ − λo| < εi, 0 < to − δ < ‖v‖ < to + δ},

where δ is chosen to be sufficiently small. Then

G-Deg (A, Ω) =
∑

(λo,to)∈Λ

G-Deg (A, Ωo),

and since for every (λo, to), the map A can be approximated on Ωo by (λ, v) 7→
Dϕ(λo, to)(λ− λo, ‖v‖ − to)

T · z, which is clearly homotopic to

(λ, v) 7→ Ji,±(λ − λo, ‖v‖ − to)
T · v,

where

Ji,+ =

[
0 −1
1 0

]
, if sign detDϕ(λi, ti) = 1,

Ji,− =

[
0 −1
−1 0

]
, if sign detDϕ(λi, ti) = −1,

so the result follows. �

Combining Lemma 9.1.3 with (9.12) and (9.17), we obtain the following
computational formula for .
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Theorem 9.1.4. Under the above assumptions, we have

=
∏

µ∈σ−(−B)

r∏

i=0

(
deg Vi

)mi(µ)

·

∑

l>0

ko∑

k=1

s∑

j=0

∑

(λ,t)∈Λl,k

mj(µl,k(λ))sign detDϕl,k(λ, t) · deg Vj,l
, (9.19)

where mj(µl,k(λ)) = dim(Ẽl,k ∩ Uj)/dimUj is the Uj-multiplicity of µl,k(λ).

9.2 Symmetric Lotka-Volterra Systems

Throughout this section, we assume that Γ is a finite group and V := Rn

is an orthogonal Γ -representation such that Γ acts on V by permuting the
coordinates of vectors x ∈ V .

Consider the following Γ -symmetric Lotka-Volterra type system

u̇(t) = u(t) ·
(
r −Au(t− τ )

)
, (9.20)

where u : R → V , τ > 0, r = [r1, . . . , rn]
T , A is an n × n-matrix and ‘·’

is the component-wise multiplication, i.e. u · v = [u1v1, . . . , unvn]
T , for u =

[u1, . . . , un]
T , v = [v1, . . . , vn]

T ∈ V .

By an appropriate transformation, the problem (9.20) is equivalent to

u̇(t) = −Au(t− τ ) ·
(
b+ u(t)

)
, (9.21)

where b = A−1r. Let p be the unknown period of a solution u to (9.21). By a
change of variable, letting λ = p

2π
, x(t) = u(λt), we have that x is a 2π-periodic

solution of the problem

ẋ(t) = −λAx(t− τ

λ
) ·
(
b+ x(t)

)
. (9.22)

In what follows we assume that the following conditions hold:

(H0) A and b have positive entries, i.e. ai,j, bi > 0, for 1 ≤ i, j ≤ n.
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(H1) A is symmetric, positive definite (i.e. A = AT and 〈Ax, x〉 > 0 for all

x ∈ Rn \ {0}) and A is Γ -equivariant. In particular, the matrix

B := diag(b)A,

(i.e. Bx = Ax · b), where diag(b) denotes the diagonal matrix [dij] with

djj = bj, j = 1, . . . , n, has only real positive eigenvalues µ1, · · · , µn (not
necessarily distinct).

(H2) The vector b = [b1, . . . , bn]
T ∈ V is Γ -invariant, i.e. γb = b for all γ ∈ Γ .

We make also the following assumption

(H3) For every µ ∈ σ(B)

µτ 6= 2nπ +
π

2
, for all n ∈ Z. (9.23)

We are interested in finding a nonstationary periodic solutions of (9.20), which

is equivalent to finding a nontrivial 2π-periodic solution of (9.22) for some
λ > 0.

Define A, R : CV,τ → V by

A(ut) := −Au(t− τ ) · b = −Bu(t− τ ), (9.24)

R (ut) := −Au(t− τ ) · u(0), (9.25)

where u ∈ CV,τ. Notice that, under the assumption (H1), A and R satisfy
(A1)—(A2). Also, the equation (9.20) is Γ -symmetric by (H0)–(H2). Therefore,
we are in the setting discussed in Section 9.1.

9.2.1 Reformulation in Functional Spaces

Following the functional setting presented in Subsection 9.1.3, we take H de-

fined by (9.3) and the operators L, j, K, NA and NR given by (6.16)—(6.18)
and (9.5)—(9.6) respectively.

Consider the parameterized systems

{
ẋ(t) = −αλAx(t− τ

λ
) ·
(
b+ x(t)

)
,

x(0) = x(2π),
(9.22α)

and
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{
ẋ(t) = −αλAx(t− τ

λ
) ·
(
b+ ρx(t)

)
,

x(0) = x(2π),
(9.22αρ)

where α ∈ (0, 1] and ρ ∈ [0, 1].

Then, (9.22ρ) is equivalent to (cf. (9.7))

x− αλ(L +K)−1[NA(λ, j(x)) + ρNR (λ, j(x)) +Kx] = 0, x ∈ H,

where A and R are given by (9.24)—(9.25).

9.2.2 Establishing A Priori Bounds

Define a partial order in V = Rn by

x � y ⇐⇒ xi > yi, for all 1 ≤ i ≤ n,

where x = [x1, . . . , xn]T and y = [y1, . . . , yn]
T are two vectors from Rn. Intro-

duce the following set

C = {x ∈ H : −b ≺ x(t) for all t ∈ [0, 2π]}.

We show that C verifies the property (P0) in Subsection 9.1.4.

Lemma 9.2.1. For λ, α > 0, every periodic solution x ∈ C of (9.22α) satisfies

∫ 2π

0

x(t)dt = 0. (9.26)

In particular, the equation (9.22α) has no nonzero constant solutions.

Proof: Let x ∈ C be a solution to (9.22α), x(t) = [x1(t), . . . , xn(t)]
T . Then

for k = 1, 2, . . . , n

ẋk(t) = −αλ
∑

j

akjxj(t− τ/λ) · (bk + xk(t)), (9.27)

which leads to
ẋk(t)

bk + xk(t)
= −αλ

∑

j

akjxj(t− τ/λ). (9.28)

By integrating (9.28) from 0 to 2π, we obtain (by periodicity of x(t)) that
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∑

j

akj

∫ 2π

0

xj(t− τ/λ)dt =
∑

j

akj

∫ 2π

0

xj(t)dt = 0, k = 1, 2, . . . , n.

Since the matrix A is invertible, one can easily deduce (9.26). �

The following lemma provides a basis establishing (P2) and also indicates
a positive number αo ∈ (0, 1) satisfying (P1).

Lemma 9.2.2. (i) For λ1, λ2 ∈ R+ with λ1 < λ2, there exist a positive number
R, and positive Γ -invariant vectors d1, d2 � 0 such that for each λ ∈
[λ1, λ2], α ∈ (0, 1], τ ≥ 1, each solution x ∈ C of the problem (9.22α)

satisfies ‖x‖H1 < R and

−b ≺ −d1 ≺ x(t) ≺ d2, t ∈ [0, 2π].

In addition, there exists mo > 0 such that ‖ẋ‖∞ < m0 and ‖ẍ‖∞ < m0.
(ii) There exists αo ∈ (0, 1) such that there is no nontrivial solution in C to

(9.22αρ) for α ∈ (0, αo], ρ ∈ [0, 1] and λ ∈ [λ1, λ2].

Proof: (i) Let x ∈ C be a solution to (9.22α), x(t) = [x1(t), . . . , xn(t)]
T .

Then for k = 1, 2, . . . , n we have the relations (9.27) and (9.28) which lead to

ln(bk + xk(t)) − ln(bk + xk(s)) = −αλ
∫ t

s

∑

j

akjxj(w − τ/λ)dw,

where we assume s ≤ t. Consequently, if s is such that xk(s) = 0 then

bk + xk(t) = bk exp

(
−αλ2

∫ t

s

∑

j

akjxj(w − τ/λ)dw

)
, for all t ∈ R.

By the assumptions (H0) and (H1),

xk(t) < dk2 := bk exp

(
2παλ2

∑

j

akjbj

)
− bk for all t ∈ R, (9.29)

and (by (H2)) the vector d2 := [d1
2, . . . , d

n
2 ]T is Γ -invariant. On the other hand,

−bk < −dk1 := bk exp

(
−2παλ1

∑

j

akjd
j
2

)
− bk < xk(t), for all t ∈ R,
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and (by (H2)) the vector d1 := [d1
1, . . . , d

n
1 ]T is Γ -invariant. By differentiating

(9.22α) we obtain

ẍ(t) = −αλ
(
Aẋ(t− τ/λ) ·

(
b+ x(t)

)
+Ax(t− τ/λ) · ẋ(t)

)
. (9.30)

By using the above obtained upper and lower bounds for xk(t) in (9.27) and
(9.30), it is easy to show that there exists mo > 0 such that

|ẋk(t)| < mo and |ẍk(t)| < mo,

for all k = 1, . . . , n and t ∈ R. Consequently,

‖ẋ‖∞ < mo and ‖ẍ‖∞ < mo.

Therefore,

‖x‖2
H1 =

∫ 2π

0

ẋ(t)ẋ(t)dt+

∫ 2π

0

x(t)x(t)dt ≤ 2π‖ẋ‖2
∞ + 2π

n∑

k=1

dk2 =: R2.

ii) Suppose for contradiction that there exist sequences {αn} ⊂ (0, αo] and
{xm} ∈ C such that xm is a non-trivial solution to (9.22α) for α = αm, λ =
λm ∈ [λ1, λ2] and limm→∞ αm = 0. Then (9.29) holds for xk(t) = xmk (k) with

m = 1, 2, . . . , and therefore,

lim
m→∞

‖xm‖∞ = 0.

Since

ẋm(t) = −αmλAxm(t− τ/λm) ·
(
b+ ρxm(t)

)
, (9.31)

we have
‖ẋm‖∞ ≤ αmλ2|A|‖xm‖∞(|b|∞ + ρ|d2|∞), (9.32)

where |A| =
∑

ij aij and |y| = max{|yj| : j = 1, . . . , n} for y ∈ Rn. Define

um(t) by

umk (t) =
xmk (t)

‖xm‖∞
, t ∈ R.

Clearly, um ∈ H and by (9.32),

‖u̇m‖∞ ≤ αmλ2|A|(|b|∞ + ρ|d2|∞),

which implies that limm→∞ ‖u̇m‖∞ = 0. Since
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‖um‖∞ ≤ 2π‖u̇m‖∞,

it follows that limm→∞ ‖um‖∞ = 0, which is a contradiction with ‖um‖∞ = 1.
�

We show that (9.22αρ) satisfies (P4) for α = 1, ρ = 0.

Lemma 9.2.3. (i) Assume that for a fixed values λ ∈ R+ and α ∈ (0, 1], the

linearized equation

ẋ(t) = −αλAx(t− τ

λ
) · b (9.33)

has a nontrivial solution in H. Then, there exist k, n ∈ Z, n ≥ 0, k > 0

such that {
λ = kτ

2πn+π/2
=: λk,n,

α = k
λµ
,

(9.34)

where µ is an eigenvalue of the matrix B := diag(b)A.
(ii) For α = 1, ρ = 0, the equation (9.22αρ) has no nontrivial solution in H.

Proof: (i) The equation (9.34) can be written as

ẋ(t) = −αλBx(t− τ/λ). (9.35)

Clearly, (9.35) allows a nontrivial solution u in H if and only if, there is k ∈ N
such that x = eikt · z, for some z ∈ V c, is a solution to (9.35), which leads to
the equation

ik + αλµe−il
τ
λ = 0,

for some µ ∈ σ(B). One can easily verify that such a case is possible if and
only if, the relations (9.34) are satisfied for some n ∈ Z.

(ii) If α = 1, then (9.22αρ) reduces to (9.34). By (i), a nontrivial solution to
(9.34) implies that µτ = 2πn + π/2, which contradicts the assumption (H3).
�

The lemma below provides a positive number m1 satisfying (P3).

Lemma 9.2.4. Assume that λ ∈ R+, ρ ∈ [0, 1] and α ∈ (0, 1] are fixed.

(i) If zero is not an isolated solution in H to the equation (9.22αρ), then there
exist integers k > 0 and n ≤ 0 such that λ and α satisfy the relations (9.34)
for an eigenvalue µ of the matrix B.
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(ii) If λ1, λ2 ∈ R+ with λ1 < λ2, then there exists m1 > 0 such that for all

λ ∈ [λ1, λ2], the equation (9.22ρ) has no non-trivial solution x ∈ H such
that ‖x‖H1 ≤ m1.

Proof: (i) Define Fα : [λ1, λ2] × H → H by

Fα(ρ, λ, x) := x− αλ(L +K)−1N (ρ, λ, x), x ∈ H.

By implicit function theorem, if (λ, 0) is not an isolated solution to (9.22αρ)

for some ρ ∈ [0, 1], then DxFα(ρ, λ, 0) : H → H is not an isomorphism, which
implies that the equation (9.33) has a nontrivial solution. Consequently, by
Lemma 9.2.3, α and λ satisfy the relations (9.34).

(ii) The equation (9.22ρ) is a special case of (9.22αρ) for α = 1. Assume such
m1 > 0 does not exist, then zero is not an isolated solution in H. By (i), then
the relations (9.34) have solutions for an eigenvalue µ ∈ σ(B). Since α = 1, we

have µτ = 2πn+ π/2, which contradicts the assumption (H3). �

The following fact shows that (P5) can be achieved for specific choices of λ1,

λ2 (cf. (9.38)). For the sake of completeness, we include its elementary proof.

Lemma 9.2.5. For any ρ ∈ [0, 1] and λ > 0, the following equation

{
ẋ(t) = −λAx(t) ·

(
b+ ρx(t)

)
,

x0 = x2π.
(9.36)

has no nontrivial solution.

Proof: Assume first that ρ ∈ (0, 1]. Suppose that x is a non-zero 2π-periodic

solution to (9.36). By integrating (9.2.5) from 0 to 2π, we obtain

∫ 2π

0

Ax(t) · x(t)dt = 0 ⇐⇒
n∑

j=1

akj

∫ 2π

0

xj(t)xk(t)dt = 0, k = 1, 2, . . . , n.

(9.37)
On the other hand, A is positively definite, i.e. Ax(t) • x(t) > 0 for x(t) 6= 0,
which implies that ∫ 2π

0

Ax(t) • x(t)dt > 0.

But this is a contradiction, because by summing up the equations in (9.37),
we obtain
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∫ 2π

0

Ax(t) • x(t)dt =
n∑

k=1

n∑

j=1

akj

∫ 2π

0

xj(t)xk(t)dt = 0.

Suppose now that ρ = 0, then the equation (9.36) becomes ẋ(t) = −λBx(t).
Consequently, if x is a 2π-periodic solution to (9.36) for ρ = 0, then it also
satisfies the equation

d

dt
(x(t) · x(t)) = 2ẋ(t) · x(t) = −2λBx(t) · x(t),

which leads to ∫ 2π

0

Bx(t) · x(t)dt = 0.

Be a similar argument as above, we obtain again that x(t) = 0. �

Therefore, by Lemmas 9.2.1—9.2.5, we established the a priori bounds for
(9.22α) and (9.22αρ) which satisfy properties (P0)—(P1), (P3)—(P4).

9.2.3 Sets and Deformations

For fixed λ1, λ2 ∈ R+ with λ1 < λ2 and assume d2 � b1+d1
2

. We define the

following Γ × S1-invariant sets

D := {x ∈ H : −b+ d1

2
≺ x(t) ≺ 2d2, t ∈ [0, 2π]},

D̃ := {x ∈ H : −d1 ≺ x(t) ≺ d2, t ∈ [0, 2π]},
B := {x ∈ H : ‖x‖H1 ≤ m1},
BR := {x ∈ H : ‖x‖H1 < R},

where R, d1 and d2 are specified in Lemma 9.2.2 and m1 in Lemma 9.2.4. We
can choose m1 > 0 to be sufficiently small so that

B ( D̃ ( D ( C.

and define

Ũ :=
(
D̃ ∩BR

)
.

Choose ε > 0 to sufficiently small such that the set

U := {x ∈ H : dist(x, Ũ) < ε},

satisfies U ⊂ D. Thus, the sets Ũ , U satisfy (P2) by Lemma 9.2.2(i).
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Next, we choose λ1 and λ2 to be

λ1 :=
τ

2j1π
, λ2 :=

τ

2j2π
, j1 > j2, j1, j2 ∈ N. (9.38)

Then, by Lemma 9.2.5, λ1, λ2 satisfy (P5). Define the set Ωλ1,λ2 ⊂ R+ ×H by
(9.8).

Based on the above discussion, we established the a priori bounds for (9.22α)
and (9.22αρ) which verify (P0)—(P5). Thus, Fρ defined by (9.11) is indeed an
Ωλ1,λ2-admissible homotopy. Therefore, the equivariant topological invariant

is well-defined (cf. Definition 9.1.1) and the computational formula (9.19)

is valid.

9.2.4 Computation of the Equivariant Topological Invariant

To determine the negative spectrum of −B, observe that B = A|V = −B (cf.

(9.24)). By (H1), the matrix B has only positive eigenvalues. Thus,

σ−(−B) = σ−(B) = ∅.

Therefore, the computational formula (9.19) reduces to

= (Γ ) ·
∑

l>0

ko∑

k=1

s∑

j=0

∑

(λ,t)∈Λl,k

mj(µl,k(λ))sign detDϕl,k(λ, t) · deg Vj,l

=
∑

l>0

ko∑

k=1

s∑

j=0

∑

(λ,t)∈Λl,k

mj(µl,k(λ))sign detDϕl,k(λ, t) · deg Vj,l
. (9.39)

By direct computation, we have (cf. (9.15))

Al(λ)(eiltz) = eitl
[
z +

β(z)

il
e−

ilτ
λ Bz

]
, z ∈ V c.

Take µl,k ∈ σ(B), we write (cf. (9.16))

Al,k(λ)(z) = z +
β(z)µl,k

il
e−

ilτ
λ z, z ∈ Ẽl,k,

where β is defined by (9.13). To determine the function ϕl,k according to (9.18),
we express Al,k as
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Al,k(λ)(z) = (1 +
β(z)µl,k

il
e−

ilτ
λ )z

= (1 +
(2 − α1 − (1 − α1)‖z‖)µl,k

il
e−

ilτ
λ )z, z ∈ Ωλ1,λ2 ∩ Ẽl,k.

Then, ϕl,k : R2 → C is defined by

ϕl,k(λ, t) := 1 +
(2 − α1 − (1 − α1)t)µl,k

il
e−

ilτ
λ .

To simplify notations, put ξ(t) := 2 − α1 − (1 − α1)t for all t ∈ (1, 2). Notice
that β(z) ≡ ξ(‖z‖) for 1 < ‖z‖ < 2. To compute according to (9.39), we
need to differentiate ϕl,k at the point (λo, to) satisfying (cf. (9.34)

{
ξ(to) = l

λoµl,k
< 1,

λo := λl,m = lτ
2πm+π/2

, for some m ∈ N.
(9.40)

We have that

ϕl,k(λ, t) = 1 +
ξ(t)µl,k
il

e−
ilτ
λ

= 1 − ξ(t)µl,k
l

sin
lτ

λ
− i

ξ(t)µl,k
l

cos
lτ

λ
.

Then, we obtain

Dϕl,k(λ, t) =



ξ(t)µl,k

l
cos lτ

λ
(− lτ

λ2 )
(1−α1)µl,k

l
sin lτ

λ

ξ(t)µl,k

l
sin lτ

λ
(− lτ

λ2 )
(1−α1)µl,k

l
cos lτ

λ


 ,

which evaluated at (λo, to) gives (notice that cos lτ
λo

= 0 and sin lτ
λo

= 1)

Dϕl,k(λo, to) =




0
(1−α1)µl,k

l

− lτ
λ3

o
0


 .

Clearly, sign detDϕl,k(λo, to) > 0. Thus (cf. (9.39)),

=
∑

l>0

ko∑

k=1

s∑

j=0

∑

(λ,t)∈Λl,k

mj(µl,k)deg Vj,l
.
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Finally, to determine Λl,k, for µl,k ∈ σ(B), denote by n(µl,k) a positive

integer such that

π

2
+ 2n(µl,k)π < µl,kτ <

π

2
+ 2(n(µl,k) + 1)π.

Then, we have (cf. (9.40))

Λl,k :={(λo, to) : λo =
lτ

2πm+ π/2
, ξ(to) =

l

λoµl,k
,

lj2 ≤ m < lj1, n(µl,k) ≥ m}.

Theorem 9.2.6. Under the assumptions (H0)—(H3), if the G-equivariant
topological invariant

=
∑

(H)

nH(H)

is nonzero, i.e. there exist a coefficient nH 6= 0 with H = Kϕ,l, then there

exists (λ, x) ∈ Ωλ1,λ2 such that F1(λ, x) = 0 with Gx ⊃ H. In other words,
there exists a nonconstant 2π-periodic solution to (9.22) for some λ ∈ [λ1, λ2],
and consequently, there is a p-periodic solution to (9.20) with p = 2πλ. In

addition, if H = Kϕ,l is a dominating type in H, then there exists a nontrivial
periodic solution x(t) to (9.20) (and consequently a whole G-orbit of solutions)
with the exact symmetries Kϕ.

As an immediate consequence, we obtain the following generalization of the

result obtained in [90] (without assumption of simplicity on the eigenvalues of
the matrix B)

Corollary 9.2.7. Suppose that Γ = {e}. Under the assumptions (H0)—(H3),
if there exist an eigenvalue µ ∈ σ(B) and n ∈ N ∪ {0} such that

π

2
+ 2nπ < µτ <

π

2
+ 2(n+ 1)π,

then the G-equivariant topological invariant

=
∑

(H)

nH(H)

is nonzero, and consequently, there exists a p-periodic solution to (9.20).
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9.3 Usage of Maple c© Routines and Computational

Examples

In the computational examples, we consider the system (9.21) symmetric with
respect to Γ beingQ8,D8 and S4. In addition, we assume that b = [1, 1, . . . , 1]T .
For each considered matrix A = B, we choose concrete numerical values of its
entries, as well we also specify the numerical value of the delay τ > 0. The

spectrum of A will be denoted by {µk : 1 ≤ k ≤ ko}, and the corresponding
to µk eigenspace E(µk) will turn out to be of a single Γ -isotypical type, i.e.
E(µk) = mi(k)(µk) · Vi(k), where mi(k)(µk) denotes the Vi(k)-multiplicity of the
eigenvalue of µk. In all considered cases, we always have mi(µk) = 1. Similarly,

the for the matrix A : V c → V c we will denote by Ẽ(µk) the (complex)
eigenspace, which in our cases will be Ẽ(µk) = mj(k)(µk)·Uj(k), where mj(k)(µk)
is the Uj(k)-multiplicity of µk. The number mj(k)(µk) will be always one, except
for one eigenvalue in the case Γ = Q8, where the considered (real) eigenspace

will be of quaternionic type, so this number is equal 2.

We choose the values of j1 = 1 and j2 = 1, and put

ml,j := mj(k)(µk)|Λl,k|, where Ẽ(µk) = mj(k)(µk) · Uj(k),

and |X| denotes the number of elements in the setX. Then, using this notation,
our computational formula for the associated equivariant twisted degree can

be simplified as follows

=
∑

l>0

∑

µl,k∈σ(B)

∑

(λ,t)∈Λl,k

s∑

j=0

mj(µl,k)deg Vj,l

=
∑

l>0

s∑

j=1

mj,l deg Vj,l
. (9.41)

For the computation of the numbers n(µi), we use Table 9.1. The final results

n 1 2 3 4 5 6 7 8 9 10

π
2 + 2nπ 7.9 14.1 20.4 26.7 33.0 39.27 45.6 51.8 58.1 64.4

Table 9.1. Values of π
2

+ 2nπ.

are formulated in basic degrees deg Vj,l
. For the values of basic degrees deg Vj,1

,
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we refer to Appendix A2.3. The degrees deg Vj,l
can be determined by taking the

l-folding homomorphism of deg Vj,1
, i.e. deg Vj,l

= Ψl
(
deg Vj,1

)
, for Ψl : At

1(G) →
At

1(G) defined (on generators) by (Hϕ,k) 7→ (Hϕ,kl).

For each non-zero coefficient in of (Hϕ,l), where (Hϕ) is a dominating
orbit type, there exist at least |Γ/H| different non-constant p-periodic solutions
with the least symmetry (Hϕ,k) for some integer k ≥ 1. However, the k-folding

in the isotropy group (Hϕ,k) of x ∈ H∗ means that x is a p/k-periodic solution
with symmetries exactly (Hϕ). In this way we are able to predict the exact
symmetries of certain periodic solutions.

In Appendix A4.4, we list existence results for the Γ -symmetric Lotka-
Volterra type systems, for Γ being the quaternionic group Q8, the dihedral
group D8 and the octahedral group S4.



10

Existence of Periodic Solutions to Symmetric

Variational Problems

In this chapter, we study the existence of periodic solutions to symmetric vari-

ational problems. More precisely, we first investigate the existence of nonsta-
tionary periodic solutions to an autonomous Newtonian system of describing
trajectories of finitely many particles, governed by the Newton’s laws of mo-

tion. As sufficient differentiability of the force function is stipulated, the New-
tonian system of our consideration is energy conserving, thus all variational
techniques apply.

We consider an autonomous Newtonian system symmetric with respect to
a compact Lie group Γ , which acts on the phase space V . The Γ -equivariant
nature of the force function leads to a Γ ×S1-equivariant variational problem,

where periodic solutions to a Γ -symmetric autonomous Newtonian system cor-
respond naturally to critical points of the associated Γ × S1-invariant total
energy functional Ψ .

To the gradient map of the energy functional, which is assumed to be asymp-
totically linear at ∞, we associate two topological invariants deg 0 and deg ∞,
representing the gradient Γ ×S1-degrees of ∇Ψ on a small ball Bε and a large

ball BR, respectively. The difference deg ∞ − deg 0 is the topological invariant
capturing the existence of nonstationary periodic solutions to the system in
BR \Bε.

Then, we study an O(2)-symmetric elliptic problem with periodic-Dirichlet
mixed boundary conditions. By a similar procedure, we obtain the existence
result.

The chapter is organized as follows. In Section 10.1, we discuss a symmet-
ric autonomous Newtonian system having 0 and ∞ as non-degenerate critical

points of the energy functional. In this case, the standard linearization tech-
nique applies. Consequently, the computations of the topological invariants
deg p (p ∈ {0,∞}) reduce to the computations of gradient linear isomor-
phisms, which adopt the effective computational formulae discussed in Sub-
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section 5.2.2. The computational examples are provided in Appendix A4.5 for

Γ = D6, S4, A5. In Section 10.2, we extend our discussion to the symmetric
autonomous Newtonian system allowing degenerate critical points at 0 and/or
∞. Applying a result of splitting lemmas (cf. [69]), we obtain a product type

of formula for each deg p (p ∈ {0,∞}), which is only computable up to an
unknown factor (due to the degeneracy of the system). Under certain assump-
tions, the invariant deg ∞ − deg 0 still contains enough information about the
symmetric structure of the solution set. Numerical illustrations will be pro-

vided in Appendix A4.6 for Γ being dihedral groups D6, D8, D10 and D12. In
Section 10.3, we study an O(2)-symmetric asymptotically linear elliptic equa-
tion with periodic-Dirichlet mixed boundary conditions. By applying a similar
degree-theoretical procedure, we obtain the existence result of at least two

different types of periodic solutions. Computational example is provided in
Example 10.3.3.

10.1 Symmetric Autonomous Newtonian System

Throughout this section, Γ is a finite group, V is an orthogonal Γ -representation
and ϕ : V → R is a C2-differentiable Γ -invariant function. Then, the gradient
map ∇ϕ : V → V is a C1-differentiable Γ -equivariant map.

We are interested in finding nonzero solutions to the following Γ -symmetric
autonomous Newtonian system

{
ẍ = −∇ϕ(x), x(t) ∈ V,

x(0) = x(2π), ẋ(0) = ẋ(2π),
(10.1)

where x : R → V is twice weakly differentiable with respect to t and ∇ϕ
satisfies that

(A1) ∇ϕ(x) = 0 ⇐⇒ x = 0.

In addition, there exist two symmetric Γ -equivariant linear isomorphisms
A, B : V → V such that

(A2) ∇2ϕ(0) = A.
(A3) ∇ϕ(x) = Bx+ o(‖x‖) as ‖x‖ → ∞, i.e.

lim
‖x‖→∞

‖∇ϕ(x) −Bx‖
‖x‖ = 0.
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Notice that the conditions (A1)—(A3) imply that

Γ -Deg(−A,B1(V )) = Γ -Deg(−B,B1(V )). (10.2)

Indeed, by the standard linearization argument and (A2), there exists ε > 0
such that

Γ -Deg(−A,B(V )) = Γ -Deg(−A,Bε(V )) = Γ -Deg(−∇ϕ,Bε(V )).

Similarly, using (A3), for R > 0 being sufficiently large number, we have

Γ -Deg(−B,B(V )) = Γ -Deg(−B,BR(V )) = Γ -Deg(−∇ϕ,BR(V )).

However, (A1) forces −∇ϕ−1(0) = {0}, by excision property of the Γ -
equivariant degree, we have

Γ -Deg(−∇ϕ,Bε(V )) = Γ -Deg(−∇ϕ,BR(V )).

Therefore, (10.2) follows.

The following assumption allows the system (10.1) having non-degenerate
linearization at 0 and ∞.

(A4) (σ(A) ∪ σ(B)) ∩ {k2 : k = 0, 1, 2, . . . } = ∅,

where σ(A) (resp. σ(B)) denotes the spectrum of A (resp. the spectrum of B).

Remark 10.1.1. Suppose that C : V → V is a symmetric linear operator
such that σ(C) ∩ {k2 : k = 0, 1, 2, . . . } = ∅, then the system

{
−ẍ = Cx, x(t) ∈ V,

x(0) = x(2π), ẋ(0) = ẋ(2π)

has no non-zero solutions. Therefore, the condition (A4) implies that the lin-

earization of (10.1) at x = 0 and x = ∞ have no non-zero solutions.

Example 10.1.2. One can easily construct an example of a Γ -invariant func-

tion ϕ : V → R satisfying the assumptions (A1)—(A4). For instance, let
η : R → R be a C2-differentiable function such that η′(t) > 0 for all t ∈ R and
lim
t→∞

η′(t) = b > 0. Also, assume that 2η′(0), 2b 6∈ {k2 : k = 0, 1, 2, . . . }. Then,

ϕ(x) := η(‖x‖2) is Γ -invariant and the gradient ∇ϕ(x) = 2η′(‖x‖2)x, satisfies
(A1) and clearly ∇ϕ(0)h = 2η′(0)h.
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On the other hand,

lim
‖x‖→∞

‖∇ϕ(x) − 2bx‖
‖x‖ = lim

‖x‖→∞

‖(2η′(‖x‖2) − 2b)x‖
‖x‖

= lim
‖x‖→∞

|2η′(‖x‖2) − 2b| = 0,

so (A2) and (A3) are clearly satisfied with A = 2η′(0) Id , B = 2b Id .

10.1.1 Functional Setting

The system (10.1) can be reformulated as a variational problem in the Sobolev
space W := H1(S1;V ), which is a natural isometric Hilbert G-representation
for G = Γ × S1, with the G-action given by (cf. 6.21) and the inner product
defined by

〈u, v〉H1 :=

∫ 2π

0

〈u̇(t), v̇(t)〉 + 〈u(t), v(t)〉dt, u, v ∈ W.

We will denote by ‖ · ‖H1 the induced norm by 〈·, ·〉H1 on W .

Define Ψ : W → R by

Ψ(u) :=

∫ 2π

0

(
1

2
‖u̇(t)‖2 − ϕ(u(t))

)
dt, (10.3)

(where ‖ · ‖ stands for the L2-norm). Clearly, the functional Ψ is G-invariant
and C2-differentiable. Indeed, one can easily verify that

DΨ(u)(v) =

∫ 2π

0

〈u̇(t), v̇(t)〉 − 〈∇ϕ(u(t)), v(t)〉 dt.

Notice that if DΨ(u) ≡ 0 for some u ∈ W , then u ∈ H2(S1;V ) and u is a
solution to (10.1). Consequently, the problem (10.1) can be reformulated as

∇Ψ(u) = 0. (10.4)

To determine an explicit formula for ∇Ψ , we represent Ψ as

Ψ(u) =
1

2
‖u‖2

H1 − Φ̃(u), u ∈ W,

where
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Φ̃(u) =

∫ 2π

0

ϕ̃(u(t))dt, ϕ̃(h) = ϕ(h) +
1

2
‖h‖2, h ∈ V.

Clearly, ∇Ψ(u) = u−∇Φ̃(u).

Introduce the following maps:

L : H2(S1;V ) → L2(S1;V ), Lu = −ü+ u, (10.5)

j : H2(S1;V ) → H1(S1;V ), ju = u,

N∇ϕ̃ : C(S1;V ) → L2(S1;V ), N∇ϕ̃(u) = ∇ϕ̃(u) = ∇ϕ(u) + Id .

Since the equation
〈∇Φ̃(u), v〉H1 = DΦ̃(u)(v),

translates to
∫ 2π

0

(〈
d

dt
∇Φ̃(u)(t), v̇(t)

〉
+ 〈∇Φ̃(u)(t), v(t)〉

)
dt =

∫ 2π

0

〈∇ϕ̃(u(t)), v(t)〉 dt,

for all v ∈ H1(S1;V ), we obtain that ∇Φ̃(u) is a weak solution y to the system

{
−ÿ + y = ∇ϕ̃(u),

y(0) = y(2π), ẏ(0) = ẏ(2π).

Therefore, one obtains

∇Φ̃(u) = j ◦ L−1 ◦N∇ϕ̃(u), u ∈ W,

which leads to

∇Ψ(u) = u− j ◦ L−1 ◦N∇ϕ̃(u), u ∈ W.

Therefore,

x is a solution to (10.1) ⇐⇒ ∇Ψ(x) = 0, x ∈ W.

Notice that since j is a compact inclusion, the gradient G-map ∇Ψ is indeed a
completely continuous G-equivariant field on W , and the gradient equivariant

degree method applies.

By (A2)—(A4), for sufficiently small ε > 0 (resp. sufficiently large R > 0),

the map ∇Ψ is Bε(W )-admissible (resp. BR(W )-admissible). Thus, one can
define the following gradient G-equivariant degrees
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deg 0 := ∇G-deg (∇Ψ,Bε(W )),

deg ∞ := ∇G-deg (∇Ψ,BR(W )).

By the excision property of the gradient degree, if deg ∞ − deg 0 6= 0, then
there exists a solution to (10.4) and equivalently, to the system (10.1), in
BR(W ) \Bε(W ) (cf. [69]).

10.1.2 Existence Result

Define the G-orthogonal isomorphisms A, B : W → W by

A := Id − j ◦ L−1 ◦ (A+ Id ), B := Id − j ◦ L−1 ◦ (B + Id ). (10.6)

By (A2)—(A4) and the linearization argument, we have

deg 0 = ∇G-deg (A, B1(W )), (10.7)

deg ∞ = ∇G-deg (B, B1(W )), (10.8)

which leads to the following existence result for the system (10.1).

Theorem 10.1.3. Let G = Γ ×S1 for Γ being finite. Consider a Γ -orthogonal
representation V and a Γ -equivariant C2-differentiable function ϕ : V → R
satisfying verifying (A1)—(A4). Suppose that the maps A and B are given by
(10.6) with

deg ∞ − deg 0 = (deg 0,−deg t) ∈ A(Γ ) ⊕At
1(G) ' U(G). (10.9)

Then, deg 0 = 0 and if

deg t =
∑

(H)

nH · (H) 6= 0

i.e. nHo 6= 0, for some orbit type (Ho) in W , then there exists a non-constant
periodic solution xo to (10.1) satisfying Gxo ⊃ Ho. In addition, if Ho = Kψ,k

o

is such that (Kψ,1
o ) is a dominating orbit type in W , then there exist at least

|Γ/Ko| different non-constant periodic solutions with the orbit type at least

(Kψ,k
o ).

Proof: By definition of the gradient equivariant degree (cf. (5.24)-(5.25)),

deg 0 = Γ -Deg(B|WS1 , B1(W
S1

)) − Γ -Deg(A|WS1 , B1(W
S1

)).
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Observe that W S1 ' V and A|WS1 = −A, B|WS1 = −B (cf. (10.6)). Thus,

deg 0 = Γ -Deg(−B,B1(V )) − Γ -Deg(−A,B1(V )).

Combined with (10.2), we conclude deg 0 = 0.

By (10.7)—(10.8) and the excision property of gradient equivariant degree,
if

∇G-deg (A, B(W )) −∇G-deg (B, B(W )) 6= 0,

then there exists a solution to the system (10.1) in BR(W )\Bε(W ). Moreover,

by (A1), x = 0 is the only constant solution to (10.1). Therefore, there exists
a non-constant solution to the system (10.1) in BR(W ) \Bε(W ).

Suppose that nHo 6= 0, where (Ho) = (Kψ,k
o ) and (Kψ,1

o ) is a dominating
orbit type in W . Then, by the existence property of gradient equivariant de-
gree, there exists a solution u ∈ BR(W ) \ Bε(W ) to the system (10.1) such

that Gu ⊃ Ho. Due to (A1), we have that (Gu) = (K ψ̃,k̃) for some K with
Ko ⊂ K ( Γ and a homomorphism ψ̃ : K → S1 with ψ̃|Ko = ψ, k̃ ≥ k.
Since (Kψ,1

o ) is a maximal orbit type in the set of all 1-folded twisted orbit

types in W , thus (Kψ,k̃
o ) is a maximal orbit type in the set of all k̃-folded

twisted orbit types in W . Consequently, (K ψ̃,k̃) = (Kψ,k̃
o ). Therefore, there ex-

ist at least |Γ/Ko| different non-constant periodic solutions with the exact orbit

type (Kψ,k̃
o ). In other words, there exist at least |Γ/Ko| different non-constant

periodic solutions with the orbit type at least (Kψ,k
o ). �

10.1.3 Computation of deg t

For simplicity, assume that∗

(A5) the operators A and B have only positive eigenvalues.

Consider the complexification V c of V and the Γ -isotypical decomposition
of V c given by (6.7). Each operator A on V can be extended to a “complexified”
operator A : V c → V c given by A(z⊗v) := z⊗Av (for which the same notation

is used). For each µ ∈ σ(A), denote by Ẽ(µ) the eigenspace of µ considered in
V c and call

m̃j(µ) :=
dim

(
Ẽ(µ) ∩ Uj

)

dimUj
, (10.10)

∗ In the case A and B have negative eigenvalues, the argument remains valid for the “positive”
parts of σ(A) and σ(B).
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the Uj-multiplicity of µ.

Put Aj := A|Uj and

σkj (A) := {µ ∈ σ(Aj) : k2 < µ < (k + 1)2},

thus by the assumption (A4),

σ(Aj) =
∞⋃

k=0

σkj (A).

Recall A′ := A|W ′, W ′ := (W S1
)⊥. The definition of A (cf. (10.6)) clearly

implies that

σ(A′) =

{
1 − µ+ 1

l2 + 1
: µ ∈ σ(A), l = 1, 2, . . .

}

=

{
1 − µ+ 1

l2 + 1
: µ ∈ σkj (A), j = 0, 1, . . . , s, k = 0, 1, . . . , l = 1, 2, . . .

}
.

Consequently, the negative spectrum σ−(A′) of A′ can be described by

σ−(A′) =

{
1 − µ+ 1

l2 + 1
: µ ∈ σkj (A), j = 0, 1, . . . , s, k = 0, 1, . . . , l = 1, . . . , k

}
.

(10.11)

Moreover, for an eigenvalue 1 − µ+1
l2+1

of A′|Wl
: Wl →Wl, we have

mj,l

(
1 − µ+ 1

l2 + 1

)
= m̃j(µ), l = 1, 2, . . . (10.12)

Therefore, by (10.11)—(10.12), the second component deg ∗
0 of deg 0 equals

to

deg ∗
0 = deg 0

0 ∗
∑

ξ∈σ−(A′)

∑

j,l

mj,l(ξ)deg Vj,l

= deg 0
0 ∗

s∑

j=0

∞∑

k=1

k∑

l=1

∑

µ∈σk
j (A)

mj,l(1 − µ + 1

l2 + 1
)deg Vj,l

= deg 0
0 ∗

s∑

j=0

∞∑

k=1

∑

µ∈σk
j (A)

m̃j(µ)

k∑

l=1

deg Vj,l
. (10.13)
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On the other hand, Aj : Uj → Uj is completely diagonalizable, thus

m̃j =
∑

µ∈σ(Aj)

m̃j(µ) =
∞∑

k=0

∑

µ∈σk
j (A)

m̃j(µ). (10.14)

Now, by putting
m̃k
j (A) :=

∑

µ∈σk
j (A)

m̃j(µ), (10.15)

we can simplify (10.13) to the following form:

deg t0 = deg 0
0 ∗

s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
.

Notice that (cf. (10.14))

m̃j =

∞∑

k=1

m̃k
j (A). (10.16)

Following the same lines for the operator B, by assumption (A5), one obtains

deg t
∞ = deg 0

∞ ∗
s∑

j=0

∞∑

k=1

m̃k
j (B)

k∑

l=1

deg Vj,l
,

and

m̃j =
∞∑

k=1

m̃k
j (B), (10.17)

where
m̃k
j (B) :=

∑

η∈σk
j (B)

m̃j(η),

with m̃j(η) being the Uj -isotypical multiplicity of η (cf. (10.10)).

By Theorem 10.1.3, deg 0 = 0, thus deg 0
0 = deg 0

∞. Put

deg o := deg 0
0 = deg 0

∞. (10.18)

Therefore, by (10.9),
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deg t = deg t∞ − deg t0

= deg o ∗
s∑

j=0

∞∑

k=1

(
(
m̃k
j (B) − m̃k

j (A)
) k∑

l=1

deg Vj,l

)

=
∏

µ∈σ−(Ā)

r∏

i=0

(deg Vi
)mi(µ) ∗

s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)
, (10.19)

where

mk
j := m̃k

j (B) − m̃k
j (A). (10.20)

Definition 10.1.4. We call the number mk
j given by (10.20) the k-th Uj-

isotypical compartmental defect number for the map ∇Ψ , for j = 0, 1, . . . , s
and k = 1, 1, . . . .

The following lemma describes the possible combinations of the Uj -isotypical
compartmental defect numbers mk

j , k = 1, 2, . . . , subject to conditions (10.16)—
(10.17):

Lemma 10.1.5. Let a, N be positive integers, (nk)
N
k=1 and (mk)

N
k=1 be two

N-part partitions of a, i.e.

a = n1 + n2 + · · · + nN = m1 +m2 + · · · +mN ,

where nk’s and mk’s are non-negative integers. Put

bk := nk −mk, k = 1, 2, . . . , N,

b+ :=
∑

bk>0

bk, b− :=
∑

bk<0

bk,

where a sum over the empty set is assumed to be 0.
Then (bk)

N
k=1 is a partition of 0 with 0 ≤ b+ ≤ a and −a ≤ b− ≤ 0.

Proof: Assume that (nk)
N
k=1 and (mk)

N
k=1 are partitions of a, i.e.

a = n1 + n2 + · · · + nN = m1 +m2 + · · · +mN .

Then, clearly, (bk)
N
k=1 = (nk − mk)

N
k=1 is a partition of 0 and, by definition,

b+ ≥ 0, b− ≤ 0. Moreover, since nk ≥ 0 and mk ≥ 0 for all k,
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b+ =
∑

bk>0

bk =
∑

nk>mk

(nk −mk) ≤
∑

nk>mk

nk ≤
N∑

k=1

nk = a

b− =
∑

bk<0

bk =
∑

nk<mk

(nk −mk) ≥
∑

nk<mk

(−mk) ≥ −
N∑

k=1

mk = −a,

which concludes the proof. �

10.1.4 Concrete Existence Results for Selected Symmetries

We present here the computational results for several Γ -representations, where

Γ = D4,D5,D6, S4 and A5. Similarly to Subsection 6.3.4, we assume the
conditions (R1)—(R2) hold.

By condition (R2),

mi(µ) =

{
dim RE(µ)/dim RVi i = iµ,

0 i 6= iµ.
(10.21)

Also notice that (deg Vi
)2 = (G) for all i. Put

εi =
∑

µ∈σ(A)

miµ(µ) mod 2.

Thus,

DegoΓ =
r∏

i=0

(
deg Vi

)εi
.

Consequently, the computational formula (10.19) reduces to

deg 1 =

r∏

i=0

(
deg Vi

)εi
∗

s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)
. (10.22)

Consider the system (10.1) assuming that (A1)—(A5). As the symmetry
group Γ , take the dihedral groups D4, D5, D6, the octahedral group S4 and

the icosahedral group A5. We list the computational results in Appendix A4.5.
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10.2 Symmetric Autonomous Newtonian System with

Degeneracy

In this section, we study the symmetric autonomous Newtonian system (10.1)

without assuming the nondegeneracy assumption (A4). In this case, the lin-
earized operator A (resp. B) at 0 (resp. ∞) may have nontrivial kernel, i.e. the
energy functional Ψ defined by (10.3) has degenerate critical points at 0 and/or
∞. As the standard linearization argument fails, the formulae (10.7)—(10.8)

are no more valid for the computation of deg ∞ − deg 0. To proceed with this
degenerate situation, we need the result called splitting lemma proved in [69].

10.2.1 Splitting Lemma

Let G be a compact Lie group and W an (infinite-dimensional) isomet-
ric Hilbert G-representation. Consider a C2-differentiable G-invariant map
Φ : W → R, which has the following form

Φ(x) =
1

2

〈
x, x
〉
W

− g(x), (10.23)

where 〈·, ·〉W denotes the G-invariant inner product on W and g : W → R is a
G-invariant function satisfying

(B1) ∇g : W → W is a G-equivariant compact map.
(B2) For p ∈ {0,∞}, there exists a G-equivariant symmetric compact operator
Lp : W → W and a G-invariant η : W → R such that Φ(x) = 1

2
〈(Id −

Lp)x, x〉W + ηp(x) with ∇ηp : W → W being a compact map and

‖∇2ηp(x)‖ → 0, as ‖x‖ → p.

(B3) 0 ∈ σ(Id − Lp), i.e. p ∈ {0,∞} is a degenerate critical point of Φ.

(B4) p ∈ {0,∞} is isolated as critical point of Φ.

Notice that (B3) implies that p = 0 is a critical point of Φ. We also treat

p = ∞ as a critical point, with Hesse matrix Id − L∞. We call ∞ an isolated
critical point if ∇Φ−1(0) is bounded.

Notation 10.2.1 Denote by Zp := Ker (Id −Lp) and Wp := Im (Id −Lp).

Since Lp is a compact operator, we have that Id −Lp is a Fredholm operator of
index zero. Thus, Zp and Wp are finite and infinite dimensional G-orthogonal
representations, respectively. Also, Id −Lp being a symmetric linear operator,

implies that W = Zp ⊕ Wp and the operator Qp := (Id − Lp)|Wp is a G-
isomorphism.
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The following splitting lemma, which is a simplified version of the theorem

proved in [69], is essential for computations of the equivariant degree of ∇Φ at
0 and ∞.

Lemma 10.2.2. (Splitting Lemma) Suppose Φ is of the form (10.23) satisfying
(B1)—(B4). Then, for each p ∈ {0,∞}, there exist εp > 0 and a G-equivariant
gradient homotopy ∇Hp : [0, 1] ×W → W such that

(i) ∇H−1
0 (0)∩(cl(Bε0(W )) × [0, 1]) = {0}×[0, 1], and ∇H−1

∞ (0) ⊂ cl(Bε∞(W ))×
[0, 1].

(ii) ∇Hp(t, ·) = Id −∇gp(t, ·) for t ∈ [0, 1], where ∇gp : [0, 1] ×W →W is a
compact map.

(iii) ∇Hp(0, ·) = ∇Φ, and

(iv) there exists a G-equivariant gradient mapping ∇ϕp : Zp → Zp such that
∇Hp(1, (v,w)) = (∇ϕp(v),Qp(w)), for (v,w) ∈ Zp ⊕Wp.

Therefore, by the multiplicativity property of gradient equivariant degree, we
have (cf. Theorem 5.2.5)

Corollary 10.2.3. Suppose Φ is of the form (10.23) satisfying (B1)—(B4).
Then, for p ∈ {0,∞}, there exist εp > 0 and a G-equivariant gradient map
∇ϕp : Zp → Zp such that

∇G-deg (∇Φ,Bεp(W )) = ∇G-deg (∇ϕp, Bεp(Zp)) ∗ ∇G-deg (Qp, B(Wp)),

where Zp, Wp and Qp are given by Notation 10.2.1.

Remark 10.2.4. Notice that in the case G = Γ × S1 (as usual, we assume Γ
is finite), the computational formula (5.28) in Subsection 5.2.2 can be easily
extended to the class of G-equivariant gradient compact fields. Indeed, it is
well-known that each compact operator has a spectrum either composed of 0

and a finite number of eigenvalues, or it is an infinite sequence of eigenvalues
convergent to 0 (which is also in the spectrum). Moreover, every non-zero
eigenvalue has a finite multiplicity. Consequently, by compactness assumption
(A2), there are only finitely many eigenvalues µ of Lp such that µ > 1, which

implies that the negative spectrum of Qp = Id − Lp consists of only finitely
many eigenvalues, each of which has a finite multiplicity. Therefore, by the
suspension property of the gradient degree in the infinite-dimensional case,

we have the following analog of formula (5.28), which can be used for the
computations of ∇G-deg (Qp, B(Wp, p)).
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Proposition 10.2.5. Let G = Γ × S1 for a finite group Γ and let W be an

isometric Hilbert G-representation. Suppose that Q : W → W is a linear
isomorphic G-equivariant gradient compact field. Then,

∇G-deg (Q, B(W)) = ∇G-deg (Q̄, B(WS1

))−

∇G-deg (Q̄, B(WS1

)) ∗
∑

ξ∈σ−(Q′)

∑

j,l

mj,l(ξ)degVj,l
,

where ∇G-deg (Q̄, B(WS1
)) is given by

∇G-deg (Q̄, B(WS1

)) =
∏

µ∈σ−(Q̄)

r∏

i=0

(deg Vi
)mi(µ).

10.2.2 Symmetric Autonomous Newtonian Systems with
Degeneracy

Consider the symmetric autonomous Newtonian system (10.1) satisfying (A1)—
(A3) and the degeneracy assumption

(A4’) (σ(A) ∪ σ(B)) ∩ {l2 : l = 0, 1, 2, . . . } 6= ∅.

For simplicity, assume that σ(A) (resp. σ(B)) has a nontrivial intersection with
{l2 : l = 0, 1, 2, . . . }, which contains only one element, namely

(D)

{
σ(A) ∩ {l2 : l = 0, 1, 2, . . . } = {l20},
σ(B) ∩ {l2 : l = 0, 1, 2, . . . } = {l2∞}.

10.2.3 Reformulation in Functional Spaces

Following the same lines as in Subsection 10.1.1, we reformulate the problem
of finding nonstationary periodic solutions of (10.1) to a variational problem of

finding nontrivial critical points to the energy functional Ψ defined by (10.3).

By (A1)—(A3) and (D), we are in the setting of Section 10.2.1. Indeed,

Φ(u) =
1

2
〈u, u〉H1 −

∫ 2π

0

ϕ̃(u(t))dt

satisfies (B1)—(B3) for
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L0 = j ◦ L−1 ◦ (A+ Id ), (10.24)

L∞ = j ◦ L−1 ◦ (B + Id ). (10.25)

Also, by (A1), the functional Φ satisfies (B4) in the case l0 = l∞ = 0 in (D)

(cf. Lemma 5.2.1. in [69]). In the case lp 6= 0 for some p ∈ {0,∞}, we assume
that

(A5) p ∈ {0,∞} is an isolated critical point of Φ whenever lp 6= 0.

Remark 10.2.6. In general, it is possible that (A5) fails for some p ∈ {0,∞}
with lp 6= 0. However, by an equivariant implicit function theorem argument, it
is shown in [69] that in the case (A5) fails, there already exist infinitely many
solutions of (10.1) and the minimal period of any solution sufficiently close

to the point p is equal to 2π
lp

(cf. Theorem 5.2.2 in [69]). In particular, (10.1)

allows infinitely many nonstationary 2π
lp

-periodic solutions automatically. In

this section, we exclude such possibility by assuming (A5).

Therefore, by (A1)—(A3), (D) and (A5), there exist a sufficiently small
ε > 0 and large R > 0 such that deg 0 and deg ∞ are well-defined by (10.7)—
(10.8). Consequently, Theorem 10.1.3 holds with the assumptions (A1)—(A4)

replaced by (A1)—(A3), (D) and (A5). This statement will be referred as
Theorem 10.1.3d.

10.2.4 Computations of deg ∞ − deg 0

To apply Theorem 10.1.3d for the existence and multiplicity result for the
system (10.1) allowing degeneracy assumption, we extend the computations
of deg ∞ and deg 0 using Lemma 10.2.2. Especially, we analyze several pos-
sible cases where a nontrivial (Hϕ,l)-term occurs in deg ∞ − deg 0, for some

dominating orbit type (Hϕ). Due to the degeneracy assumption, the value of
deg 0 (resp. deg ∞) is only computable up to an unknown factor. However, to
take advantage of Theorem 10.1.3d (ii), we only need to determine a nontrivial
(Hϕ,l)-term in deg ∞−deg 0, i.e. to find a nontrivial (Hϕ,l)-term in deg ∞ (resp.

deg 0) which does not appear in deg 0 (resp. deg ∞).

Consider the S1-isotypical decomposition of W given by (6.31) and take A
and B defined by (10.6). Then, we have



260 10 Existence of Periodic Solutions to Symmetric Variational Problems

A|WS1 = −A, A|Wl
= Id − 1

l2 + 1
(A+ Id ), (10.26)

B|WS1 = −B, B|Wl
= Id − 1

l2 + 1
(B + Id ).

We distinguish two degenerate cases for lp = 0 and for lp > 0.

(DA) σ(A) ∩ {l2 : l = 0, 1, 2, . . . } = {0},
(D′

A) σ(A) ∩ {l2 : l = 0, 1, 2, . . . } = {l20 6= 0},

(DB) σ(B) ∩ {l2 : l = 0, 1, 2, . . . } = {0},
(D′

B) σ(B) ∩ {l2 : l = 0, 1, 2, . . . } = {l2∞ 6= 0}.

Notice that (cf. (10.26))
{
A is a G-isomorphism on W S1 ⇔ 0 6∈ σ(A)

A is a G-isomorphism on Wl ⇔ l2 6∈ σ(A)
, (10.27)

and similar relation holds for B.

Since the computations of deg ∞ and deg 0 are completely analogous, we
only discuss in details the computations of deg 0 assuming (DA) or (D′

A). A
table summarizing the existence/nonexistence of a nontrivial (Hϕ,l)-term in

deg p, is presented in Theorem 10.2.9, for p ∈ {0,∞}. For completeness, we
also include the nondegenerate conditions:

(NDA) σ(A) ∩ {l2 : l = 0, 1, 2, . . . } = ∅,
(NDB) σ(B) ∩ {l2 : l = 0, 1, 2, . . . } = ∅.

By Corollary 10.2.3, there exists ε > 0 and a G-equivariant gradient map
∇ϕ0 : Z0 → Z0 such that

deg 0 = ∇G-deg (∇ϕ0, Bε(Z0)) ∗ ∇G-deg (A|W0, B(W0)),

where ∇G-deg (A|W0, B(W0)) can be computed by (cf. Proposition 10.2.5)

∇G-deg (A|W0, B(W0))

=
∏

µ∈σ−(A|
WS1

0

)

r∏

i=0

(deg Vi
)mi(µ)

−
∏

µ∈σ−(A|
WS1

0

)

r∏

i=0

(deg Vi
)mi(µ) ∗

∑

ξ∈σ−(A|W′
0
)

∑

j,l

mj,l(ξ)deg Vj,l
.
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To simplify the notations, put

deg 0
A :=

∏

µ∈σ−(A|
WS1

0

)

r∏

i=0

(deg Vi
)mi(µ), (10.28)

deg tA := deg 0
A ∗

∑

ξ∈σ−(A|W′
0
)

∑

j,l

mj,l(ξ)deg Vj,l
. (10.29)

Then, we have

deg 0 = ∇G-deg (∇ϕ0, Bε(Z0)) ∗ (deg 0
A − deg tA). (10.30)

We simplify the formulae (10.28)—(10.29), under different assumptions
(DA), (D′

A) and (NDA) respectively.

Case (DA): Under the assumption (DA), A|Wl
is a linear G-isomorphism of Wl

for each l ∈ {1, 2, . . .}, and Z0 = KerA = KerA ⊂W S1
(cf. (10.27)). Thus,

∇G-deg (∇ϕ0, Bε(Z0)) ∈ A0(G). (10.31)

Therefore,

deg 0 = ∇G-deg (∇ϕ0, Bε(Z0)) ∗ (deg 0
A − deg t

A)

= ∇G-deg (∇ϕ0, Bε(Z0)) ∗ deg 0
A︸ ︷︷ ︸

∈A0(G)

−∇G-deg (∇ϕ0, Bε(Z0)) ∗ deg tA︸ ︷︷ ︸
∈A1(G)

,

where −∇G-deg (∇ϕ0, Bε(Z0)) ∗ deg tA is the part that may contribute a non-
trivial (Hϕ,l)-term to deg 0.

Since WS1

0 = Im (A), we have that σ−(A|WS1
0

) = σ+(A) (cf. (10.26)). To

interpret the formula (10.29), it is sufficient to observe that

ξ ∈ σ−(A|W ′
0
) ⇐⇒ ξ = 1 − µ + 1

l2 + 1
, µ > l2, for µ ∈ σ(A), l ∈ {1, 2, . . . },

and
mj,l(ξ) = m̃j(µ),

where m̃j(µ) is the Uj -multiplicity of µ.

Let m̃k
j (A) by defined by (10.15). It can be directly verified that (cf. (10.13))
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∑

ξ∈σ−(A′)

∑

j,l

mj,l(ξ)deg Vj,l
=

s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
.

Therefore, the formulae (10.28)—(10.29) reduce to

deg 0
A =

∏

µ∈σ+(A)

r∏

i=0

(deg Vi
)mi(µ),

deg tA = deg 0
A ∗

s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
.

Let (Hϕ,l) be such that (Hϕ) is a dominating orbit type in W . We introduce
the following conditions:

(Y1) deg tA contains a nontrivial (Hϕ,l)-term, and Z0 = KerA is such that
{

(Z0)
Γ = {0}

(H̃ × S1) 6∈ J (Z0) for any (H̃) s.t. (H) ≤ (H̃) < (Γ ).

(N1) deg tA does not contain a nontrivial (Hϕ,l)-term.

Proposition 10.2.7. Let ϕ : V → R be a Γ -invariant C2-differentiable map
satisfying (A1)—(A3) and (DA). Let (Hϕ,l) be such that (Hϕ) is a dominating
orbit type in W . Then,

(i) Under the assumption (Y1), there exists a (Hϕ,l)-term with a non-zero
coefficient in deg 0;

(ii) Under the assumption (N1), there is no (Hϕ,l)-term with non-zero coeffi-

cient in deg 0.

Proof: (i). By (Z0)
Γ = {0} and Z0 ⊂W S1

, we have that (Z0)
G = {0}, and

∇G-deg (∇ϕ,Bε(Z0)) = (G) + a0 ∈ A0(G), (10.32)

for some a0 ∈ A0(G), which does not contain nontrivial (G)-term. Substituting
(10.32) in (10.30), we obtain

deg 0 = ∇G-deg (∇ϕ0, Bε(Z0)) ∗ ∇G-deg (A|W0, B(W0))

=
(
(G) + a0

)
∗ (deg 0

A − deg tA)

= deg 0
A − deg t

A + a0 ∗ deg 0
A − a0 ∗ deg tA

= deg 0
A + a0 ∗ deg 0

A︸ ︷︷ ︸
∈A0(G)

−deg tA − a0 ∗ deg t
A︸ ︷︷ ︸

∈A1(G)

,
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Since deg tA contains a nontrivial (Hϕ,l)-term, to conclude that deg 0 also con-

tains this (Hϕ,l)-term (with an opposite sign), it suffices to eliminate the pos-
sibility that

a0 ∗ deg t
A = −(Hϕ,l) + rest.

By the maximality of (Hϕ), this would only happen if a0 contains a nontrivial
(H̃ ×S1)-term for some (H̃) ≥ (H). Also notice that (H̃) < (Γ ), since a0 does
not contain (G)-term. By the assumption that such a (H̃ ×S1) does not occur

in J (Z0), it is impossible for a0 to contain such a nontrivial (H̃ × S1)-term,
so the statement follows.

(ii). It is clear that if deg tA has no nontrivial (Hϕ,l)-term, deg 0 does not permit
one. �

Case (D′
A): Under the assumption (D′

A), A is a linear G-isomorphism when
restricted to the S1-isotypical components W S1

and each Wl, for l 6= l0 (cf.
(10.26)). Indeed,

Z0 = KerA ⊂ Wl0.

In particular, (Z0)
S1

= {0} and

∇G-deg (∇ϕ0, Bε(Z0)) = (G) + a1, for a1 ∈ A1(G). (10.33)

Substituting (10.33) in (10.30), we obtain

deg 0 = ∇G-deg (∇ϕ0, Bε(Z0)) ∗ ∇G-deg (A|W0, B(W0))

=
(
(G) + a1

)
∗ (deg 0

A − deg tA)

= deg 0
A − deg t

A + a1 ∗ deg 0
A − a1 ∗ deg tA

= deg 0
A︸ ︷︷ ︸

∈A0(G)

−deg tA + a1 ∗ deg 0
A︸ ︷︷ ︸

∈A1(G)

,

where the last equality uses the fact that a1∗deg tA = 0, since a1,deg tA ∈ A1(G)
(cf. Proposition 5.1.14).

Moreover, we have

deg t
A = deg 0

A ∗
∑

ξ∈σ−(A′)

s∑

j=0

∞∑

l=1

mj,l(ξ)deg Vj,l

= deg 0
A ∗
( s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
+

s∑

j=0

m̃j(l
2
0)

l0−1∑

l=1

deg Vj,l

)
, (10.34)
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where it is clear that

deg 0
A =

∏

µ∈σ+(A)

r∏

i=0

(deg Vi
)mi(µ). (10.35)

We introduce the following conditions:

(Y2) deg tA contains a nontrivial (Hϕ,l)-term, and (Hϕ,l) 6∈ J (Z0).
(N2) deg tA does not contain a nontrivial (Hϕ,l)-term and (Hϕ,l) 6∈ J (Z0).

Proposition 10.2.8. Let ϕ : V → R be a Γ -invariant C2-differentiable map

satisfying (A1)—(A3), (D′
A) and (A5). Let (Hϕ,l) be such that (Hϕ) is a dom-

inating orbit type in W .

(i) Under the assumption (Y2), there exists a (Hϕ,l)-term with non-zero co-
efficient in deg 0;

(ii) Under the assumption (N2), there is no (Hϕ,l)-term with non-zero coeffi-

cient in deg 0.

Proof: (i). By (Y2), deg tA contains a nontrivial (Hϕ,l)-term. It is sufficient
to show that a1∗deg 0

A does not contain any −(Hϕ,l)-term so that a cancelation
does not occur. But (Hϕ,l) 6∈ J (Z0), which implies that a1 has no nontrivial
(Hϕ,l)-term. Thus, by maximality of (Hϕ,l), a1 ∗deg 0

A contains no (Hϕ,l)-term.

Therefore, it follows that there exists a (Hϕ,l)-term with non-zero coefficient
in deg 0.

(ii). Similar proof as in (i). By (N2), deg tA contains no nontrivial (Hϕ,l)-term.
It is sufficient to show that a1∗deg 0

A does not contain any −(Hϕ,l)-term, which
is again the case by the condition (Hϕ,l) 6∈ J (Z0). �

Case (NDA): Under the nondegeneracy assumption (NDA), A is a linear G-
isomorphism of W . Thus, the complete value of deg 0 can be obtained (cf.
Subsection 10.1.3). Then, it makes sense to formulate the following conditions:

(Y) deg 0 contains a nontrivial (Hϕ,l)-term,

(N) deg 0 does not contain any nontrivial (Hϕ,l)-term.

Theorem 10.2.9. Let ϕ : V → R be a Γ -invariant C2-differentiable map

satisfying (A1)—(A3) and (A5). Let (Hϕ,l) be such that (Hϕ) is a dominating
orbit type in W . Then, we have the Table 10.2.9 summarizing the sufficient
conditions of existence and nonexistence of a nontrivial (Hϕ,l)-term in deg p,

for p ∈ {0,∞} (where the conditions (Y1’), (Y’), (N1’), (N2’) and (N’) of B
are the counterparts of those of A).
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deg 0 deg ∞

Existence (DA)+(Y1) (DB)+(Y1’)

of (Hϕ,l) (D′
A)+(Y2) (D′

B)+(Y2’)
(NDA)+(Y) (NDB)+(Y’)

Nonexistence (DA)+(N1) (H40)+(N1’)
of (Hϕ,l) (D′

A)+(N2) (D′
B)+(N2’)

(NDA)+(N) (NDB)+(N’)

Table 10.1. Existence and Nonexistence of (Hϕ,l)-term in deg p.

Proof: Immediate consequence of Propositions 10.2.7—10.2.8. �

Corollary 10.2.10. Let ϕ : V → R be a Γ -invariant C2-differentiable map
satisfying (A1)—(A3) and (A5). Let (Hϕ,l) be such that (Hϕ) is a dominating
orbit type in W . Then, we have a nontrivial (Hϕ,l)-term in deg ∞−deg 0, if the

conditions in the Table 10.2.9 are satisfied diagonally, i.e. one of the existence
conditions for deg 0 with one of the nonexistence conditions for deg ∞ or vice
versa.

10.2.5 Computational Examples

We present the computational examples for Γ = Dn and V = Rn for n =
6, 8, 10, 12. Consider the potential ϕ : V → R satisfying (A1)—(A3) with the

matrices A and B being of the type

C =




c d 0 0 . . . 0 d
d c d 0 . . . 0 0
0 d c d . . . 0 0
...

...
...

. . .
...

...
...

d 0 0 0 . . . d c



.

To obtain ϕ satisfying the above properties, one can define for example ϕ :
V → R by ϕ(x) := 1

2
〈Bx, x〉 − 1√

〈(A−B)x,x〉+a
, for certain a > 0. A similar

computational example can be found in [69]. We also assume (A5) in all the
computational examples. The degeneracy assumptions are listed in Table 10.2.
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Γ deg 0 deg ∞

D6 (DA)+(Y1) (DB)+(N1’)

D8 (DA)+(Y1) (D′
B)+(N2’)

D10 (D′
A)+(N2) (DB)+(Y1’)

D12 (D′
A)+(N2) (D′

B)+(Y2’)

Table 10.2. Summary of the assumptions in the computational examples.

10.3 O(2)-Symmetric Elliptic Equation with

Periodic-Dirichlet Mixed Boundaries

Suppose that O ⊂ R2 ' C is a unite disc and take Ω := (0, 2π)×O. Consider
the following elliptic periodic-Dirichlet BVP





−∂2u
∂t2

−4xu(x) = f(u(t, x)), x ∈ Ω

u(t, x) = 0 a.e. for x ∈ ∂O, t ∈ (0, 2π),

u(0, x) = u(2π, x) a.e. for x ∈ O,
∂u
∂t

(0, x) = ∂u
∂t

(2π, x) a.e. for x ∈ O,

(10.36)

where (t, x) ∈ (0, 2π) × O, u ∈ H2(Ω; R), and f : R → R is a C1-function
satisfying the conditions:

(B1) f(0) = 0 and f ′(0) = a > 0;

(B2) f is asymptotically linear at infinity, i.e. there exists b ∈ R such that

lim
|t|→∞

f(t) − bt

t
= 0. (10.37)

Consider the Laplace operator −4x on O with the Dirichlet boundary condi-
tion. Then, the operator −4x has the spectrum

σ(−4x) := {µk,j : µk,j = z2
k,j, k = 1, 2, . . . , j = 0, 1, 2, . . . , Jj(zk,j) = 0},

where zk,j denotes the k-th zero of the j-th Bessel function Jj. The correspond-
ing to µj,k eigenfunctions (expressed in polar coordinates) are; for j = 0

ϕk,0(r) := J0(
√
µk,jr),

and for j > 0,



10.3 O(2)-Symmetric Elliptic Equation with Periodic-Dirichlet Mixed Boundaries 267

ϕck,j(r, θ) := Jj(
√
µk,jr) cos(jθ), ϕsk,j(r, θ) := Jj(

√
µk,jr) sin(jθ).

The space span{ϕck,j, ϕsk,j} is equivalent to the j-th irreducibleO(2)-representation
Vj (j > 0), and the space span{ϕk,0} i equivalent to the trivial irreducible
O(2)-representation V0. We need additional assumptions

(B3) a, b /∈ {l2 + µk,l, µk,j ∈ σ(−4x), l = 0, 1, 2, . . . }.
(B4) The system {

−4xu = f(u),

u|∂O = 0.
(10.38)

has a unique solution u ≡ 0.

10.3.1 Setting in Functional Spaces

By using the standard identification R/2π ' S1 we can assume that Ω :=
S1 × O and that ∂Ω = S1 × S1. We put W := H1

0 (Ω) := {u ∈ H1(Ω; R) :
u|∂Ω ≡ 0}, which is a Hilbert G-representation for G = O(2) × S1, with the

inner product

〈u, v〉 :=

∫

Ω

∇u(t) • ∇v(t) dt.

Associate to the problem (10.36) a functional Ψ : R ⊕W → R given by

Ψ(u) :=
1

2

∫

Ω

|∇u(x)|2dx−
∫

Ω

F (u(x))dx,

where F (y) :=
∫ y
0
f(t)dt, and define J : W → R by

J(u) :=

∫

Ω

F (u(x))dx.

Since f is a C1-function satisfying (B1), J is of class C1 and for h ∈ W ,

DJ(u)h =

∫

Ω

f(u(x))h(x)dx.

Thus, Ψ is also C1-differentiable with respect to u and

DuΨ(u)h =

∫

Ω

∇u(x)∇h(x)dx−DJ(u)h, h ∈ W.
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Consequently, by the standard argument, if DuΨ(λ, u) ≡ 0, then u is a solution

to (10.36). In particular,

∇uΨ(u) = 0 ⇐⇒ u is a solution to (10.36),

where
∇uΨ(u) = u−∇J(u). (10.39)

To determine ∇J , we introduce the following operators (cf. Figure 10.1)

j : H1
0 (Ω) ↪→ Lp(Ω), j(u) = u,

Nf : Lp(Ω) → L
p

p−1 (Ω), Nf (u)(x) = f(u(x)),

and rewrite DJ(u) : W → R as

DJ(u)h =

∫

Ω

Nf (j(u))(x)h(x)dx. (10.40)

H1
0 (Ω) H1

0 (Ω)

Lp(Ω) L
p

p−1 (Ω)

∇J

j R

Nf

Fig. 10.1. Composition diagram for ∇J

It is known that the inclusion j is a compact operator (since f is asymp-

totically linear, it satisfies |f(t)| ≤ A+B|t| for some constants A and B, thus
the usual condition p < 2n

n−2
, with p = 1 and n = 3 is satisfied) and Nf is

C1-differentiable. Thus,
∇Nf(0) = f ′(0)Id . (10.41)

Denote by (H1
0 (Ω))

∗
the dual space of H1

0 (Ω) and ι : (H1
0 (Ω))

∗ → H1
0 (Ω)

the isomorphism given by the Riesz representation theorem. Let τ : L
p

p−1 (Ω) →
(H1

0 (Ω))
∗

be a (continuous) map defined by
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τ (ψ)(v) :=

∫

Ω

ψ(x)v(x)dx, ψ ∈ L
p

p−1 (Ω), v ∈ H1
0 (Ω),

and R : L
p

p−1 (Ω) → H1
0 (Ω) defined by R := ι ◦ τ . Then, R is the inverse of the

Laplacian −4, i.e. Rϕ is the weak solution to the problem

{
−4u(t, x) = ϕ, (t, x) ∈ Ω

u|∂Ω ≡ 0,

where 4 := ∂2

∂t2
+ 4x, or equivalently,

〈Rϕ, h〉H1
0 (Ω) =

∫

Ω

ϕ(x)h(x)dx, ∀h ∈ H1
0 (Ω).

In particular, if ϕ = Nf ◦ j(u), then

〈R ◦Nf ◦ j(u), h〉H1
0 (Ω) =

∫

Ω

Nf (j(u))(x)h(x)dx.

Taking into account (10.40), we obtain

〈R ◦Nf ◦ j(u), h〉H1
0

= DJ(u)h, h ∈ W,

i.e.
∇J(u) = R ◦Nf ◦ j(u).

Therefore (cf. (10.39)),

F(u) := ∇Ψ(u) = u−R ◦Nf ◦ j(u), u ∈ W,

is a completely continuous O(2) × S1-equivariant gradient field on W . Then
the problem (10.36) is equivalent to the equation

F(u) = 0. (10.42)

10.3.2 Example of a Function f Satisfying (B1)—(B4)

A similar functional setting can be established for the boundary problem

(10.38), namely we can reformulate it as the equation

Fx(u) = 0, u ∈ H1
0 (O),
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where

Fx(u) := ∇Ψx(u) = u−Rx ◦Nf ◦ j(u),

with Rx being the inverse of the Laplacian −4x. It s possible to construct a
function f : R → R satisfying the conditions (B1)—(B4). We can choose two
numbers 0 < a < b such that [a, b] ∩ σ(−4x) = ∅ and

b− a <
|µko − b|µ1

µko

,
|µko − b|
µko

:= max{|µk − b|
µk

: µk ∈ σ(−4x)},

and put

f(u) = bu− (b− a)
u

1 + u2
, u ∈ R.

More generally, assume that f is an asymptotically linear function satisfying
the conditions (B1)—(B3) and such that η := max{|f ′(u)| : u ∈ R} is such

that

η <
|µko − b|µ1

µko

,
|µko − b|
µko

:= max

{
|µk − b|
µk

: µk ∈ σ(−4x)

}
. (10.43)

Then, clearly, b− a ≤ η.

Proposition 10.3.1. Under the above assumptions the boundary problem (10.38)

has a unique solution u ≡ 0.

Proof: Let us observe that under the condition (10.43), the derivative DFx :

H1
0 (O) → H1

0 (O) is an isomorphism for all u ∈ H1
0 (O). Indeed,

DFx(u)(v) = v−bRxj(v)−Rx[Nf ′(u)−bId ]j(v), Nf ′(u)j(v)(x) := f ′(u(x))v(x).

Put
A := Id − bRx ◦ j, B := Rx[Nf ′(u) − bId ] ◦ j.

Then DFx(u) = A−B, and we have (by (B3) that A is invertible with ‖A−1‖ =
|µko−b|
µko

and ‖B‖ ≤ η‖Rx‖ = µ1η. Then the operator

DFx(u) = A−B = A(Id −A−1B)

is invertible if ‖A−1B‖ < 1. But,

‖A−1B‖ ≤ ‖‖A−1‖‖B‖ ≤ |µko − b|
µko

µ1η < 1.
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Consequently, every solution u ∈ H1
0 (O) to the problem (10.38) (i.e. Fx(u) = 0)

is a regular point of Fx and consequently, it has to be an isolated solution. Since
(10.38) is O(2)-symmetric, it follows that the isotropy of u is O(2), i.e. u is
a radial function on O (which can be detected using Leray-Schauder degree).

Since DFx(0), DFx(∞) : H1
0 (O) → H1

0 (O) are isomorphisms and Fx is a
completely continuous vector field on H1

0 (O), there can only be finitely many
solutions to the equation (10.38), and for every solution u the Leray-Schauder
degree Deg(Fx, Bu) is well defined on an isolating neighborhood Bu of u. By

using the linearization of Fx on Bu, by the condition (10.43),

Deg (Fx, Bu) = Deg (DFx(0), B1(0)) = Deg (DFx(∞), B1(0)) 6= 0.

Therefore, by the additivity property of the Leray-Schauder degree, there can
only be one solution u ≡ 0. �

10.3.3 Equivariant Invariant and Isotypical Decomposition of W

By assumption (B3), there exists R, ε > 0 such that u = 0 is the only solution
to the equation (10.42) in Bε(0) ⊂ W , and (10.42) has no solutions u ∈ W such
hat ‖u‖ ≥ R. We define the equivariant invariant ω for the problem (10.36)
by

ω := deg 0 − deg ∞, (10.44)

where

deg 0 := ∇O(2)×S1-deg (F, Bε(0)), deg ∞ := ∇O(2)×S1-deg (F, BR(0)).

The spectrum σ of −4 on Ω (with the boundary conditions (10.36)) is

σ = {λk,j,l : λk,j,l := l2 + µk,j , µk,j ∈ σ(−4x), l = 0, 1, 2, . . . }.

Denote by Ek,j,l the eigenspace of −4 in W corresponding to the eigenvalue
λk,j,l. Observe that Ek,j,l, for j, l > 0 is equivalent to the irreducible orthogonal

O(2) × S1-representation Vj,l and

Ek,j,l = span{cos lt · ϕck,l(x), cos lt · ϕsk,j(x), sin lt · ϕck,j(x), sin lt · ϕsk,j(x)}.

If j = 0 and l > 0, then

Ek,0,l = span{cos lt · ϕk,0(x), sin lt · ϕk,0(x)},
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and it is equivalent to the irreducible orthogonal O(2)×S1-representation V0,l.

If j > 0 and l = 0,

Ek,j,0 = span{ϕck,j(x), ϕsk,j(x)} ' Vj,

and for j = l = 0, we have that

Ek,0,0 = span{ϕk,0(x)},

is equivalent to the trivialO(2)×S1-representation V0. TheO(2)×S1-isotypical

components of the space W are

Wj,l :=
⊕

k

Ek,j,l, j, l = 0, 1, 2, . . .

10.3.4 Computation of the Equivariant Invariant

Assume that 0 < a < b and that the following condition holds:

(B5) there exists (ko, jo, lo), lo ≥ 1, such that

σ(−4) ∩ (a, b) = {λko ,jo ,lo.}

Put p = 0 or ∞ and denote by σ−
p the negative spectrum of DF(p), i.e.

σ−
0 := {λ ∈ σ(DF(0)) : λ < 0}

= {λ = 1 − a

λk,j,l
: λk,j,l < a}.

Similarly,

σ−
∞ := {λ ∈ σ(DF(∞)) : λ < 0}

= {λ = 1 − b

λk,j,l
: λk,j,l < b}.

By assumption (B5), σ−
∞ = σ−

0 ∪{λo}, λo := λko ,jo,lo. The linear operator DF(p)

is G-homotopic (in the class of gradient maps) to

Ap = (−Id ) × Id : Ep ⊕ E⊥
p → Ep ⊕E⊥

p , Ep :=
⊕

λk,j,l∈σ−p

Ek,j,l,

and consequently
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deg p = ∇G-deg (Ap, B1(0)) =
∏

λ∈σ−p

∇G-deg (−Id , B1(Ek,j,l))

=
∏

λ∈σ−p

DegVj,l
.

Therefore,

ω = deg 0 − deg ∞ =
∏

λ∈σ−0

DegVj,l
∗
(

(G) − DegVjo,lo

)

=
∏

λk,j,l<a

DegVj,l
∗
(

(SO(2)ϕjo ,lo) + (Dd,lo
2jo

) − (Zd,lo
2jo

)
)
. (10.45)

Notice that by Remark 5.2.22, the element a :=
∏

λk,j,l∈σ−0
DegVj,l

is invertible,

therefore ω 6= 0. Moreover, by using the multiplication table for U(O(2) × S1)
and the list of basic gradient degrees for irreducible O(2)×S1-representations,

one can easily conclude that

a ∗ (SO(2)ϕjo ,lo) = (SO(2)ϕjo ,lo) + x∗, and a ∗ (Dd,lo
2jo ) = ±(Dd,lo

2jo ) + y∗,

where x∗ and y∗ denotes the other terms in U(G), which do not contain
(SO(2)ϕjo ,lo) and (Dd,lo

2jo
).

Consequently, we can formulate the following existence result

Theorem 10.3.2. Under the assumptions (B1)—(B4) the equation (10.36)

has at least two O(2) × S1-orbits of non-trivial t-periodic solutions with the
orbit types at least (SO(2)ϕjo ,lo) and (Dd,lo

2jo
) respectively.

Let us point out that the periodic solutions corresponding to the orbit types
(SO(2)j) are commonly called rotating waves or spiral vortices while those with
he orbit type (Dd

2j) are called ribbons or stationary waves. Therefore, it seems

appropriate to call the t-periodic solutions with the orbit type (SO(2)ϕjo ,lo)
the lo-folded rotating waves or spiral vortices and those with the orbit type
(Dd,lo

2jo
) the lo-folded ribbons or stationary waves.

Example 10.3.3. To supply the numbers a and b satisfying (B5), we need to
have an increasing ordered sequence of the values λk,j,l on the real line R. Recall

that λk,j,l = l2 + z2
k,j, where zk,j is the k-th zero of the j-th Bessel function .

By calling the Maple c© command evalf((BesselJZeros(j, k))∧ 2), we obtain
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j k = 1 k = 2 k = 3 k = 4 . . .

0 5.78 30.47 74.88 139.04 . . .
1 14.68 49.22 103.50 177.52 . . .
2 26.37 70.85 135.02 218.92 . . .
3 40.71 95.28 169.40 263.20 . . .
4 57.58 122.43 206.57 310.32 . . .
5 76.94 152.24 246.50 360.25 . . .
6 98.73 184.67 289.13 412.93 . . .
...

...
...

...
...

...

Table 10.3. Approximate values of z2
k,j, where the zigzag line indicates the first 12 smallest values.

(k, j) z2
k,j l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 . . .

(1, 0) 5.78 6.78 9.78 14.78 21.78 30.78 41.78 54.78 69.78 . . .
(1, 1) 14.68 15.68 18.68 23.68 30.68 39.68 50.68 63.68 78.68 . . .
(1, 2) 26.37 27.37 30.37 35.37 42.37 51.37 62.37 75.37 90.37 . . .
(2, 0) 30.47 31.47 34.47 39.47 46.47 55.47 66.47 79.47 94.47 . . .
(1, 3) 40.71 41.71 44.71 49.71 56.71 65.71 76.71 89.71 104.71 . . .
(2, 1) 49.22 50.22 53.22 58.22 65.22 74.22 85.22 98.22 113.22 . . .
(1, 4) 57.58 58.58 61.58 66.58 73.58 82.58 93.58 106.58 121.58 . . .
(2, 2) 70.85 71.85 74.85 79.85 86.85 95.85 106.85 119.85 134.85 . . .
(3, 0) 74.88 75.88 78.88 83.88 90.88 99.88 110.88 123.88 138.88 . . .
(1, 5) 76.94 77.94 80.94 85.94 92.94 101.94 112.94 125.94 140.94 . . .
(2, 3) 95.28 96.28 99.28 104.28 111.28 120.28 131.28 144.28 159.28 . . .
(1, 6) 98.73 99.73 102.73 107.73 114.73 13.73 134.73 147.73 162.73 . . .

...
...

...
...

...
...

...
...

...
...

...

Table 10.4. Approximate values of λk,j,l, where the zigzag line indicates the first 47 smallest values.

an approximate value of z2
k,j (cf. Table 10.3). Then, we rearrange the values

z2
k,j in an increasing order and list approximate values of λk,j,l accordingly (cf

Table 10.4).

Choose a = 66.5 and b = 69.5. Then, by Table 10.4, one verifies that

σ(−4) ∩ (a, b) = {λ1,4,3}.

Thus, the formula (10.45) reduces to
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ω =
∏

λk,j,l<66.5

DegVj,l
∗
(

(SO(2)ϕ4 ,3) + (Dd,3
8 ) − (Zd,3

8 )
)

=
∏

(k,j,l)∈I

DegVj,l
∗
(

(SO(2)ϕ4 ,3) + (Dd,3
8 ) − (Zd,3

8 )
)
,

where the index set I can be determined by the blue part of Table 10.4.

Therefore, we have

ω = Deg V0
∗ Deg V0

∗ Deg V1
∗ Deg V1

∗ Deg V2
∗ Deg V3

∗ Deg V4

∗ Deg V0,1
∗ Deg V0,1

∗ Deg V1,1
∗ Deg V1,1

∗ Deg V2,1
∗ Deg V3,1

∗ Deg V4,1

∗ Deg V0,2
∗ Deg V0,2

∗ Deg V1,2
∗ Deg V1,2

∗ Deg V2,2
∗ Deg V3,2

∗ Deg V4,2

∗ Deg V0,3
∗ Deg V0,3

∗ Deg V1,3
∗ Deg V1,3

∗ Deg V2,3
∗ Deg V3,3

∗ Deg V0,4
∗ Deg V0,4

∗ Deg V1,4
∗ Deg V1,4

∗ Deg V2,4
∗ Deg V3,4

∗ Deg V0,5
∗ Deg V0,5

∗ Deg V1,5
∗ Deg V2,5

∗ Deg V3,5
∗ Deg V0,6

∗ Deg V0,6
∗ Deg V1,6

∗ Deg V2,6
∗ Deg V0,6

∗ Deg V1,6

∗
(

(SO(2)ϕ4 ,3) + (Dd,3
8 ) − (Zd,3

8 ).
)

Notice that

Deg Vi
∗ (SO(2)ϕ4 ,3) =

{
(SO(2)ϕ4 ,3), if i = 0,

(SO(2)ϕ4 ,3) − (Zϕ4,3
i ), if i = 1, 2, 3, 4,

and for l = 1, 2, . . . , 7,

Deg Vj,l
∗ (SO(2)ϕ4 ,3) =





(SO(2)ϕ4 ,3) − 2(Z4), if j = 0,

(SO(2)ϕ4 ,3) − (Zϕ4 ,l
′

4−j ) − (Zϕj,l′

4+j ), if j = 1, 2, 3,

(SO(2)ϕ4 ,3) − 2(Zd,l′

8 ), if j = 4,

where l′ = gcd(4, l). Consequently, ω contains a nontrivial (SO(2)ϕ4 ,3)-term.

Similarly, we have

Deg Vi
∗ (Dd,3

8 ) =





(Dd,3
8 ), if i = 0,

(Dd,3
8 ) − (D1 × Z3) − (Dz,3

1 ) + (Z1 × Z3), if i = 1, 3,

(Dd,3
8 ) − 2(Dd,3

4 ) + (Zd,3
4 ), if i = 2,

−(Dd,3
8 ) + (Zd,3

8 ), if i = 4.
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Moreover, Deg Vj,l
∗ (Dd,3

8 ) = (Dd,3
8 ), for 0 ≤ j ≤ 4 and 1 ≤ l ≤ 7. Therefore, ω

also contains a nontrivial (Dd,3
8 )-term.

Conclusion: The equation (10.36) has at least two O(2) × S1-orbits of non-

trivial t-periodic solutions: one of them is a 3-folded rotating wave (or spiral
vortex) and the other is a 3-folded ribbon (or stationary wave).
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Appendix





A1

Sobolev Spaces and Properties of Nemitsky

Operator

A1.1 Sobolev Spaces on a domain Ω ⊂ RN

Let Ω ⊂ RN be an open set, 1 ≤ p < ∞. We denote by C∞
c (Ω) the space of

all smooth functions ϕ : Ω → R with compact support.

Definition A1.1.1. The Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) :=

{
u ∈ Lp(Ω) :

{
∃g1,...,gN∈Lp(Ω) ∀ϕ∈C∞

c (Ω) ∀i=1,2,...,N∫
Ω
u ∂ϕ
∂xi

= −
∫
Ω
giϕ.

}

We put H1(Ω) := W 1,2(Ω) and will denote by ∂u
∂xi

:= gi, i = 1, . . . , N , the
so-called weak derivatives of u.

The space W 1,p(Ω) is equipped with the norm

‖u‖1,p := ‖u‖p +

N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
p

,

where ‖ · ‖p is the p-norm in Lp(Ω). The space H1(Ω) has the inner product

〈u, v〉1,2 := 〈u, v〉2 +
N∑

i=1

〈 ∂u
∂xi

,
∂v

∂xi

〉
2
,

where 〈·, ·〉2 denotes the L2-inner product in L2(Ω), and the associated norm

‖u‖1,2 :=

[
‖u‖2

2 +
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
2

2

] 1
2

.

We have following properties of the Sobolev spaces (cf. [26, 127, 164]):

Proposition A1.1.2. The space W 1,p(Ω) is a separable Banach space for 1 ≤
p <∞, which is also reflexive for 1 < p <∞.
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Proposition A1.1.3. (Friedrich) Let u ∈ W 1,p(Ω), 1 ≤ p < ∞. Then there

exists a sequence {un} ∈ C∞
c (RN ) such that

(a)un|Ω → u in Lp(Ω);
(b)∇un|ω → ∇u|ω in Lp(ω; RN ) for every open set ω b Ω (i.e. ω is compact

and ω ⊂ Ω), where ∇u :=
[
∂u
∂x1
, . . . , ∂u

∂xN

]

Proposition A1.1.4. Let u ∈ Lp(Ω), 1 < p < ∞. The following conditions
are equivalent

(i) u ∈ W 1,p(Ω);
(ii) There exists a constant C such that

∀ϕ∈C∞
c (Ω) ∀i=1,...,N

∣∣∣∣
∫

Ω

u
∂ϕ

∂xi

∣∣∣∣ ≤ C‖ϕ‖q,
1

p
+

1

q
= 1.

(iii) There exists a constant C such that for every open sets ω b Ω we have

‖τhu− u‖Lp(ω) ≤ C|h|

for |h| < dist (ω, ∂Ω), where (τhu)(x) := u(x+ h).

Moreover, in the conditions (ii) and (iii) one can take C to be equal ‖∇u‖p.

A1.1.1 Sobolev Space W m,p(Ω)

Definition A1.1.5. The Sobolev space Wm,p(Ω), 1 ≤ p < ∞, is defined for
m ≥ 2 by

Wm,p(Ω) :=

{
u ∈ Wm−1,p(Ω) : ∀i=1,...,N

∂u

∂xi
∈ Wm−1,p(Ω)

}
,

or equivalently

Wm,p(Ω) :=

{
u ∈ Lp(Ω) :

{
∀α |α| ≤ m ∃gα∈Lp(Ω) ∀ϕ∈C∞

c (Ω)∫
Ω
uDαϕ = (−1)|α|

∫
Ω
gαϕ,

}

where α = (α1, . . . , αN) are multi-indices (αj ≥ 0), |α| =
∑N

i=1 αi and Dαϕ :=
∂|α|ϕ

∂x
α1
1 ···∂xαN

N

. We put Hm(Ω) := Wm,2(Ω) and will denote by Dαu := gα, the

so-called α-weak derivatives of u.
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A1.1.2 Embeddings of Sobolev Spaces

Definition A1.1.6. Let Ω ⊂ RN be an open subset. Then, Ω is called regular
of class Cp for some p ∈ [1,∞], if ∂Ω is a Cp-submanifold of RN .

Theorem A1.1.7. (Sobolev Embedding Theorem) Let Ω ⊂ RN be an open

regular set of class C1, where N ≥ 2. Then,

(i) if p < N and 1
q

+ 1
p

= 1, then for all q′ ∈ [1, q), we have the compact

embedding W 1,p(Ω) ⊂ Lq
′
(Ω);

(ii) if p = N , then for every q ∈ [1,∞), we have the compact embedding
W 1,p(Ω) ⊂ Lq(Ω);

(iii) if p > N , then we have the compact embedding W 1,p(Ω) ⊂ C(Ω).

A1.1.3 Space W 1,p
0 (Ω)

Definition A1.1.8. Let 1 ≤ p < ∞. The space W 1,p
0 (Ω) is defined as the

closure of C∞
c (ω) in W 1,p

0 (Ω). We put H1
0 (Ω) := W 1,2

0 (Ω).

Proposition A1.1.9. Assume that Ω ⊂ RN is an open set of class C1. Let

u ∈ Lp(Ω) with 1 < p <∞. The following properties are equivalent

(i) u ∈ W 1,p
0 (Ω);

(ii) There exists a constant c such that

∀ϕ∈C∞
c (Ω) ∀i=1,...,N

∣∣∣∣
∫

Ω

u
∂ϕ

∂xi

∣∣∣∣ ≤ c‖ϕ‖q,
1

p
+

1

q
= 1.

Corollary A1.1.10. (Poincaré Inequality) Let Ω ⊂ RN be an open bounded
set and 1 ≤ p <∞. Then there exists a constant c (depending only on Ω and
p) such that

∀u∈W 1,p
0 (Ω) ‖u‖p ≤ c‖∇u‖p.

In particular, ‖u‖W 1,p
0

:= ‖∇u‖p is a norm in W 1,p
0 (Ω) which is equivalent to

the norm ‖u‖1,p in W 1,p
0 (Ω). Moreover, the expression

〈u, v〉H1
0

:=

∫

Ω

∇u · ∇v,

defines a scalar product on H1
0 (Ω) and the associated norm ‖u‖H1

0
which is

equivalent to the norm ‖u‖1,2.
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A1.1.4 Sobolev Spaces Hs(Ω), s ∈ R+

If u ∈ L2(Rn), the Fourier transform û ∈ L2(Rn) is defined by

û(y) :=
1

(2π)
n
2

∫

Rn

u(x)e−ix·ydx, y ∈ Rn.

The linear operator F : L2(R2) → L2(R2), F(u) := û is a symmetric isomor-
phism and its inverse is

F−1(v)(x) :=
1

(2π)
n
2

∫

Rn

v(y)eix·ydy, x ∈ Rn.

Definition A1.1.11. Let α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ (Z+)n

be multi-indices. The Schwartz space S is defined by

S := {u ∈ C∞(Rn) : xαDβu ∈ L2(Rn), for all multi-indices α, β}

where x = (x1, x2, . . . , xn) ∈ Rn, xβ = xβ1
1 x

β2
2 · · ·xβn

n . The space S is also called

the space of rapidly decreasing functions.

One can easily verify the following properties of the Fourier transform F

F(Dαu)(y) = (iy)αF(u), DβF(u)(x) = F((−ix)βu), u ∈ S. (A1.1)

Using the properties (A1.1), the Sobolev space Hm(Rn), m ∈ N, can be equiv-

alently defined by

Hm(Rn) := {u ∈ L2(Rn) : (1 + |y|2)m
2 û ∈ L2(Rn)}, (A1.2)

equipped with the norm

u2,m := ‖(1 + |y|2)m
2 û‖2, u ∈ Hm(Rn).

Definition A1.1.12. The fractional Sobolev spaces, for s > 0, is defined as

follows
Hs(Rn) := {u ∈ L2(Rn) : (1 + |y|2) s

2 û ∈ L2(Rn)}, (A1.3)

with the norm

u2,s := ‖(1 + |y|2) s
2 û‖2, u ∈ Hs(Rn).
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The space Hs(Rn) is in fact a Hilbert space. Let Ω ⊂ Rn be an open set

with regular boundary. Then, the space Hs(Ω), for s > 0, is defined by

Hs(Ω) := {u|Ω : u ∈ Hs(Rn)}.

The following facts are well-known (cf. [127])

Proposition A1.1.13. Let Ω ⊂ Rn be an open set with regular boundary and
s > n

2
. Then there exists a continuous injection

Hs(Ω) ↪→ C(Ω).

Proposition A1.1.14. Let Ω ⊂ Rn be an open bounded set with regular bound-

ary and s > s′ > 0. Then the injection

Hs(Ω) ↪→ Hs′(Ω)

is compact.

Consider the product space Rn⊕Rn′ . Denote by ỹ = (y, y′) the elements y ∈ Rn

and y′ ∈ Rn′. Then, we can introduce

Definition A1.1.15. The partial Sobolev space Hs,s′(Rn ⊕ Rm) is defined by

Hs,s′(Rn⊕Rn′) := {u ∈ L2(Rn⊕Rn′) : (1+|y|2) s
2 (1+|y′|2) s′

2 û ∈ L2(Rn⊕Rn′).}

For two open sets with regular boundaries Ω ⊂ Rn and Ω′ ⊂ Rn′, we define

Hs,s′(Ω ×Ω′) := {u|Ω×Ω′ : u ∈ Hs,s′(Rn ⊕ Rn′)}.

The space Hs,s′(Ω × Ω′) is again a Hilbert space. Moreover, we have similar

compact injections to those described in Proposition A1.1.14.

A1.2 Properties of The Nemitsky Operator

Definition A1.2.1. Let Ω ⊂ RN be an open set. A function f : Ω×Rk → Rm

is said to satisfy the Carathéodory conditions, if

(i) the function y 7→ f(x, y) is continuous for a.e. x ∈ Ω;
(ii) the function x 7→ f(x, y) is measurable for all y ∈ Rk.
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A function satisfying (i)—(ii) is called a Carathéodory function.

Definition A1.2.2. Let f : Ω×Rk → Rm be a Carathéodory function. Define
an operator Nf on the set of functions u : Ω → Rk by

Nf (u)(x) = f(x, u(x)) for x ∈ Ω,

and call it the Nemitsky operator.

If u is measurable, then Nf (u)(x) is clearly measurable.

Some important properties of the Nemitsky operator are listed in the fol-
lowing result (cf. [110], Theorem I.2.1).

Theorem A1.2.3. Let f : Ω × Rk → Rm be a Carathéodory function. If
Nf : Lp(Ω; Rk) → Lq(Ω; Rm) 1 < p, q < ∞, then Nf is continuous, takes
bounded sets into bounded sets and there is a constant c > 0 and a function
a ∈ Lq(Ω) such that

|f(x, y)| ≤ a(x) + b|y|p/q for a.e. x, for all y ∈ Rk. (A1.4)

Moreover, if the condition (A1.4) is satisfied, then Nf defines a continuous
operator from Lp(Ω; Rk) to Lq(Ω; Rm).

Proposition A1.2.4. Let f : Ω × Rk → Rm be a Carathéodory function.
Assume that for every bounded set A ⊂ C(Ω,Rk) there exists a function ϕA ∈
Lp(Ω), 1 ≤ p <∞ ,such that for all u ∈ A we have

|f(x, u(x)| ≤ ϕA(x) a.e. x ∈ Ω (A1.5)

Then, the Nemitsky operator Nf : C(Ω; Rk) → Lp(Ω,Rm) is well defined,
continuous and takes bounded sets into bounded sets.

Proof: First we check that Nf (u) is well defined. Indeed, if u ∈ C(Ω; Rk),
then the function x 7→ f(x, u(x)) is measurable, and, by the condition (A1.5)
applied to A = {u}, there is a function ϕA ∈ Lp(Ω) such that |f(x, u(x))| ≤
ϕA(x) a.e. x ∈ Ω. Thus, ‖Nf (u)‖p ≤ ‖ϕA‖p <∞.

Now, we verify that Nf takes bounded sets into bounded sets. For, let

A ⊂ C(Ω; Rk) be a bounded set and let ϕA(x) be a function given by (A1.5).
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Then, for every u ∈ A, we have ‖Nf (u)‖p ≤ ‖ϕA‖p. Thus, Nf (A) is bounded

in Lp(Ω,Rm).

To show that Nf is continuous, assume that {un} ⊂ C(Ω; Rk) is a conver-

gent sequence to a function u. We put A := {un}∞n=1 ∪{u}. By (A1.5), there is
a function ϕA ∈ Lp(Ω) such that |f(x, v(x))| ≤ ϕA(x) a.e. x ∈ Ω for all v ∈ A,
thus

|f(x, u(x)) − f(x, un(x))|p ≤ 2p|ϕA(x)|p a.e. x ∈ Ω.

Since the function f(x, ·) is continuous for a.e. x thus

∀ε>0 ∃Nε ∀n>Nε |f(x, un(x)) − f(x, u(x))| < ε.

This implies that the sequence {|f(x, un(x)) − f(x, u(x))|p}∞n=1 converges to
zero for a.e. x. Now, by the Lebesgue’s dominated convergence theorem, the
sequence ‖Nf(n) − Nf(un)‖p1 → 0 in L1, thus ‖Nf (u) − Nf (un)‖p → 0 as

n→ ∞. �

In order to establish differentiability conditions for the Nemitsky operator

Nf , assume that f : Ω × Rk → Rm is a Carethéodory function satisfying the
growth condition

|f(x, y)| < a(x) + b|y|p for a.e. x ∈ Ω and for all y ∈ Rk, (A1.6)

where a ∈ Lp(Ω) and b > 0. Then the Nemitsky operator Nf : Lp(Ω; Rk) →
L1(Ω; Rm) is continuous. Assume that f(x, y) is differentiable with respect

to y and denote its derivative by f ′
y(x, y). Assume that f ′

y(x, y) is also a
Carathéodory function. Then, the Nemitsky operator Nf ′y : Lp(Ω; Rk) →
L

p
p−1 (Ω; Rm) is well defined if the following growth condition is satisfied:

|f ′
y(x, y)| ≤ a1(x) + b1|y|p−1 for a.e. x ∈ Ω and for all y ∈ Rk, (A1.7)

where a1 ∈ L
p

p−1 (Ω) and b1 > 0 is a constant. Let u, h ∈ Lp(Ω; Rk). By the
Hölder Inequality,

∫

Ω

|f ′
y(x, u(x))h(x)|dx ≤ [

∫

Ω

|f ′
y(x, u(x))|

p
p−1dx]

p−1
p [

∫

Ω

|h(x)|pdx]1/p.

We have the following
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Proposition A1.2.5. Assume that f satisfies the conditions (A1.4) and (A1.7).

Then, the Nemitsky operator Nf : Lp(Ω; Rk) → L1(Ω; Rm) is Fréchet C1-
differentiable and

[DNf (u)h](x) = f ′
y(x, u(x))h(x), for a.e. x ∈ Ω, h ∈ Lp(Ω; Rk)

for all u ∈ Lp(Ω; Rk).

Proof: Remark that for a.e. x ∈ Ω

f(x, u(x) + h(x)) − f(x, u(x)) =

∫ 1

0

f ′
y(x, u(x) + th(x))h(x)dt,

thus

‖Nf (u+ h) −Nf(u) −Nf ′y(u)h‖1

=

∫

Ω

|f(x, u(x) + h(x)) − f(x, u(x)) − f ′
y(x, u(x))h(x)|dx

=

∫

Ω

|
∫ 1

0

(f ′
y(x, u(x) + th(x)) − f ′

y(x, u(x)))h(x)dt|dx

≤
∫

Ω

∫ 1

0

|f ′
y(x, u(x) + th(x)) − f ′

y(x, u(x))| |V erth(x)|dtdx.

By Hölder inequality

‖Nf(u+ h) −Nf (u) −Nf ′y(u)h‖1

≤
∫ 1

0

[∫

Ω

|f ′
y(x, u(x) + th(x)) − f ′y(x, u(x))|

p
p−1 dx

] p−1
p

dt

[∫

Ω

|h(x)|pdx
] 1

p

.

Since, by Theorem A1.2.3, Nf ′y is continuous from Lp(Ω; Rk) into L
p

p−1 (Ω; Rm),

∀ε>0 ∃δ>0 ∀h∈Lp(Ω;Rk) ‖h‖p < δ ⇒ ‖Nf ′y(u+ h) −Nf ′y(u+ h)‖ p
p−1

< ε.

Therefore, if 0 < ‖h‖p < δ,

‖Nf (u+ h) −Nf(u) −Nf ′y(u)h‖1 ≤
∫ 1

0

‖Nf ′y(u+ h) −Nf ′y(u)‖dt ‖h‖p

< ε‖h‖p.

This least inequality means that Nf is Fréchet differentiable at u and its deriva-
tive at u is exactly the operator h → Nf ′y(u)h. Notice, that the operator the

Nemitsky operator Nf is of class C1. �

Let us point out that a more general result is true (cf. [109, 111, 112]).
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Proposition A1.2.6. Suppose that f : Ω×Rk → Rm is a Carethéodory func-

tion, differentiable with respect to y, such that the following growth conditions
are satisfied:

|f(x, y)| ≤ a(x) + b|y|
p
q for a.e. x ∈ Ω, and all y ∈ Rk, (A1.8)

where a ∈ Lq(Ω);

|f ′
y(x, y)| ≤ a1(x) + b1|y|

p−q
q for a.e. x ∈ Ω and all y ∈ Rk, , (A1.9)

where a1 ∈ L
pq

p−q (Ω) and p > q ≥ 1. Then Nf : Lp(Ω; Rk) → Lq(Ω; Rm) is
Fréchet C1-differentiable and [DNf (u)]h = Nf ′y(u)h.

Assume for simplicity that k = m = 1. Then the Nemitsky operator Nf :
L2(Ω) → L2(Ω) is continuous if and only if

|f(x, y)| ≤ a(x) + b|y| for a.e. x ∈ Ω and all y ∈ R.

On the other hand, in order to assure that Nf is Fréchet C1-differentiable, the

condition (A1.9) implies that f(x, y) = α(x) + β · y for some α ∈ L2(Ω) and a
constant β > 0. Therefore, there is no nonlinear with respect to y Carathéodory
functions f(x, y) such that Nf : L2(Ω) → L2(Ω) is Fréchet C1-differentiable.
In order to overcome this difficulty, assume that if there is a constant M > 0

such that
|f ′
y(x, y)| ≤M for a.e. x ∈ Ω and all y ∈ R.

Then, Nf is Gâteaux differentiable on L2(Ω).

Proposition A1.2.7. Let f : Ω × Rk → Rm be a Carathéodory function, dif-
ferentiable with respect to y such that f ′

y(x, y) is also a Carathéodory function.
Suppose that the following conditions are satisfied:

(i) there is a function a ∈ L2(Ω) and a constant b > 0 such that

|f(x, y)| ≤ a(x) + b|y| for a.e. x ∈ Ω and all y ∈ Rk;

(ii) there is a constant M > 0 such that

|f ′
y(x, y)| ≤M for a.e. x ∈ Ω and all y ∈ Rk.

Then, the Nemitsky operator Nf : L2(Ω; Rk) → L2(Ω; Rm) is Gâteaux differ-
entiable and

[DNf (u)h](x) = f ′
y(x, u(x))h(x).
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Proof: Let u, h ∈ L2(Ω; Rk). We have

[∫

Ω

∣∣∣∣
1

t
(f(x, u(x) + th(x)) − f(x, u(x))) − f ′

y(x, u(x))h(x)

∣∣∣∣
2

dx

] 1
2

=

[∫

Ω

∣∣∣∣
1

t

∫ 1

0

f ′
y(x, u(x) + sth(x))th(x)ds− f ′

y(x, u(x))h(x)

∣∣∣∣
2

dx

] 1
2

≤
[∫

Ω

[∫ 1

0

(|f ′
y(x, u(x) + sth(x)) − f ′

y(x, u(x))h(x)|ds
]2

dx

] 1
2

.

Notice that →
t→0

lim |f ′
y(x, u(x) + sth(x)) − f ′

y(x, u(x))| = 0 for a.e. x, thus by

(ii),
[∫ 1

0

(|f ′
y(x, u(x) + sth(x)) − f ′

y(x, u(x))h(x)|ds
]2

≤ 4M2

∫ 1

0

|h(x)|2dx <∞

and by the Lebesgue’s Dominated Convergence Theorem,

lim
t→0

[∫

Ω

∣∣∣∣
1

t
(f(x, u(x) + th(x)) − f(x, u(x))) − f ′

y(x, u(x))h(x)

∣∣∣∣
2

dx

]1/2

= 0.

Consequently, Gâteaux derivative of Nf at u is the operator h→ Nf ′y(u)h. �

A1.3 Differentiability of Functionals on Sobolev Space
H1(Ω)

Assume that Ω ⊂ RN , N ≥ 3, is an open bounded regular of class C1 set,
f : Ω × Rk → Rm is a twice differentiable function with respect to y such
that f(x, y), f ′

y(x, y) and f ′′
y (x, y) are Carathéodory functions for which the

following conditions are satisfied

|f(x, y)| ≤ a(x) + b|y|
p
q for a.e. x ∈ Ω and for all y ∈ Rk (A1.10)

|f ′
y(x, y)| ≤ c(x) + d|y|

p−q
q for a.e. x ∈ Ω and for all y ∈ Rk (A1.11)

|f ′′
y (x, y)| ≤ e(x) + g|y|

p−2q
q for a.e. x ∈ Ω and for all y ∈ Rk (A1.12)

where p > 2q ≥ 2, a ∈ Lq(Ω), c ∈ L
pq

p−q (Ω), e ∈ L
pq

p−2q (Ω), and b, d, g > 0 are
constants.

We have the following



A1.3 Differentiability of Functionals on Sobolev Space H1(Ω) 289

Corollary A1.3.1. Under the conditions (A1.10)—(A1.12), the Nemitsky op-

erator Nf : Lp(Ω; Rk) → Lq(Ω,Rm) is twice differentiable of class C2 and

D2Nf (ϕ)(h, g)(x) = h(x)f ′′
y (x, ϕ(x))g(x); ϕ, h, g ∈ Lp(Ω).

For simplicity, assume that m = k = 1. The same results hold for more

general case. The inclusion H1(Ω) ↪→ Lp(Ω) is well defined, continuous and
compact whenever (cf. Theorem A1.1.7)

p <
2N

N − 2
.

By Theorem A1.2.3, the operator Nf : Lp(Ω) → L1(Ω) is well defined if f
satisfies the Carathéodory conditions and

|f(x, y)| ≤ a(x) + b|y|p for a.e. x ∈ Ω and for all y ∈ R,

where a ∈ L1(Ω).

Consider a functional Ψ : H1(Ω) → R defined as the following composition

H1(Ω) ↪→ Lp(Ω)
Nf−→L1(Ω)

〈1,·〉−→R

where 〈1, u〉 :=
∫
Ω
u(x)dx, and f is a function. Clearly, the functional Ψ :

H1(Ω) → R is given by

Ψ(u) =

∫

Ω

f(x, u(x))dx, u ∈ H1(Ω).

Assume that the function f is twice differentiable with respect to the vari-
able y and that f , f ′

y, f
′′
y are Carathéodory functions and that the following

conditions are satisfied

|f(x, y)| ≤ a(x) + c|y|p for a.e. x ∈ Ω and for all y ∈ R (A1.13)

|f ′
y(x, y)| ≤ b(x) + d|y|p−1 for a.e. x ∈ Ω and for all y ∈ R (A1.14)

where a ∈ L1(Ω), b ∈ L
p

p−1 (Ω), c, d > 0. The condition (A1.14) implies that

Nf is Fréchet differentiable of class C1 and that

[DNf (u)h](x) = (Nf ′y(u) · h)(x) = f ′
y(x, u(x))h(x).
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Therefore, Ψ is a differentiable functional of class C1 and

DΨ(u)h =

∫

Ω

f ′
y(x, u(x))h(x)dx.

The condition (A1.14) can be rewritten as follows

|f ′
y(x, y)| ≤ b(x) + c|y|β for a.e. x ∈ Ω and for all y ∈ R, (A1.15)

where b ∈ L
β+1

β (Ω) and β ≤ N+2
N−2

.

Similarly, in order to have that Ψ is of class C2 we need assure differentia-
bility of Nf ′y , for which we need that f ′′

y satisfies the Carathéodory conditions
and

|f ′′
y (x, y)| ≤ e(x) + g|y|γ for a.e. x ∈ Ω and for all y ∈ R,

where e ∈ L
γ+2

γ (Ω) and γ ≤ 4

N − 2
(i.e. p− 2 = γ and p ≤ 2N

N−2
).

Now, we define the functional J : H1
0 (Ω) → R by

J(u) =
1

2

∫

Ω

|∇u|2 − Ψ(u), u ∈ H1
0 (Ω)

where Ψ(u) =
∫
Ω
f(x, u(x))dx, f and f ′

y satisfy the Carathéodory conditions
and the conditions (A1.13) and (A1.15), with β < N+2

N−2
. Consequently, J is of

class C1 and

DJ(u)h =

∫

Ω

∇u∇h−
∫

Ω

f ′
y(x, u(x)) · h(x)dx

=

∫

Ω

∇u∇h−DΨ(u)h.

Let τ : L
p

p−1 (Ω) → (H1
0 (Ω))∗ =: H−1(Ω) be defined by τ (h)(u) =

∫
Ω
hu,

where h ∈ L
p

p−1 (Ω), u ∈ H1
0 (Ω). The operator τ is well defined and continuous.

Indeed, if p ≥ 2, then by applying the Hölder inequality, the Poincaré
inequality and Theorem A1.1.7, we obtain

∣∣∣∣
∫

Ω

hu

∣∣∣∣ ≤ ‖h‖p/(p−1) · ‖u‖p ≤ c̃‖h‖p/(p−1) · ‖u‖p,1

≤ c‖h‖p/(p−1) · ‖u‖H1
0
.
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If p < 2, then p
p−1

> 2 and L
p

p−1 (Ω) ⊂ L2(Ω), thus

∣∣∣∣
∫

Ω

hu

∣∣∣∣ ≤ c̃‖h‖2‖u‖H1
0
.

Let R : Lp/p−1(Ω) → H1
0 (Ω) be the composition of τ with the isomorphism

(H1
0 (Ω))∗ ∼= H1

0 (Ω) given by Riesz theorem. This means that Rh is the unique

solution to the problem

∀ϕ∈H1
0(Ω) 〈∇u,∇ϕ〉L2 =

∫

Ω

hϕ

i.e. Rh is a weak solution to the problem

−∆u = h, u|∂Ω ≡ 0.

Using the operator R, we can calculate ∇Ψ(u). Since

DΨ(u)h =

∫

Ω

f ′
y(x, u(x))h(x)dx,

where Nf ′y(u) ∈ L
p

p−1 (Ω), we have

∇Ψ(u) = RNf ′y(u)

which means the ∇Ψ is the following composition

H1
0 (Ω) H1

0 (Ω)

Lp(Ω) L
p

p−1 (Ω)

∇Ψ

Nf ′y

i R

Consequently, we have the following result

Proposition A1.3.2. Let Ω ⊂ RN be an open bounded regular of class C1 set.
If β = p − 1 < N+2

N−2
, then ∇Ψ : H1

0 (Ω) → H1
0 (Ω) is a completely continuous

operator.

Proof: By Theorem A1.1.7, the inclusion i : H1
0 (Ω) ↪→ Lp(Ω) is a compact

operator, thus ∇Ψ is completely continuous. �





A2

Catalogue of Groups

A2.1 Groups and Their Subgroups

In this section, we classify and catalog a list of the subgroups in Γ and Γ ×S1,
up to their conjugacy classes, where Γ takes values of the quaternionic units

group Q8, the dihedral group DN , the tetrahedral group A4, the octahedral
group S4, the icosahedral group A5, the orthogonal group O(2) and the tori
group TN .

There are two types of subgroups in Γ × S1,

(i) K × S1, for a subgroup K ⊂ Γ ;
(ii) the ϕ-twisted l-folded subgroups Kϕ,l, for a homomorphism ϕ : K → S1

and l ∈ {0} ∪ N (cf. Subsection 4.2.1),

where in (ii), notice that Kϕ,0 = K × {1}, and Kϕ,l (for l > 1) can be easily
obtained from Kϕ by

Kϕ,l = {(γ, z) ∈ K × S1 : (γ, zl) ∈ Kϕ}.

Therefore, in what follows, we only provide a catalogue of the subgroups
in Γ and the twisted one-folded subgroups in Γ × S1, up to their conjugacy

classes.

A2.1.1 Quaternionic Units Group Q8

Denote by H := {z1 + jz2; z1, z2 ∈ C} the algebra of quaternions, with the

multiplication rules i2 = j2 = −1, ji = −ij. Define

Q8 := {±1,±i,±j,±ji} ⊂ H

to be the quaternionic units group. There are six subgroups in Q8, namely

Z1 = {1}, Z2 = {1,−1}, Z1
4 = {1,−1, i,−i},

Z2
4 = {1,−1, j,−j}, Z3

4 = {1,−1, ij,−ij}, Q8 = {±1,±i,±j,±ji},
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(Q8)

(Z1
4) (Z2

4) (Z3
4)

(Z2)

(Z1)

Fig. A2.1. The lattice of conjugacy classes of subgroups in Q8.

which represent distinct conjugacy classes. The lattice of their conjugacy
classes is shown in Figure A2.1.

There are ten twisted one-folded subgroups in Q8 × S1, namely

Z−
2 = {(1, 1), (−1,−1)},

Z1−
4 = {(1, 1), (i,−1), (−1, 1), (−i,−1)},

Z2−
4 = {(1, 1), (j,−1), (−1, 1), (−j,−1)},

Z3−
4 = {(1, 1), (ij,−1), (−1, 1), (−ij,−1)},

Z1+
4 = {(1, 1), (i, i), (−1,−1), (−i,−i)},

Z2+
4 = {(1, 1), (j, i), (−1,−1), (−j,−i)},

Z3+
4 = {(1, 1), (ij, i), (−1,−1), (−ij,−i)},

Q1−
8 = {(1, 1), (i, 1), (−1, 1), (−i, 1), (j,−1), (ji,−1), (−j,−1), (−ji,−1)},

Q2−
8 = {(1, 1), (i,−1), (−1, 1), (−i,−1), (j, 1), (ji,−1), (−j, 1), (−ji,−1)},

Q3−
8 = {(1, 1), (i,−1), (−1, 1), (−i,−1), (j,−1), (ji, 1), (−j,−1), (−ji, 1)},

The lattice of the conjugacy classes of the twisted subgroups is shown in
Figure A2.2.

(Q8) (Qk−
8 )

if k 6= l

(Zl−
4 ) (Zk+

4 )(Zk
4)

(Z2)

(Z1)

(Z−
2 )

Fig. A2.2. The lattice of conjugacy classes of twisted subgroups in Q8 × S1.
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A2.1.2 Dihedral Group DN

Represent the dihedral group DN of order 2N as the group of rotations 1, ξ,
ξ2, . . . , ξN−1 of the complex plane (where ξ is the multiplication by e

2πi
N ) plus

the reflections κ, κξ, κξ2, . . . , κξN−1 with κ being the operator of complex

conjugation described by the matrix

[
1 0
0 −1

]
.

For an integer k|N and γ := ei
2π
k , the dihedral group DN has the subgroups

Zk =
{

1, γ, γ2, . . . , γk−1
}
,

Dk =
{

1, γ, γ2, . . . , γk−1, κ, κγ, . . . , κγk−1
}
,

Dk,j =
{

1, γ, γ2, . . . , γk−1, κξj , κξjγ, . . . , κξjγk−1
}
,

where j = 1, . . . , N
k
−1. The subgroup Zk is normal inDN . While the subgroups

Dk,j for j = 0, 1, . . . , N
k
− 1, are all conjugate if N

k
is odd, but split into two

conjugacy classes (Dk) and (D̃k), where D̃k := Dk,1, if N
k

is even.

The twisted subgroups of DN × S1 are listed as follows, for k|N ,

Ztr
k =

{
(1, 1), (γ, γr), (γ2, γ2r), . . . , (γk−1, γ(k−1)r)

}
,

Dz
k =

{
(1, 1), (γ, 1), . . . , (γk−1, 1), (κ,−1), (κγ,−1), . . . , (κγk−1,−1)

}
,

Dz
k,j =

{
(1, 1), (γ, 1), . . . , (γk−1, 1), (κξj ,−1), (κξjγ,−1), . . . , (κξjγk−1,−1)

}
,

where r ∈ {1, . . . , k − 1} and j = 1, . . . , N
k
− 1. For 0 < r < k

2
, κZtr

k κ = Ztk−r

k ,

i.e. Ztr
k and Ztk−r

k are conjugate. The conjugacy relations among Dz
k,j are similar

to Dk,j , for j = 0, 1, . . . , N
k
− 1.

In the case k = 2m, we have additional twisted subgroups

Zd
2m = {(1, 1), (γ,−1), . . . , (γ2m−1,−1)},

Dd
2m = {(1, 1), (γ,−1), . . . , (γk−1,−1), (κ, 1), (κγ,−1), . . . , (κγk−1,−1)

}
,

D̃d
2m = {(1, 1), (γ,−1), . . . , (γk−1,−1), (κξ, 1), (κξγ,−1), . . . , (κξγk−1,−1)},

Dd̂
2m = {(1, 1), (γ,−1), . . . , (γk−1,−1), (κ,−1), (κγ, 1), . . . , (κγk−1, 1)},
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where Ztr
k is a normal subgroup, Dd

2m is conjugate to D̃d
2m iff N

2m
is odd, while

Dd
2m and Dd̂

2m are conjugate iff N
2m

is even.

Example A2.1.1. As an example, we provide a list of subgroups in D6, and

the twisted subgroups in D6 × S1 (cf. [15]). Put µ := ei
2π
6 , then we have the

following subgroups in D6

Z1 = {1}, Z2 = {1,−1}, Z3 = {1, µ2, µ4},
Z6 = {1, µ, µ2, µ3, µ4, µ5}, D1 = {1, κ}, D̃1 = {1, κµ},
D2 = {1,−1, κ,−κ}, D3 = {1, µ2, µ4, κ, κµ2, κµ4},
D̃3 = {1, µ2, µ4, κµ, κµ3, κµ5},
D6 = {1, µ, µ2, µ3, µ4, µ5, κ, κµ, κµ2, κµ3, κµ4, κµ5}.

The twisted subgroups of D6 × S1 are listed below.

Z−
2 = {(1, 1), (−1,−1)}, Zt

3 = {(1, 1), (µ2, µ2), (µ4, µ4)},
Zt1

6 = {(1, 1), (µ, µ), (µ2, µ2), (µ3, µ3), (µ4, µ4), (µ5, µ5)},
Zt2

6 = {(1, 1), (µ, µ2), (µ2, µ4), (µ3, 1), (µ4, µ2), (µ5, µ4)},
Zd

6 = {(1, 1), (µ,−1), (µ2, 1), (µ3,−1), (µ4, 1), (µ5,−1)},
Dz

1 = {(1, 1), (κ,−1)}, D̃z
1 = {(1, 1), (κµ,−1)},

Dz
2 = {(1, 1), (−1, 1), (κ,−1), (−κ,−1)},

Dd
2 = {(1, 1), (−1,−1), (κ, 1), (−κ,−1)},

Dd̂
2 = {(1, 1), (−1,−1), (κ,−1), (−κ, 1)},

Dz
3 = {(1, 1), (µ2, 1), (µ4, 1), (κ,−1), (κµ2,−1), (κµ4,−1)},

D̃z
3 = {(1, 1), (µ2, 1), (µ4, 1), (κµ,−1), (κµ3,−1), (κµ5,−1)},

Dz
6 = {(1, 1), (µ, 1), (µ2, 1), (µ3, 1), (µ4, 1), (µ5, 1), (κ,−1),

(κµ,−1), (κµ2,−1), (κµ3,−1), (κµ4,−1), (κµ5,−1)},
Dd

6 = {(1, 1), (µ,−1), (µ2, 1), (µ3,−1), (µ4, 1), (µ5,−1), (κ, 1),

(κµ,−1), (κµ2, 1), (κµ3,−1), (κµ4, 1), (κµ5,−1)},

Dd̂
6 = {(1, 1), (µ,−1), (µ2, 1), (µ3,−1), (µ4, 1), (µ5,−1), (κ,−1),

(κµ, 1), (κµ2,−1), (κµ3, 1), (κµ4,−1), (κµ5, 1)}.

The lattice of conjugacy classes of the twisted subgroups in D6 × S1 is illus-

trated in Figure A2.3.
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(D6) (Dd
6) (Dd̂

6) (Dz
6)

(Zt2
6 ) (D3) (D̃3) (Z6) (Zd

6) (D̃z
3) (Dz

3) (Zt1
6 )

(D2) (Dd
2) (Dd̂

2) (Dz
2)

(Z3) (Zt
3)

(D1) (D̃1) (Z2) (Z−
2 ) (D̃z

1) (Dz
1)

(Z1)

Fig. A2.3. Lattice of conjugacy classes of twisted subgroups in D6 × S1.

A2.1.3 Tetrahedral Group A4

It is well known that there are only five regular polyhedra: the tetrahedron,
the hexahedron, the octahedron, the dodecahedron, and the icosahedron. The

groups of motions of regular polyhedra are called regular polyhedral groups.
Two regular polyhedra are called dual to each other, if one can be obtained
from the other by taking as vertices the centers of all the faces of the other
polyhedron. The hexahedron and octahedron are dual to each other, as are the

dodecahedron and icosahedron. The tetrahedron is dual to itself. Accordingly,
the groups of motions of dually corresponding regular polyhedra are isomor-
phic. Hence, we speak of the tetrahedral group A4, the octahedral group S4

and the icosahedral group A5.

Consider the tetrahedral group A4, which consists of even permutations of

four symbols {1, 2, 3, 4}. We have the following subgroups in A4, up to their
conjugacy classes
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Z1 = {(1)}, Z2 = {(1), (12)(34)}, Z3 = {(1), (123), (132)},
V4 = {(1), (12)(34), (13)(24), (14)(23)},
A4 = {(1), (12)(34), (123), (132), (13)(24), (142),

(124), (14)(23), (134), (143), (243), (234)}.
The lattice of the conjugacy classes of the subgroups in A4 is shown in Figure
A2.4.

(A4)

(V4)

(Z3)

(Z2)

(Z1)

Fig. A2.4. Lattice of conjugacy classes of subgroups in A4

The twisted subgroups in A4 × S1 are listed as follows

Z−
2 = {((1), 1), ((12)(34),−1)},

Zt1
3 = {((1), 1), ((123), γ), ((132), γ2)},

Zt2
3 = {((1), 1), ((123), γ2), ((132), γ)},

V −
4 = {((1), 1), ((12)(34), 1), ((13)(24),−1), ((14)(23),−1)},
At1

4 = {((1), 1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123), γ),

((132), γ2), ((142), γ), ((124), γ2), ((134), γ), ((143), γ2),

((243), γ), ((234), γ2)},
At2

4 = {((1), 1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123), γ2),

((132), γ), ((142), γ2), ((124), γ), ((134), γ2), ((143), γ),

((243), γ2), ((234), γ)},

where γ = ei
2π
3 . The lattice of the conjugacy classes of subgroups in A4 × S1

is shown on Figure A2.5.

A2.1.4 Octahedral Group S4

Consider the octahedral group S4, which consists of permutations of four sym-
bols {1, 2, 3, 4}. Since A4 is a subgroup of S4, it is clear that all the subgroups
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(V −
4 )

(Z−
2 )

(V4)

(Z2)

(A4)

(Z1)

(A
tk
4 )

(Ztk
3 ) (Z3)

Fig. A2.5. Lattice of conjugacy classes of twisted subgroups in A4 × S1

of A4, namely A4, V4, Z3, Z2, and Z1, are also subgroups of S4 (cf. Subsec-
tion A2.1.3). In addition, there are the following subgroups in S4, up to their

conjugacy classes

D1 = {(1), (12)},
D2 = {(1), (12)(34), (12), (34)},
D3 = {(1), (123), (132), (12), (23), (13)},
Z4 = {(1), (1324), (12)(34), (1423)},
D4 = {(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)}.

The twisted subgroups of A4 × S1 as listed in Subsection A2.1.3, represent
four conjugacy classes of twisted subgroups in S4 × S1, namely (Z−

2 ), (Zt
3) :=

(Ztk
3 ) (for k = 1, 2), (V −

4 ), and (At
4) := (Atk

4 ) (for k = 1, 2). Besides, we have
additional twisted subgroups in S4 × S1, namely

Dz
1 = {((1), 1), ((12),−1)},

Dz
2 = {((1), 1), ((12)(34), 1), ((12),−1), ((34),−1)},

Dd
2 = {((1), 1), ((12)(34),−1), ((12), 1), ((34),−1)},

Zc
4 = {((1), 1), ((1324), i), ((12)(34),−1), ((1423),−i)},

Z−
4 = {((1), 1), ((1324),−1), ((12)(34), 1), ((1423),−1)},

Dz
3 = {((1), 1), ((123), 1), ((132), 1), ((12),−1), ((23),−1), ((13),−1)},

Dd
4 = {((1), 1), ((1324),−1), ((12)(34), 1), ((1423),−1), ((34), 1),

((14)(23),−1), ((12), 1), ((13)(24),−1)},
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Dd̂
4 = {((1), 1), ((1324),−1), ((12)(34), 1), ((1423),−1), ((34),−1),

((14)(23), 1), ((12),−1), ((13)(24), 1)},
Dz

4 = {((1), 1), ((1324), 1), ((12)(34), 1), ((1423), 1), ((34),−1),

((14)(23),−1), ((12),−1), ((13)(24),−1)},
S−

4 = {((1), 1), ((12),−1), ((12)(34), 1), ((123), 1), ((1234),−1), ((13),−1),

((13)(24), 1), ((132), 1), ((1342),−1), ((14),−1), ((14)(23), 1), ((142), 1),

((1324),−1), ((23),−1), ((124), 1), ((1243),−1), ((24),−1), ((134), 1),

((1423),−1), ((34),−1), ((143), 1), ((1432),−1), ((243), 1), ((234), 1)}.

The lattice of the conjugacy classes of subgroups in S4 is shown in Figure A2.6
and the lattice of the conjugacy classes of the twisted subgroups in S4 × S1 is

shown on Figure A2.7.

(D3)

(Z3)

(S4)

(D4)

(D2)

(D1)

(A4)

(Z4) (V4)

(Z2)

(Z1)

Fig. A2.6. Lattice of conjugacy classes in S4

A2.1.5 Icosahedral Group A5

Consider the icosahedral group, which consists of even permutations of five
symbols {1, 2, 3, 4, 5}. Besides A5 and Z1, there are seven subgroups in A5,
namely
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(Dd
2)

(Dz
1)

(Zc
4)

(S−
4 )

(Dd
4)

(Dz
2)

(D4)

(At
4)

(D3)

(D2)(Z4)

(Z3)

(V4)

(Z2) (D1)

(Z1)

(Dz
3)

(A4)

(Dz
4) (Dd̂

4)

(S4)

(Z−
4 )(V −

4 )

(Zt
3)

(Z−
2 )

Fig. A2.7. Lattice of conjugacy classes of twisted subgroups in S4 × S1.

Z2 = {(1), (12)(34)},
Z3 = {(1) , (123), (132)},
V4 = {(1), (12)(34), (13)(24), (23)(14)},
Z5 = {(1), (12345), (13524), (14253), (15432)},
D3 = {(1), (123), (132), (12)(45), (13)(45), (23)(45)},
A4 = {(1), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134),

(143), (234), (243)},
D5 = {(1), (12345), (13524), (14253), (15432), (12)(35), (13)(45), (14)(23),

(15)(24), (25)(34)}.

The lattice of the conjugacy classes of the subgroups in A5 is shown in Figure

A2.8. The twisted subgroups in A5 × S1 are listed as follows.
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(Z1)

(Z2)

(V4)

(A4)

(A5)

(Z5) (Z3)

(D5) (D3)

Fig. A2.8. Lattice of conjugacy classes for A5

Z−
2 =

{(
(1), 1

)
,
(
(12)(34),−1

)}
,

V −
4 =

{(
(1), 1

)
,
(
(12)(34),−1

)
,
(
(13)(24),−1

)
,
(
(23)(14), 1

)}
,

Zt1
5 =

{(
(1), 1

)
,
(
(12345), ξ

)
,
(
(13524), ξ2

)
,
(
(14253), ξ3

)
,
(
(15432), ξ4

)}
,

Zt2
5 =

{(
(1), 1

)
,
(
(12345), ξ2

)
,
(
(13524), ξ4

)
,
(
(14253), ξ

)
,
(
(15432), ξ3

)}
,

Zt
3 =

{(
(1), 1

)
,
(
(123), γ

)
,
(
(132), γ2

)}
,

Dz
3 =

{(
(1), 1

)
,
(
(123), 1

)
,
(
(132), 1

)
,
(
(12)(45),−1

)
,
(
(13)(45),−1

)
,

(
(23)(45),−1

)}
,

At1
4 =

{(
(1), 1

)
,
(
(12)(34), 1

)
,
(
(13)(24), 1

)
,
(
(14)(23), 1

)
,
(
(123), γ

)
,
(
(132),

γ2
)
,
(
(124), γ2

)
,
(
(142), γ

)
,
(
(134), γ

)
,
(
(143), γ2

)
,
(
(234), γ2

)
,
(
(243), γ

)}
,

At2
4 =

{(
(1), 1

)
,
(
(12)(34), 1

)
,
(
(13)(24), 1

)
,
(
(14)(23), 1

)
,
(
(123), γ2

)
,
(
(132),

γ
)
,
(
(124), γ

)
,
(
(142), γ2

)
,
(
(134), γ2

)
,
(
(143), γ

)
,
(
(234), γ

)
,
(
(243), γ2

)}
,

Dz
5 =

{(
(1), 1

)
,
(
(12345), 1

)
,
(
(13524), 1

)
,
(
14253), 1

)
,
(
(15432), 1

)
,

(
(12)(35),−1

)
,
(
(13)(45),−1

)
,
(
(14)(23),−1

)
,
(
(15)(24),−1

)
,

(
(25)(34),−1

)}
,
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where ξ = e
2π
5
i, γ = e

2πi
3 . The lattice of the conjugacy classes of the twisted

subgroups in A5 × S1 is shown in Figure A2.9.

(A5)

(Z1)

(A4)(At1
4 ) (At2

4 )

(Dz
5)

(V −
4 )

(Dz
3)

(Zt1
5 ) (Zt2

5 )

(Zt
3)

(D5)

(Z5)

(D3)

(Z−
2 )

(V4)

(Z3)

(Z2)

Fig. A2.9. Conjugacy classes of twisted subgroups in A5 × S1

A2.1.6 Orthogonal Group O(2)

Denote by O(2) be the orthogonal group of degree 2 over reals, which is defined
as a subgroup in the general linear group GL(2; R) by

O(2) = {A ∈ GL(2; R) : AAT = I},

where AT is the transpose of A.

The subgroups in O(2) include O(2), SO(2), Dn (for n ∈ N), and Zm (for
m ∈ N). Moreover, we have that

Φ0(O(2)) = {(O(2)), (SO(2)), (Dn), n ∈ N},
Φ1(O(2)) = {Zm, m ∈ N}.

The twisted one-folded subgroups in O(2) × S1 are
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O(2)− := O(2)ϕ, ϕ : O(2) → Z2, ϕ(eiθ) = 1 and ϕ(κeiθ) = −1,

SO(2)ϕk , ϕk : SO(2) → S1, ϕk(e
iθ) = eikθ, k ∈ N,

Dz
k := Dψ

k , ψ : Dk → Z2, kerψ = Zk,

Dd
2k := Dφ

2k, φ : D2k → Z2, kerφ = Dk.

The lattice of the conjugacy classes of twisted subgroups in O(2) × S1 is
shown on Figure A2.10.

(O(2)) (O(2)−) (SO(2)l)(Dd
2m)

(SO(2))

(Dn)

(Dz
n) m

n
∈ N

m
n ∈ N

Fig. A2.10. Lattice of conjugacy classes of twisted subgroups in O(2) × S1

Furthermore,

Φ0(O(2) × S1) = {O(2) × S1, SO(2) × S1,Dn × S1, n ∈ N},
Φ1(O(2) × S1) = {Zm × S1, O(2) × Zl, SO(2) × Zl,Dn × Zl

O(2)−,l, SO(2)ϕk ,l,Dz,l
k ,D

d,l
2k , m, n, l ∈ N},

Φ2(O(2) × S1) = {Zm × Zl,Zϕk ,l
m ,Zd,l

2k , m, l ∈ N}.

A2.1.7 Tori Group T n

We write TN = TN−1 × S1. There are two types of subgroups in TN :

(i) those of the form H ×K, for H ⊂ TN−1 and K ⊂ S1;
(ii) the twisted subgroups Hϕ,l, for H ⊂ TN−1, ϕ : H → S1 and l ∈ N.

Thus, the set of all subgroups in TN can be obtained inductively from the set

of all subgroups in TN−1. For simplicity, we assume N = 2 and list all the
subgroups in T 2 ' SO(2) × S1, namely

(a) (Zn × S1), SO(2) × Zm, Zk × Zl, where n,m, k, l ∈ N;
(b) (SO(2)ϕn,l1), (Zϕn,l2

m ), where ϕn : SO(2) → S1, z 7→ zn, l1, l2 ∈ N.
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A2.2 Irreducible Representations of Groups

A2.2.1 Irreducible Representations of S1

We list the irreducible representations of S1 in Table A2.1.

Vi Space Group Actions Remarks

V0 R γx := x, γ ∈ S1, x ∈ R Trivial

lV C γz := γl · z, γ ∈ S1, z ∈ C l ∈ N

Table A2.1. Irreducible representations of S1

A2.2.2 Irreducible Representations of T n

Notice that all the nontrivial irreducible representations of an abelian group
have a complex dimension 1. Thus, an irreducible T n-representation V is a
copy C, with the T n-action given by

(γ1, γ2, · · · , γn)z = γl11 · γl22 · · · γlnn · z,

where γi ∈ S1, li ∈ N and “ · ” stands for the complex multiplication. Denote
this irreducible representation by (l1,··· ,ln)V.

A2.2.3 Irreducible Representations of Q8 and Q8 × S1

Let us list all the irreducible representations of Q8 in Table A2.2 and all the
1-folded irreducible representations of Q8 × S1 in Table A2.3.

Vi Space Group Actions Remarks

V0 R Trivial

Vk R Induced by ϕk : Q8 → Z2, ker ϕk = Zk
4 k = 1, 2, 3

V4 R4 Natural

Table A2.2. Irreducible representations of Q8
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Vj,1 Space Group Actions Remarks

V0,1 C Trivial

Vk,1 C Induced by ϕk : Q8 → Z2, ker ϕk = Zk
4 k = 1, 2, 3

V4,1 C4 Natural

Table A2.3. Irreducible representations of Q8 × S1

A2.2.4 Irreducible Representations of DN and DN × S1

We list all the irreducible representations of DN in Table A2.4 and all the
1-folded irreducible representations of DN × S1 in Table A2.5.

Vi Space Group Actions Remarks

V0 R Trivial

Vj C

{
γz := γj · z,

κz := z̄,
γ ∈ ZN , z ∈ C 1 ≤ j < N/2

VjN R Induced by ϕ : DN → Z2, ker ϕ = ZN jN := [(N + 1)/2]

VjN+1 R Induced by ϕ : DN → Z2, ker ϕ = DN/2 N even

VjN+2 R Induced by ϕ : DN → Z2, ker ϕ = D̃N/2 N even

Table A2.4. Irreducible representations of DN

Vj,1 Space Group Actions Remarks

V0,1 C Trivial

Vj,1 C2

{
γ(z1, z2) := (γj · z1, γ

−j · z2,

κ(z1, z2) := (z2, z1),
γ ∈ ZN , z1, z2 ∈ C 1 ≤ j < N/2

VjN ,1 C Induced by ϕ : DN → Z2, ker ϕ = ZN jN := [(N + 1)/2]

VjN+1,1 C Induced by ϕ : DN → Z2, ker ϕ = DN/2 N even

VjN+2,1 C Induced by ϕ : DN → Z2, ker ϕ = D̃N/2 N even

Table A2.5. Irreducible representations of DN × S1
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A2.2.5 Irreducible Representations of A4 and A4 × S1

Let us list all the irreducible representations of A4 in Table A2.6 and all the
1-folded irreducible representations of A4 × S1 in Table A2.7.

Vi Space Group Actions Remarks

V0 R Trivial

V2 C Induced by ϕ : A4 → Z3, ker ϕ = V4

V3 R3 Natural

Table A2.6. Irreducible representations of A4

Vj,1 Space Group Actions Remarks

V0,1 C Trivial

Vj,1 C2 Induced by ϕj : A4
ϕ→ Z3

γ 7→γ2

→ Z3 j = 1, 2

V3,1 C3 Natural

Table A2.7. Irreducible representations of A4 × S1

A2.2.6 Irreducible Representations of S4 and S4 × S1

We list all the irreducible representations of S4 in Table A2.8 and all the 1-
folded irreducible representations of S4 × S1 in Table A2.9.

Vi Space Group Actions Remarks

V0 R Trivial

V1 R Induced by ϕ : S4 → Z2, ker ϕ = A4

V2 C Induced by ϕ : S4 → S3 ' D3, ker ϕ = V4

V3 R3 Natural

V4 V1 ⊗V3 Natural 3-dim rep. with nontrivial 1-dim rep.

Table A2.8. Irreducible representations of S4
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Vj,1 Space Group Actions Remarks

V0,1 C Trivial

V1,1 C Induced by ϕ : S4 → Z2, ker ϕ = A4

V2,1 C2 Induced by ϕ : S4 → S3 ' D3, ker ϕ = V4

V3,1 C3 Natural

V4,1 V1,1 ⊗V3,1 Natural 3-dim rep. with nontrivial 1-dim rep.

Table A2.9. Irreducible representations of S4 × S1

A2.2.7 Irreducible Representations of A5 and A5 × S1

Let us list all the irreducible representations of A5 in Table A2.10 and all the
1-folded irreducible representations of A5 × S1 in Table A2.11.

Vi Space Group Actions Remarks

V0 R Trivial

V1 R4 Natural

V2 R5 Spherical harmonics of 3 variables A5 ⊂ SO(3)

V3 R3 Character χ((12345)) = 1+
√

5
2

V4 R3 Character χ((12345)) = 1−
√

5
2

Table A2.10. Irreducible representations of A5

Vj,1 Space Group Actions Remarks

V0,1 C Trivial

V1,1 C4 Complexification Vc
1 of V1

V2,1 C5 Complexification Vc
2 of V2

V3,1 C3 Complexification Vc
3 of V3

V4,1 C3 Complexification Vc
4 of V4

Table A2.11. Irreducible representations of A5 × S1
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A2.2.8 Irreducible Representations of O(2) and O(2) × S1

Let us list all the irreducible representations of O(2) in Table A2.12 and all

the 1-folded irreducible representations of O(2) × S1 in Table A2.13.

Vi Space Group Actions Remarks

V0 R Trivial

V 1
2

R Induced by ϕ : O(2) → Z2, ker ϕ = SO(2)

Vm C

{
uz := um · z,

κz := z̄,
u ∈ O(2), z ∈ C m = 1, 2, 3, . . .

Table A2.12. Irreducible representations of O(2)

Vj,1 Space Group Actions Remarks

V0,1 C Trivial

V 1
2 ,1 C Induced by ϕ : O(2) → Z2, ker ϕ = SO(2)

Vm,1 C2

{
uz := um · z,

κz := z̄,
u ∈ O(2), z ∈ C m = 1, 2, 3, . . .

Table A2.13. Irreducible representations of O(2) × S1

A2.3 Basic Degrees for Groups

The concept of basic degrees plays an important role in the effective compu-

tations of Γ × S1-equivariant degrees. In this section, we catalog the values of
all the basic degrees in the case Γ = Q8, DN , A4, S4, A5, and O(2). For more
details, we refer to [15].

A2.3.1 Basic Degrees for Q8

For convenience, we present the lattice of twisted orbit types in V4,1 in Figure
A2.11. Based on the lattices of orbit types occured in the irreducible represen-

tations, we obtain the basic degrees of the irreducible representations of Q8

and Q8 × S1 respectively.
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(Z1+
4 ) (Z2+

4 ) (Z3+
4 )

(Z−
2 )

[2]

[4]

Fig. A2.11. Lattice of twisted orbit types in V4,1





deg V0
= −(Q8),

deg Vk
= (Q8) − (Zk

4),

deg V4
= (Q8).





deg V0,1
= (Q8),

deg Vk,1
= (Qk−

8 ),

deg V4,1
= (Z1+

4 ) + (Z2+
4 ) + (Z3+

4 ) − (Z−
2 ),

where k = 1, 2, 3.

A2.3.2 Basic Degrees for DN

The lattices of twisted orbit types for Vj,1 are listed in Figure A2.12— Figure
A2.14. Based on the lattices of orbit types, we obtain the basic degrees of
irreducible representations for DN and DN × S1 respectively.

(Dh)

(Zh)

(Ztj

N ) (Dz
h) [2]

[4]

Fig. A2.12. Lattice of twisted orbit types for m Odd

(Dd
2h)

(Zd
2h)

(Ztj

N ) (Dd̂
2h) [2]

[4]

Fig. A2.13. Lattice of twisted orbit types for m ≡ 2 (mod 4)
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(Dd
2h)

(Zd
2h)

(Ztj

N ) (D̃d
2h) [2]

[4]

Fig. A2.14. Lattice of twisted orbit types for m ≡ 0 (mod 4)





deg V0
= −(DN ),

deg Vj
=

{
(DN ) − 2(Dh) + (Zh) if m is odd,

(DN ) − (Dh) − (D̃h) + (Zh) if m is even,

deg VjN
= (DN ) − (ZN ),

deg VjN+1
= (DN ) − (DN

2
), if N is even,

deg VjN+2
= (DN ) − (D̃N

2
), if N is even,

where 1 ≤ j < N/2, h = gcd(j,N) and m := N/h.





deg V0,1
= (DN ),

deg Vj,1
=





(Ztj
N ) + (Dh) + (Dz

h) − (Zh) if m is odd,

(Ztj
N ) + (Dd

2h) + (Dd̂
2h) − (Zd

2h) if m ≡ 2 (mod 4),

(Ztj
N ) + (Dd

2h) + (D̃d
2h) − (Zd

2h) if m ≡ 0 (mod 4)

deg VjN,1
= (Dz

N ),

deg VjN+1,1
= (Dd

N ), if N is even,

deg VjN+2,1
= (Dd̂

N ), if N is even,

where 1 ≤ j < N/2, h := gcd(j,N) and m := N/h.

A2.3.3 Basic Degrees for A4

We list the lattices of the twisted orbit types in V3 and V3,1 in Figure A2.15.

Based on the lattices of orbit types, we obtain the basic degrees of irreducible
representations for A4 and A4 × S1 respectively.





deg V0
= −(A4),

deg V2
= (A4),

deg V3
= (A4) − 2(Z3) − (Z2) + (Z1).
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(A4)

(Z3) (Z2)

(Z1)

[0]

[1]

[3]

(Zt1
3 ) (V −

4 )

(Z−
2 )

(Zt2
3 )(Z3)

(Z1)

[2]

[4]

[6]

Fig. A2.15. Representation V3 and representation V3,1





deg V0,1
= (A4),

deg V1,1
= (At1

4 ),

deg V2,1
= (At2

4 ),

deg V3,1
= (Zt1

3 ) + (Zt2
3 ) + (V −

4 ) + (Z3) − (Z1).

A2.3.4 Basic Degrees for S4

We list the lattices of the twisted orbit types in V2,1, V3,1 and V4,1 in Figure
A2.16 — Figure A2.18. Based on the lattices of orbit types, we obtain the

basic degrees of irreducible representations for S4 and S4 × S1 respectively.

(At
4) (D4) (Dd̂

4)

(V4)

[2]

[4]

Fig. A2.16. Lattice of twisted orbit types for V2,1





deg V0
= −(S4),

deg V1
= (S4) − (A4),

deg V2
= (S4) − 2(D4) + (V4),

deg V3
= (S4) − 2(D3) − (D2) + 3(D1) − (Z1),

deg V4
= (S4) − (Z4) − (D1) − (Z3) + (Z1).
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(Zc
4) (Dd

4) (Dd
2) (D3) (Zt

3)

(D1)(Z−
2 )

(Z1)

[2]

[4]

[6]

Fig. A2.17. Lattice of twisted orbit types for V3,1

(Zc
4) (Dz

4) (Dd
2) (Dz

3) (Zt
3)

(Dz
1)(Z−

2 )

(Z1)

[2]

[4]

[6]

Fig. A2.18. Lattice of twisted orbit types for V4,1

.





deg V0,1
= (S4),

deg V1,1
= (S−

4 ),

deg V2,1
= (At

4) + (D4) + (Dd̂
4) − (V4),

deg V3,1
= (Zc

4) + (Dd
4) + (Dd

2) + (D3) + (Zt
3) − (Z−

2 ) − (D1),

deg V4,1
= (Zc

4) + (Dz
4) + (Dd

2) + (Dz
3) + (Zt

3) − (Z−
2 ) − (Dz

1).

A2.3.5 Basic Degrees for A5

We list the lattices of the twisted orbit types in Vk and Vk,1 for k = 1, 2, 3, 4

respectively in Figure A2.19 — Figure A2.23. Based on the lattices of orbit
types, we obtain the basic degrees of irreducible representations for A5 and
A5 × S1 respectively.
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(Z1)

(Z2) (Z3)

(A4) (D3)

(A5) [0]

[1]

[2]

[4]

V1

(Z1)

(Z2)

(V4)

(D5) (D3)

(A5) [0]

[1]

[2]

[3]

[5]

V2

(Z1)

(Z3)

(A5)

(Z5) (Z2)

[0]

[1]

[3]

V3 and V4

Fig. A2.19. Lattice of orbit types for V1, V2, V3 and V4

(Z1)

(Z−
2 )

(V −
4 )(Dz

3)(D3)(A4) (Zt
3) (Zt1

5 ) (Zt2
5 )

(Z3)(Z2)

[8]

[4]

[2]

Fig. A2.20. Lattice of twisted orbit types for V1,1

(Z1)

(Z2)

(Z−
2 ) (V4) (Zt

3)

(At1
4 ) (At2

4 ) (D3) (D5)(V −
4 )(Zt2

5 )(Zt1
5 )

[10]

[6]

[4]

[2]

Fig. A2.21. Lattice of twisted orbit types for V2,1
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(Z1)

(Z−
2 )

(Dz
3)(V −

4 )(Dz
5) (Zt1

5 ) (Zt
3)

[6]

[4]

[2]

Fig. A2.22. Lattice of twisted orbit types for V3,1

(Z1)

(Z−
2 )

(Dz
3)(V −

4 )(Dz
5) (Zt2

5 ) (Zt
3)

[6]

[4]

[2]

Fig. A2.23. Lattice of twisted orbit types for V4,1





deg V0
= −(A5),

deg V1
= (A5) − 2(A4) − 2(D3) + 3(Z2) + 3(Z3) − 2(Z1),

deg V2
= (A5) − 2(D5) − 2(D3) + 3(Z2) − (Z1),

deg V3
= deg V4

= (A5) − (Z5) − (Z3) − (Z2) + (Z1).




deg V0,1
= (A5),

deg V1,1
= (A4) + (D3) + (Dz

3) + (V −
4 ) + (Zt

3)

+(Zt1
5 ) + (Zt2

5 ) − (Z2) − (Z3) − (Z−
2 ),

deg V2,1
= (D5) + (D3) + (At1

4 ) + (At2
4 )

+(V −
4 ) + (Zt1

5 ) + (Zt2
5 ) − 2(Z2),

deg V3,1
= (Dz

5) + (V −
4 ) + (Dz

3) + (Zt1
5 ) + (Zt

3) − 2(Z−
2 ),

deg V4,1
= (Dz

5) + (V −
4 ) + (Dz

3) + (Zt2
5 ) + (Zt

3) − 2(Z−
2 ).
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A2.3.6 Basic Degrees for O(2)

We list the basic degrees of irreducible representations for O(2) and O(2)×S1

respectively.





deg V0
= (O(2)),

deg V 1
2

= (O(2)) − (SO(2)),

deg Vm
= (O(2)) − (Dm), m = 1, 2, 3, . . .





deg V0,1
= (O(2)),

deg V 1
2 ,1

= (O(2)−),

deg Vm,1
= (SO(2)m) + (Dd

2m), m = 1, 2, 3, . . . .

A2.3.7 Basic Gradient Degrees for O(2) × S1





Deg V0
= (O(2) × S1),

Deg V 1
2

= (O(2) × S1) − (SO(2) × S1),

Deg Vm
= (O(2) × S1) − (Dm × S1),





Deg V0,1
= (O(2) × S1) − (O(2)),

Deg V 1
2 ,1

= (O(2) × S1) − (O(2)−),

Deg Vm,1
= (O(2) × S1) − (SO(2)ϕm) − (Dd

2m) + (Zd
2m),

where m = 1, 2, . . . .



A3

Multiplication Tables

For convenience, we present the multiplication tables for the Burnside ring
A(Γ ), the A(Γ )-module At

1(Γ × S1), for Γ = Q8, Dn (for n = 3, 4, 5, 6), A4,

S4, A5, and O(2). In addition, we include the multiplication tables for the
Euler ring U(T 2) and U(O(2) × S1).

A3.1 Multiplication Tables for the Burnside Ring A(Γ )

(Q8) (Z1
4) (Z2

4) (Z3
4) (Z2) (Z1)

(Q8) (Z1
4) (Z2

4) (Z3
4) (Z2) (Z1) (Q8)

(Z1
4) 2(Z1

4) (Z2) (Z2) 2(Z2) 2(Z1) (Z1
4)

(Z2
4) (Z2) 2(Z2

4) (Z2) 2(Z2) 2(Z1) (Z2
4)

(Z3
4) (Z2) (Z2) 2(Z3

4) 2(Z2) 2(Z1) (Z3
4)

(Z2) 2(Z2) 2(Z2) 2(Z2) 4(Z2) 4(Z1) (Z2)
(Z1) 2(Z1) 2(Z1) 2(Z1) 4(Z1) 8(Z1) (Z1)

Table A3.1. Multiplication table for the Burnside ring A(Q8)

(D3) (D1) (Z3) (Z1)

(D3) (D1) (Z3) (Z1) (D3)
(D1) (D1) + (Z1) (Z1) 3(Z1) (D1)
(Z3) (Z1) 2(Z3) 2(Z1) (Z3)
(Z1) 3(Z1) 2(Z1) 6(Z1) (Z1)

Table A3.2. Multiplication table for the Burnside ring A(D3)
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(D4) (D2) (D̃2) (D1) (D̃1) (Z4) (Z2) (Z1)

(D4) (D2) (D̃2) (D1) (D̃1) (Z4) (Z2) (Z1) (D4)
(D2) 2(D2) (Z2) 2(D1) (Z1) (Z2) 2(Z2) 2(Z1) (D2)

(D̃2) (Z2) 2(D̃2) (Z1) 2(D̃1) (Z2) 2(Z2) 2(Z1) (D̃2)
(D1) 2(D1) (Z1) 2(D1) + (Z1) 2(Z1) (Z1) 2(Z1) 4(Z1) (D1)

(D̃1) (Z1) 2(D̃1) 2(Z1) 2(D̃1) + (Z1) (Z1) 2(Z1) 4(Z1) (D̃1)
(Z4) (Z2) (Z2) (Z1) (Z1) 2(Z4) 2(Z2) 2(Z1) (Z4)
(Z2) 2(Z2) 2(Z2) 2(Z1) 2(Z1) 2(Z2) 4(Z2) 4(Z1) (Z2)
(Z1) 2(Z1) 2(Z1) 4(Z1) 4(Z1) 2(Z1) 4(Z1) 8(Z1) (Z1)

Table A3.3. Multiplication table for the Burnside ring A(D4)

(D5) (D1) (Z5) (Z1)

(D5) (D1) (Z5) (Z1) (D5)
(D1) (D1) + 2(Z1) (Z1) 5(Z1) (D1)
(Z5) (Z1) 2(Z5) 2(Z1) (Z5)
(Z1) 5(Z1) 2(Z1) 10(Z1) (Z1)

Table A3.4. Multiplication table for the Burnside ring A(D5)

(D6) (D̃3) (D3) (Z6) (D2) (Z3) (D̃1) (D1) (Z2) (Z1)

(D6) (D̃3) (D3) (Z6) (D2) (Z3) (D̃1) (D1) (Z2) (Z1) (D6)

(D̃3) 2(D̃3) (Z3) (Z3) (D̃1) 3(Z3) 2(D̃1) (Z1) (Z1) 2(Z1) (D̃3)

(D3) (Z3) 2(D3) (Z3) (D1) 2(Z3) (Z1) 2(D1) (Z1) 2(Z1) (D3)

(Z6) (Z3) (Z3) 2(Z6) (Z2) 2(Z3) (Z1) (Z1) 2(Z2) 2(Z1) (Z6)

(D2) (D̃1) (D1) (Z2) (D2) + (Z2) (Z1) (D̃1) + (Z1) (D1) + (Z1) 3(Z2) 3(Z1) (D2)

(Z3) 2(Z3) 2(Z3) 2(Z3) (Z1) 4(Z3) 2(Z1) 2(Z1) 2(Z1) 4(Z1) (Z3)

(D̃1) 2(D̃1) (Z1) (Z1) (D̃1) + (Z1) 2(Z1) 2(D̃1) + (Z1) 3(Z1) 3(Z1) 6(Z1) (D̃1)

(D1) (Z1) 2(D1) (Z1) (D1) + (Z1) 2(Z1) 3(Z1) 2(D1) + (Z1) 3(Z1) 6(Z1) (D1)

(Z2) (Z1) (Z1) 2(Z2) 3(Z2) 2(Z1) 3(Z1) 3(Z1) 6(Z2) 6(Z1) (Z2)

(Z1) 2(Z1) 2(Z1) 2(Z1) 3(Z1) 4(Z1) 6(Z1) 6(Z1) 6(Z1) 12(Z1) (Z1)

Table A3.5. Multiplication table for the Burnside ring A(D6)
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(A4) (V4) (Z3) (Z2) (Z1)

(A4) (V4) (Z3) (Z2) (Z1) (A4)
(V4) 3(V4) (Z1) 3(Z2) 3(Z1) (V4)
(Z3) (Z1) (Z3) + (Z1) 2(Z1) 4(Z1) (Z3)
(Z2) 3(Z2) 2(Z1) 2(Z2) + 2(Z1) 6(Z1) (Z2)
(Z1) 3(Z1) 4(Z1) 6(Z1) 12(Z1) (Z1)

Table A3.6. Multiplication table for the Burnside ring A(A4)

(A4) (D4) (D3) (D2) (V4) (Z4) (Z3) (Z2) (D1) (Z1)

2(A4) (V4) (Z3) (Z2) 2(V4) (Z2) 2(Z3) 2(Z2) (Z1) 2(Z1) (A4)

(V4) (D4) + (V4) (D1) (D2) + (Z2) 3(V4) (Z4) + (Z2) (Z1) 3(Z2) (D1) + (Z1) 3(Z1) (D4)

(Z3) (D1) (D3) + (D1) 2(D1) (Z1) (Z1) (Z3) + (Z1) 2(Z1) 2(D1) + (Z1) 4(Z1) (D3)

(Z2) (D2) + (Z2) 2(D1) 2(D2) + (Z1) 3(Z2) (Z2) + (Z1) 2(Z1) 2(Z2) + 2(Z1) 2(D1) + 2(Z1) 6(Z1) (D2)

2(V4) 3(V4) (Z1) 3(Z2) 6(V4) 3(Z2) 2(Z1) 6(Z2) 3(Z1) 6(Z1) (V4)

(Z2) (Z4) + (Z2) (Z1) (Z2) + (Z1) 3(Z2) 2(Z4) + (Z1) 2(Z1) 2(Z2) + 2(Z1) 3(Z1) 6(Z1) (Z4)

2(Z3) (Z1) (Z3) + (Z1) 2(Z1) 2(Z1) 2(Z1) 2(Z3) + 2(Z1) 4(Z1) 4(Z1) 8(Z1) (Z3)

2(Z2) 3(Z2) 2(Z1) 2(Z2) + 2(Z1) 6(Z2) 2(Z2) + 2(Z1) 4(Z1) 4(Z2) + 4(Z1) 6(Z1) 12(Z1) (Z2)

(Z1) (D1) + (Z1) 2(D1) + (Z1) 2(D1) + 2(Z1) 3(Z1) 3(Z1) 4(Z1) 6(Z1) 2(D1) + 5(Z1) 12(Z1) (D1)

2(Z1) 3(Z1) 4(Z1) 6(Z1) 6(Z1) 6(Z1) 8(Z1) 12(Z1) 12(Z1) 24(Z1) (Z1)

Table A3.7. Multiplication table for the Burnside ring A(S4)

(A5) (A4) (D5) (D3) (Z5) (V4) (Z3) (Z2) (Z1)

(A5) (A4) (D5) (D3) (Z5) (V4) (Z3) (Z2) (Z1) (A5)

(A4) (A4) + (Z3) (Z2) (Z3) + (Z2) (Z1) (V4) + (Z1) 2(Z3) + (Z1) (Z2) + 2(Z1) 5(Z1) (A4)

(D5) (Z2) (D5) + (Z2) 2(Z2) (Z5) + (Z1) 3(Z2) 2(Z1) 2(Z2) + 2(Z1) 6(Z1) (D5)

(D3) (Z3) + (Z2) 2(Z2) (D3) + (Z2) + (Z1) 2(Z1) 3(Z2) + (Z1) (Z3) + 3(Z1) 2(Z2) + 4(Z1) 10(Z1) (D3)

(Z5) (Z1) (Z5) + (Z1) 2(Z1) 2(Z5) + 2(Z1) 3(Z1) 4(Z1) 6(Z1) 12(Z1) (Z5)

(V4) (V4) + (Z1) 3(Z2) 3(Z2) + (Z1) 3(Z1) 3(V4) + 3(Z1) 5(Z1) 3(Z2) + 6(Z1) 15(Z1) (V4)

(Z3) 2(Z3) + (Z1) 2(Z1) (Z3) + 3(Z1) 4(Z1) 5(Z1) 2(Z3) + 6(Z1) 10(Z1) 20(Z1) (Z3)

(Z2) (Z2) + 2(Z1) 2(Z2) + 2(Z1) 2(Z2) + 4(Z1) 6(Z1) 3(Z2) + 6(Z1) 10(Z1) 2(Z2) + 14(Z1) 30(Z1) (Z2)

(Z1) 5(Z1) 6(Z1) 10(Z1) 12(Z1) 15(Z1) 20(Z1) 30(Z1) 60(Z1) (Z1)

Table A3.8. Multiplication table for the Burnside ring A(A5)
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(O(2)) (SO(2)) (Dm)

(O(2)) (SO(2)) (Dm) (O(2))
(SO(2)) 2(SO(2)) 0 (SO(2))

(Dn) 0 2(Dl), where l = gcd(n,m) (Dn)

Table A3.9. Multiplication table for the Burnside ring A(O(2))

A3.2 Multiplication Tables for the A(Γ )-Module

At
1(Γ × S1)

(Q8) (Z1
4) (Z2

4) (Z3
4) (Z2) (Z1)

(Q1−
8 ) (Z1

4) (Z2−
4 ) (Z3−

4 ) (Z2) (Z1) (Q1−
8 )

(Q2−
8 ) (Z1−

4 ) (Z2
4) (Z3−

4 ) (Z2) (Z1) (Q2−
8 )

(Q3−
8 ) (Z1−

4 ) (Z2−
4 ) (Z3

4) (Z2) (Z1) (Q3−
8 )

(Z1+
4 ) 2(Z1+

4 ) (Z−
2 ) (Z−

2 ) 2(Z−
2 ) 2(Z1) (Z1+

4 )
(Z2+

4 ) (Z−
2 ) 2(Z2+

4 ) (Z−
2 ) 2(Z−

2 ) 2(Z1) (Z2+
4 )

(Z3+
4 ) (Z−

2 ) (Z−
2 ) 2(Z3+

4 ) 2(Z−
2 ) 2(Z1) (Z3+

4 )
(Z1−

4 ) 2(Z1−
4 ) (Z2) (Z2) 2(Z2) 2(Z1) (Z1−

4 )
(Z2−

4 ) (Z2) 2(Z2−
4 ) (Z2) 2(Z2) 2(Z1) (Z2−

4 )
(Z3−

4 ) (Z2) (Z2) 2(Z3−
4 ) 2(Z2) 2(Z1) (Z3−

4 )
(Z−

2 ) 2(Z−
2 ) 2(Z−

2 ) 2(Z−
2 ) 4(Z−

2 ) 4(Z1) (Z−
2 )

Table A3.10. Multiplication table for the A(Q8)-module At
1(Q8 × S1)

(D3) (D1) (Z3) (Z1)

(Zt
3) (Z1) 2(Zt

3) 2(Z1) (Zt
3)

(Dz
3) (Dz

1) (Z3) (Z1) (Dz
3)

(Dz
1) (Dz

1) + (Z1) (Z1) 3(Z1) (Dz
1)

Table A3.11. Multiplication table for the A(D3)-module At
1(D3 × S1)



(D4) (D2) (D̃2) (D1) (D̃1) (Z4) (Z2) (Z1)

(Dz
4) (Dz

2) (D̃z
2) (Dz

1) (D̃z
1) (Z4) (Z2) (Z1) (Dz

4)

(Dd̂
4) (Dz

2) (D̃2) (Dz
1) (D̃1) (Zd

4) (Z2) (Z1) (Dd̂
4)

(Dd
4) (D2) (D̃z

2) (D1) (D̃z
1) (Zd

4) (Z2) (Z1) (Dd
4)

(Dd
2) 2(Dd

2) (Z−
2 ) (D1) + (Dz

1) (Z1) (Z−
2 ) 2(Z−

2 ) 2(Z1) (Dd
2)

(D̃d
2) (Z−

2 ) 2(D̃d
2) (Z1) (D̃1) + (D̃z

1) (Z−
2 ) 2(Z−

2 ) 2(Z1) (D̃d
2)

(Dz
2) 2(Dz

2) (Z2) 2(Dz
1) (Z1) (Z2) 2(Z2) 2(Z1) (Dz

2)

(D̃z
2) (Z2) 2(D̃z

2) (Z1) 2(D̃z
1) (Z2) 2(Z2) 2(Z1) (D̃z

2)
(Dz

1) 2(Dz
1) (Z1) 2(Dz

1) + (Z1) 2(Z1) (Z1) 2(Z1) 4(Z1) (Dz
1)

(D̃z
1) (Z1) 2(D̃z

1) 2(Z1) 2(D̃z
1) + (Z1) (Z1) 2(Z1) 4(Z1) (D̃z

1)
(Zt

4) (Z−
2 ) (Z−

2 ) (Z1) (Z1) 2(Zt
4) 2(Z−

2 ) 2(Z1) (Zt
4)

(Zd
4) (Z2) (Z2) (Z1) (Z1) 2(Zd

4) 2(Z2) 2(Z1) (Zd
4)

(Z−
2 ) 2(Z−

2 ) 2(Z−
2 ) 2(Z1) 2(Z1) 2(Z−

2 ) 4(Z−
2 ) 4(Z1) (Z−

2 )

Table A3.12. Multiplication table for the A(D4)-module At
1(D4 × S1)

(D5) (D1) (Z5) (Z1)

(Zt1
5 ) (Z1) 2(Zt1

5 ) 2(Z1) (Zt1
5 )

(Zt2
5 ) (Z1) 2(Zt2

5 ) 2(Z1) (Zt2
5 )

(Dz
5) (Dz

1) (Z5) (Z1) (Dz
5)

(Dz
1) (Dz

1) + 2(Z1) (Z1) 5(Z1) (Dz
1)

Table A3.13. Multiplication table for the A(D5)-module At
1(D5 × S1)

where l = gcd(l1, l2) and m > n.
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(D6) (D̃3) (D3) (Z6) (D2) (Z3) (D̃1) (D1) (Z2) (Z1)

(Dz
6) (D̃z

3) (Dz
3) (Z6) (Dz

2) (Z3) (D̃z
1) (Dz

1) (Z2) (Z1) (Dz
6)

(Dd̂
6) (D̃3) (Dz

3) (Zd
6) (Dd̂

2) (Z3) (D̃1) (Dz
1) (Z−

2 ) (Z1) (Dd̂
6)

(Dd
6) (D̃z

3) (D3) (Zd
6) (Dd

2) (Z3) (D̃z
1) (D1) (Z−

2 ) (Z1) (Dd
6)

(Zd
6) (Z3) (Z3) 2(Zd

6) (Z−
2 ) 3(Z3) (Z1) (Z1) 2(Z−

2 ) 2(Z1) (Zd
6)

(Zt1
6 ) (Zt

3) (Zt
3) 2(Zt1

6 ) (Z−
2 ) 2(Zt

3) (Z1) (Z1) 2(Z−
2 ) 2(Z1) (Zt1

6 )

(Zt2
6 ) (Zt

3) (Zt
3) 2(Zt2

6 ) (Z2) 2(Zt
3) (Z1) (Z1) 2(Z2) 2(Z1) (Zt2

6 )

(D̃z
3) 2(D̃z

3) (Z3) (Z3) (D̃z
1) 2(Z3) 2(D̃z

1) (Z1) (Z1) 2(Z1) (D̃z
3)

(Dz
3) (Z3) 2(Dz

3) (Z3) (Dz
1) 2(Z3) (Z1) 2(Dz

1) (Z1) 2(Z1) (Dz
3)

(Dz
2) (D̃z

1) (Dz
1) (Z2) (Dz

2) + (Z2) (Z1) (D̃z
1) + (Z1) (Dz

1) + (Z1) 3(Z2) 3(Z1) (Dz
2)

(Dd
2) (D̃z

1) (D1) (Z−
2 ) (Dd

2) + (Z−
2 ) (Z1) (D̃z

1) + (Z1) (D1) + (Z1) 3(Z−
2 ) 3(Z1) (Dd

2)

(Dd̂
2) (D̃1) (Dz

1) (Z−
2 ) (Dd̂

2) + (Z−
2 ) (Z1) (D̃1) + (Z1) (Dz

1) + (Z1) 3(Z−
2 ) 3(Z1) (Dd̂

2)

(Zt
3) 2(Zt

3) 2(Zt
3) 2(Zt

3) (Z1) 4(Zt
3) 2(Z1) 2(Z1) 2(Z1) 4(Z1) (Zt

3)

(D̃z
1) 2(D̃z

1) (Z1) (Z1) (D̃z
1) + (Z1) 2(Z1) 2(D̃z

1) + 2(Z1) 3(Z1) 3(Z1) 6(Z1) (D̃z
1)

(Dz
1) (Z1) 2(Dz

1) (Z1) (Dz
1) + (Z1) 2(Z1) 3(Z1) 2(Dz

1) + 2(Z1) 3(Z1) 6(Z1) (Dz
1)

(Z−
2 ) (Z1) (Z1) 2(Z−

2 ) 3(Z−
2 ) 2(Z1) 3(Z1) 3(Z1) 6(Z−

2 ) 6(Z1) (Z−
2 )

Table A3.14. Multiplication table for the A(D6)-module At
1(D6 × S1)

(A4) (V4) (Z3) (Z2) (Z1)

(A
tk
4 ) (V4) (Ztk

3 ) (Z2) (Z1) (A
tk
4 )

(V −
4 ) 3(V −

4 ) (Z1) (Z2) + 2(Z−
2 ) 3(Z1) (V −

4 )

(Ztk
3 ) (Z1) (Ztk

3 ) + (Z1) 2(Z1) 4(Z1) (Ztk
3 )

(Z−
2 ) 3(Z−

2 ) 2(Z1) 2(Z−
2 ) + 2(Z1) 6(Z1) (Z−

2 )

Table A3.15. Multiplication table for the A(A4)-module At
1(A4 × S1)
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(A4) (D4) (D3) (D2) (V4) (Z4) (Z3) (Z2) (D1) (Z1)

(A4) (Dd̂
4) (Dz

3) (Dz
2) (V4) (Z−

4 ) (Z3) (Z2) (Dz
1) (Z1) (S−

4 )

2(At
4) (V4) (Zt

3) (Z2) 2(V4) (Z2) 2(Zt
3) 2(Z2) (Z1) 2(Z1) (At

4)

(V −
4 ) (Dz

4) + (V −
4 ) (Dz

1) (Dz
2) + (Z−

2 ) 3(V −
4 ) (Z4) + (Z−

2 ) (Z1) (Z2) + 2(Z−
2 ) (Dz

1) + (Z1) 3(Z1) (Dz
4)

(V −
4 ) (Dd

4) + (V −
4 ) (D1) (D2) + (Z−

2 ) 3(V −
4 ) (Z−

4 ) + (Z−
2 ) (Z1) (Z2) + 2(Z−

2 ) (D1) + (Z1) 3(Z1) (Dd
4)

(V4) (Dd̂
4) + (V4) (Dz

1) (Dz
2) + (Z2) 3(V4) (Z−

4 ) + (Z2) (Z1) 3(Z2) (Dz
1) + (Z1) 3(Z1) (Dd̂

4)

(Z3) (Dz
1) (Dz

3) + (Dz
1) 2(Dz

1) (Z1) (Z1) (Z3) + (Z1) 2(Z1) 2(D1) + (Z1) 4(Z1) (Dz
3)

(Z2) (Dz
2) + (Z2) 2(Dz

1) 2(Dz
2) + (Z1) 3(Z2) (Z2) + (Z1) 2(Z1) 2(Z2) + 2(Z1) 2(Dz

1) + 2(Z1) 6(Z1) (Dz
2)

(Z−
2 ) (Dd

2) + (Z−
2 ) (D1) + (Dz

1) 2(Dd
2) + (Z1) 3(Z−

2 ) (Z−
2 ) + (Z1) 2(Z1) 2(Z−

2 ) + 2(Z1) (D1) + (Dz
1) + 2(Z1) 6(Z1) (Dd

2)

2(V −
4 ) 3(V −

4 ) (Z1) (Z2) + 2(Z−
2 ) 6(V −

4 ) (Z2) + 2(Z−
2 ) 2(Z1) 2(Z2) + 4(Z−

2 ) 3(Z1) 6(Z1) (V −
4 )

(Z2) (Z−
4 ) + (Z2) (Z1) (Z2) + (Z1) 3(Z2) 2(Z−

4 ) + (Z1) 2(Z1) 2(Z2) + 2(Z1) 3(Z1) 6(Z1) (Z−
4 )

2(Z−
2 ) (Zc

4) + (Z−
2 ) (Z1) (Z−

2 ) + (Z1) 3(Z−
2 ) 2(Zc

4) + (Z1) 2(Z1) 2(Z−
2 ) + 2(Z1) 3(Z1) 6(Z1) (Zc

4)

2(Zt
3) (Z1) (Zt

3) + (Z1) 2(Z1) 2(Z1) 2(Z1) 2(Zt
3) + 2(Z1) 4(Z1) 4(Z1) 8(Z1) (Zt

3)

2(Z−
2 ) 3(Z−

2 ) 2(Z1) 2(Z−
2 ) + 2(Z1) 6(Z−

2 ) 2(Z−
2 ) + 2(Z1) 4(Z1) 4(Z−

2 ) + 4(Z1) 6(Z1) 12(Z1) (Z−
2 )

(Z1) (Dz
1) + (Z1) 2(Dz

1) + (Z1) 2(Dz
1) + 2(Z1) 3(Z1) 3(Z1) 4(Z1) 6(Z1) 2(Dz

1) + 5(Z1) 12(Z1) (Dz
1)

Table A3.16. Multiplication table for the A(S4)-module At
1(S4 × S1)

(A5) (A4) (D5) (D3) (Z5) (V4) (Z3) (Z2) (Z1)

(At1
4 ) (At1

4 ) + (Zt
3) (Z2) (Zt

3) + (Z2) (Z1) (V4) + (Z1) 2(Zt
3) + (Z1) (Z2) + 2(Z1) 5(Z1) (At1

4 )

(At2
4 ) (At2

4 ) + (Zt
3) (Z2) (Zt

3) + (Z2) (Z1) (V4) + (Z1) 2(Zt
3) + (Z1) (Z2) + 2(Z1) 5(Z1) (At2

4 )

(Dz
5) (Z−

2 ) (Dz
5) + (Z−

2 ) 2(Z−
2 ) (Z5) + (Z1) 3(Z−

2 ) 2(Z1) 2(Z−
2 ) + 2(Z1) 6(Z1) (Dz

5)

(Dz
3) (Z3) + (Z−

2 ) 2(Z−
2 ) (Dz

3) + (Z−
2 ) + (Z1) 2(Z1) 3(Z−

2 ) + (Z1) (Z3) + 3(Z1) 2(Z−
2 ) + 4(Z1) 10(Z1) (Dz

3)

(Zt1
5 ) (Z1) (Zt1

5 ) + (Z1) 2(Z1) 2(Zt1
5 ) + 2(Z1) 3(Z1) 4(Z1) 6(Z1) 12(Z1) (Zt1

5 )

(Zt2
5 ) (Z1) (Zt2

5 ) + (Z1) 2(Z1) 2(Zt2
5 ) + 2(Z1) 3(Z1) 4(Z1) 6(Z1) 12(Z1) (Zt2

5 )

(V −
4 ) (V −

4 ) + (Z1) 2(Z−
2 ) + (Z2) 2(Z−

2 ) + (Z2) + (Z1) 3(Z1) 3(V −
4 ) + 3(Z1) 5(Z1) 2(Z−

2 ) + (Z2) + 6(Z1) 15(Z1) (V −
4 )

(Zt
3) 2(Zt

3) + (Z1) 2(Z1) (Zt
3) + 3(Z1) 4(Z1) 5(Z1) 2(Zt

3) + 6(Z1) 10(Z1) 20(Z1) (Zt
3)

(Z−
2 ) (Z−

2 ) + 2(Z1) 2(Z−
2 ) + 2(Z1) 2(Z−

2 ) + 4(Z1) 6(Z1) 3(Z−
2 ) + 6(Z1) 10(Z1) 2(Z−

2 ) + 14(Z1) 30(Z1) (Z−
2 )

Table A3.17. Multiplication table for the A(A5)-module At
1(A5 × S1)
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(O(2)) (SO(2)) (Dm)

(O(2)) (SO(2)) (Dm) (O(2))
(SO(2)) 2(SO(2)) 0 (SO(2))

(Dn) 0 2(Dl), where l = gcd(n,m) (Dn)

(O(2)−) (SO(2)) (Dz
m) (O(2)−)

(SO(2)k) 2(SO(2)k) 0 (SO(2)k)
(Dz

n) 0 2(Dz
l ), where l = gcd(n,m) (Dz

n)

(Dd
2k) 0

∣∣∣∣
k
l

∣∣∣∣ (Dl) +

∣∣∣∣
k
l

∣∣∣∣ (Dz
l ) + 2

(
1 −

∣∣∣∣
k
l

∣∣∣∣
)

(Dd
l ) (Dd

2k)

where l = gcd(m, 2k)

Table A3.18. Multiplication table for the A(O(2))-module At
1(O(2) × S1)

(Zm × S1) (SO(2) × Zl1 ) (Zm × Zl1) (SO(2)ϕm ,l1) (Zϕk ,l1
m )

(Zn × S1) 0 (Zn × Zl1) 0 (Zϕm ,l1
n ) 0

(SO(2) × Zl2) (Zm × Zl2 ) 0 0 (Zm × Zl) 0
(Zn × Zl2) 0 0 0 0 0

(SO(2)ϕn ,l2) (Zϕn,l2
m ) (Zn × Zl) 0 (Zϕn ,l

m−n) 0

(SO(2)ϕm ,l2 ) (Zm × Zl2 ) (Zm × Zl) 0 (Zd,l
2m) 0

(Zϕk′ ,l2
n ) 0 0 0 0 0

Table A3.19. Multiplication Table for the U(T 2)
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(SO(2) × S1) (Dm × S1) (Zm × S1)

(SO(2) × S1) 2(SO(2) × S1) (Zm × S1) 2(Zm × S1)

(Dn × S1) (Zn × S1)

{
2(Dk × S1) − (Zk × S1)

k = gcd(m,n)

{
(Zk × S1)

k = gcd(m,n)
.

(Zn × S1) 2(Zn × S1)

{
(Zk × S1)

k = gcd(m,n)
0

(O(2) × Zl) (SO(2) × Zl) (Dm) × Zl) (Zm × Zl)
(SO(2) × Zl) 2(SO(2) × Zl) (Zm × Zl) 2(Zm × Zl)

(Dn × Zl) (Zn × Zl)

{
2(Dk × Zl) − (Zk × Zl),

k = gcd(n,m)
0

(Zn × Zl) 2(Zn × Zl) 0 0
(O(2)−,l) (SO(2) × Zl (Dz,l

m ) (Zm × Zl)

(SO(2)ϕk ,l) 2(SO(2)ϕk ,l) (Zϕk,l
m ) 2(Zϕk ,l

m )

(Dz,l
n ) (Zn × Zl)

{
2(Dz,l

k ) − (Zk × Zl),

k = gcd(m,n)
0

{
(Dd,l

2n)

m even
(Zd,l

2k )

{
2(Dd,l

2k ) − (Zd,l
2k ),

k = gcd(m,n)
0

{
(Dd,l

2n)

m odd
(Zd,l

2k )

{
(Dk × Zl) + (Dz,l

k ) − (Zk × Zl),

k = gcd(m,2n)
0

(Zϕk,l
n ) 2(Zϕk,l

n ) 0 0

(Zd,l
2n) 2(Zd,l

2n) 0 0

(O(2) × Zl2) (SO(2) × Zl2) (O(2)−,l) (SO(2)ϕm ,l2 ) (SO(2)ϕn ,l2)

(SO(2)ϕn ,l1 ) 2(Zn × Zl) 2(Zn × Zl) 2(Zn × Zl) (Zϕn ,l
n−m) + (Zϕm,l

n+m) 2(Zd,l
2n)

where l = gcd(l1, l2). All other products (except for (O(2) × S1), which is the unit element in
U(O(2) × S1)) are zero.

Table A3.20. Multiplication Table for U(O(2) × S1)





A4

Tables of Computational Results

A4.1 Results for Section 6.3

A4.1.1 Hopf Bifurcation in a FDE-System with D5-Symmetry

Consider the system (6.42) with the matrix C of the type

C =




c d 0 0 d
d c d 0 0
0 d c d 0
0 0 d c d
d 0 0 d c



, (A4.1)

which is symmetric with respect to the dihedral group Γ = D5 acting on
V = R5. Let ρ := ei

2π
5 be the generator of Z5 and κ be the operator of complex

conjugation. Notice that ρ acts on a vector x = (x0, x1, . . . , x4) by sending the
k-th coordinate of x to the k + 1 (mod 5) coordinate and κ acts by reversing

the order of the components of x.

We have the following isotypical decomposition of V (cf. [15, 5] for details)

V = V0 ⊕ V1 ⊕ V2,

where Vi are explained in Appendix A2.2.4.

The spectrum of C is given by

σ(C) =
{
ξ0
0 = c+ 2d, ξ1

1 = c + 2d

√
5 − 1

4
, ξ2

2 = c− 2d

√
5 + 1

4

}
.

The dominating orbit types in W are (D5), (Zt1
5 ), (Zt2

5 ) and (Dz
1) (cf. Appendix

A2.1.2 for definitions).

Using the command

ω(αo, βo)1 = showdegree(ε0, ε1, . . . , εr, t0, t1, . . . , tr),

we obtain the results for the D5-symmetric Hopf bifurcation problem of the
system (6.42) and organize them in Tables A4.1.
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ξj
o ε0, ε1, ε2 ω(αj, βj)1 # Branches

ξ0
o 000 (D5) 1

ξ0
o 100 −(D5) 1

ξ0
o 001 (D5) − 2(D1) + (Z1) 1

ξ0
o 110 −(D5) + 2(D1) − (Z1) 1

ξ0
o 011 (D5) 1

ξ0
o 111 −(D5) 1

ξ1
o 000 (Zt1

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ1
o 100 −(Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 001 (Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 110 −(Zt1

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ1
o 011 (Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 111 −(Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 000 (Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 100 −(Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 001 (Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 110 −(Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 011 (Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 111 −(Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

Table A4.1. Equivariant classification of the Hopf bifurcation with D5 symmetries

A4.1.2 Hopf Bifurcation in a FDE-System with S4-Symmetry

Consider the system (6.42) with the matrix C of the type

C =




c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d
d 0 d c d 0 0 0
0 0 0 d c d 0 d
d 0 0 0 d c d 0
0 d 0 0 0 d c d
0 0 d 0 d 0 d c




, (A4.2)

which is symmetric with respect to the octahedral group Γ = S4, where S4

acts on the space V := R8 by permuting the coordinates of the vectors in

the same way as the symmetries of a cube in R3 permute its eight vertices.
It can be verified that the representation V has the following S4-isotypical
decomposition (cf. [15, 5] for details)

V = V0 ⊕V1 ⊕ V3 ⊕ V4,

where Vi are explained in Appendix A2.2.6. The spectrum of C is given by
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σ(C) = {ξ0
0 = c+ 3d, ξ1

1 = c− 3d, ξ3
2 = c+ d, ξ4

3 = c− d}.

The dominating orbit types in W are (S4), (S−
4 ), (Dd

4), (Dd
2), (Zc

4) := (Zt1
4 ),

(Zt
3) := (Zt1

3 ), (Dz
4) and (Dz

3) (cf. Appendix A2.1.4 for definitions).

Using the command

ω(αo, βo)1 = showdegree(ε0, ε1, . . . , εr, t0, t1, . . . , tr),

we obtain the results for the S4-symmetric Hopf bifurcation problem of the
system (6.42) and organize them in Tables A4.2.

ξj
o ε0, ε1, ε3, ε4 ω(αj, βj)1 # Branches

ξ0
0 0000 (S4) 1

ξ0
0 1000 −(S4) 1

ξ0
0 0100 (S4) − (A4) 1

ξ0
0 1010 −(S4) + 2(D3) + (D2) − 3(D1) + (Z1) 1

ξ0
0 0101 (S4) − (A4) − (Z4) + (Z3) − (D1) + (Z1) 1

ξ0
0 1011 −(S4) + 2(D3) + (D2) + (Z4) − (Z3) − 2(D1) − (Z2) + (Z1) 1

ξ0
0 0111 −(S4) − (A4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1) 1

ξ0
0 1111 (S4) + (A4) + 2(D3) + (D2) + (Z4) − (Z3) − 2(D1) − (Z2) + (Z1) 1

ξ1
1 0000 (S−

4 ) 1
ξ1
1 1000 −(S−

4 ) 1
ξ1
1 0100 (S−

4 ) − (A4) 1
ξ1
1 1010 −(S−

4 ) + 2(Dz
3) + (Dz

2) − 3(Dz
1) + (Z1) 1

ξ1
1 0101 (S−

4 ) − (A4) − (Z−
4 ) + (Z3) − (Dz

1) + (Z2) 1
ξ1
1 1011 −(S−

4 ) + 2(Dz
3) + (Dz

2) + (Z−
4 ) − (Z3) − 2(Dz

1) − (Z2) + (Z1) 1
ξ1
1 0111 (S−

4 ) − (A4) − 2(Dz
3) − (Dz

2) − (Z−
4 ) + (Z3) + 2(Dz

1) + (Z2) − (Z1) 1
ξ1
1 1111 −(S−

4 ) + (A4) + 2(Dz
3) + (Dz

2) + (Z−
4 ) − (Z3) − 2(Dz

1) − (Z2) + (Z1) 1

ξ3
2 0000 (Dd

4) + (D3) + (Dd
2) + (Zc

4) + (Zt
3) − (D1) − (Z−

2 ) 24

ξ3
2 1000 −(Dd

4) − (D3) − (Dd
2) − (Zc

4) − (Zt
3) + (D1) + (Z−

2 ) 24

ξ3
2 0100 (Dd

4) + (D3) + (Dd
2) + (Zc

4) − (V −
4 ) − (Zt

3) − (Z3) − (D1) − (Z−
2 ) + (Z1) 24

ξ3
2 1010 −(Dd

4) + (D3) + (Dd
2) − (Zc

4) + (Zt
3) − (Dz

1) − 3(D1) + (Z−
2 ) + (Z1) 24

ξ3
2 0101 (Dd

4) + (D3) + (Dd
2) + (D2) − (Zc

4) − (Z−
4 ) − (V −

4 ) + (Zt
3) − (Dz

1) − 3(D1) + (Z−
2 ) + (Z2) + (Z1) 24

ξ3
2 1011 −(Dd

4) + (D3) + (Dd
2) + (D2) + (Zc

4) + (Z−
4 ) − (Zt

3) − (Z3) − (D1) − (Z−
2 ) − (Z2) + (Z1) 24

ξ3
2 0111 (Dd

4) − (D3) − (Dd
2) − (D2) − (Zc

4) − (Z−
4 ) − (V −

4 ) − (Zt
3) + (D1) + (Z−

2 ) + (Z2) 24

ξ3
2 1111 −(Dd

4) + (D3) + (Dd
2) + (D2) + (Zc

4) + (Z−
4 ) + (V −

4 ) + (Zt
3) − (D1) − (Z−

2 ) − (Z2) 24

ξ4
3 0000 (Dz

4) + (Dz
3) + (Dd

2) + (Zc
4) + (Zt

3) − (Dz
1) − (Z−

2 ) 24

ξ4
3 1000 −(Dz

4) − (Dz
3) − (Dd

2) − (Zc
4) − (Zt

3) + (Dz
1) + (Z−

2 ) 24

ξ4
3 0100 (Dz

4) + (Dz
3) + (Dd

2) + (Zc
4) − (V −

4 ) − (Zt
3) − (Z3) − (Dz

1) − (Z−
2 ) + (Z1) 24

ξ4
3 1010 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) − (Zc

4) + (Zt
3) − 3(Dz

1) − (D1) + (Z−
2 ) + (Z1) 24

ξ4
3 0101 (Dz

4) + (Dz
3) + (Dd

2) − (Zc
4) − (Z4) − (V −

4 ) + (Zt
3) − 3(Dz

1) − (D1) + (Z−
2 ) + (Z2) + (Z1) 24

ξ4
3 1011 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) + (Zc

4) + (Z4) − (Zt
3) − (Z3) − (Dz

1) − (Z−
2 ) − (Z2) + (Z1) 24

ξ4
3 0111 (Dz

4) − (Dz
3) − (Dd

2) − (Dz
2) − (Zc

4) − (Z4) − (V −
4 ) − (Zt

3) + (Dz
1) + (Z−

2 ) + (Z2) 24

ξ4
3 1111 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) + (Zc

4) + (Z4) + (V −
4 ) + (Zt

3) − (Dz
1) − (Z−

2 ) − (Z2) 24

Table A4.2. Equivariant classification of the Hopf bifurcation with S4 symmetries
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A4.2 Results for Section 7.3

A4.2.1 Hopf Bifurcation in a NFDE-System with D4-Symmetry

Consider the system (7.34) with the matrix Q, P1 and P2 of the type

C =




c d 0 d
d c d 0
0 d c d
d 0 d c


 , (A4.3)

which is symmetric with respect to the dihedral group Γ = D4 acting on
V = R4. Let ξ := ei

π
2 be the generator of Z4 and κ be the operator of complex

conjugation. Notice that ξ acts on a vector x = (x0, x1, x2, x3) by sending the

k-th coordinate of x to the k + 1 (mod 4) coordinate and κ acts by reversing
the order of the components of x.

We have the D4-isotypical decompositions

V = V0 ⊕V1 ⊕ V3, V c = U0 ⊕U1 ⊕ U3,

thus {εi1, εi2, . . . , εim} = {ε0, ε1, ε3}, and there are three types of bifurcation
points (αo, βo) correspondingly. Since getting the complete list of the bifurca-
tion invariants ω(λo)1 for the system (7.34) is a simple task of applying the

Maple c© package for the group Γ = D4 by

ω(λo)1 = showdegree(ε0, ε1, 0, ε3, 0, t0, t1, 0, t3, 0),

we present in Table A4.3 only some selected results for the group D4.

A4.2.2 Hopf Bifurcation in a NFDE-System with A5-Symmetry

Consider the system (7.34) with the matrix Q, P1 and P2 of the type

C =




c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0
d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d
0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d
0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d
0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c




. (A4.4)
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Ej ε0, ε1, ε3 ω(αo, βo)1 # Branches

E0 0,1,1 (D4) − (Z4) − (D1) − (D̃1) + (Z1) 1

E0 1,1,0 −(D4) + (D1) + (D̃1) − (Z1) 1

E0 1,1,1 −(D4) + (Z4) + (D1) + (D̃1) − (Z1) 1

E1 0,0,1 −(Zt
4) + (Dd

2) + (D̃d
2) − (Z−

2 ) 6

E1 0,1,0 (Zt
4) + (Dd

2) + (D̃d
2) − (Z−

2 ) − (Dz
1) − (D̃z

1) − (D1) − (D̃1) + 2(Z1) 6

E1 0,1,1 −(Zt
4) + (Dd

2) + (D̃d
2) − (Z−

2 ) − (Dz
1) − (D̃z

1) − (D1) − (D̃1) + 2(Z1) 6

E1 1,1,0 −(Zt
4) − (Dd

2) − (D̃d
2) + (Z−

2 ) + (Dz
1) + (D̃z

1) + (D1) + (D̃1) − 2(Z1) 6

E1 1,1,1 (Zt
4) − (Dd

2) − (D̃d
2) + (Z−

2 ) + (Dz
1) + (D̃z

1) + (D1) + (D̃1) − 2(Z1) 6

E3 0,1,1 (Dd
4) − (Zd

4) − (D̃z
1) − (D1) + (Z1) 2

E3 1,0,1 −(Dd
4) + (Zd

4) 2

E3 1,1,0 −(Dd
4) + (D̃z

1) + (D1) − (Z1) 2

E3 1,1,1 −(Dd
4) + (Zd

4) + (D̃z
1) + (D1) − (Z1) 2

Table A4.3. Examples of the equivariant classification of the Hopf bifurcation with D4 symmetries

We have the following A5-isotypical decompositions

V = V0 ⊕ [V1 ⊕ V1] ⊕ V2 ⊕ V3 ⊕ V4,

V c = U0 ⊕ [U1 ⊕ U1] ⊕ U2 ⊕ U3 ⊕U4,

thus {εi1, εi2, . . . , εim} = {ε0, ε1, ε2, ε3, ε4}, and there are five types of bifurca-
tion points (αo, βo) correspondingly. A partial list of the bifurcation invariants
ω(λo)1 for the system (7.34) is presented in Table A4.4, which was established

by using the Maple c© package for the group Γ = A5,

ω(λo)1 = showdegree(ε0, ε1, ε2, ε3, ε4, t0, t1, t2, t3, t4).

A4.3 Results for Section 8.3

A4.3.1 Hopf Bifurcation in a FPDE-System with D3-Symmetry

We assume here that the matrix C is of type

C =



c d d
d c d
d d c




with c = −3 and d = −1. In this case we have σ(C) = {0ξ
0
0 = −5, 1ξ

1
1 = −2},

m(ξ0) = m(ξ1) = 1. The bifurcation invariants ω(αν,m,k, βν,m,k, 0)1 in this case



332 A4 Tables of Computational Results

Ej ε0, ε1, ε2, ε3, ε4 ω(λo)1 # Branches

E0 10101 −(A5) + 2(D5) + 2(D3) − (Z5) − (Z3) − 4(Z2) + 2(Z1) 1
E0 11101 −(A5) + 2(A4) + 2(D5) − (Z5) − 2(Z3) − 3(Z2) + 2(Z1) 1

E1 0000 (A4) + (Dz
3) + (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) + (Zt
3) − (Z3) − (Z−

2 ) − (Z2) 55
E1 00100 (A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1)

E1 00110 (A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) + (Zt
3) + (Z3) 55

+(Z−
2 ) + (Z2)

E1 10001 −(A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + (Zt
3) + 3(Z3) 55

+3(Z−
2 ) + 3(Z2) − 4(Z1)

E1 10101 −(A4) + (Dz
3) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (V −

4 ) − (Zt
3) − (Z3) 55

−(Z−
2 ) − (Z2) + 2(Z1)

E2 00000 (At1
4 ) + (At2

4 ) + (D5) + (D3) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) − 2(Z2) 50

E2 00110 (At1
4 ) + (At2

4 ) − (D5) − (D3) + (Zt1
5 ) + (Zt2

5 ) + (Z5) + (V −
4 ) 50

+(Z3) + 2(Z2) − 2(Z1)

E2 01010 −(At1
4 ) − (At2

4 ) + (D5) − (D3) − (Zt1
5 ) − (Zt2

5 ) − (Z5) − (V −
4 ) + (Z1) 50

E2 10100 −(At1
4 ) − (At2

4 ) + (D5) + (D3) + (Zt1
5 ) + (Zt2

5 ) − (V −
4 ) + 4(Zt

3) 50
+2(Z−

2 ) + (Z2) − 3(Z1)

E3 00010 (Dz
5) + (Dz

3) − (Zt1
5 ) − (Z5) + (V −

4 ) − (Zt
3) − (Z3) − 4(Z−

2 ) − (Z2) + 3(Z1) 44

E3 00100 −(Dz
5) − (Dz

3) − (Zt1
5 ) + (V −

4 ) − (Zt
3) − (Z2) + (Z1) 44

E3 01010 (Dz
5) − (Dz

3) − (Zt1
5 ) − (V −

4 ) − (Zt
3) + (Z1) 44

E3 10011 −(Dz
5) − (Dz

3) − (Zt1
5 ) − (V −

4 ) − (Zt
3) + 2(Z−

2 ) 44

E3 10100 (Dz
5) + (Dz

3) + (Zt1
5 ) − (V −

4 ) + (Zt
3) + (Z2) − (Z1) 44

E3 11110 (Dz
5) − (Dz

3) − (Zt1
5 ) − (Z5) + (V −

4 ) − (Zt
3) − 2(Z−

2 ) − (Z2) + 2(Z1) 44

E4 00010 (Dz
5) + (Dz

3) − (Zt2
5 ) − (Z5) + (V −

4 ) − (Zt
3) − (Z3) − 4(Z−

2 ) − (Z2) + 3(Z1) 44

E4 00100 −(Dz
5) − (Dz

3) − (Zt2
5 ) + (V −

4 ) − (Zt
3) − (Z2) + (Z1) 44

E4 01010 (Dz
5) − (Dz

3) − (Zt2
5 ) − (V −

4 ) − (Zt
3) + (Z1) 44

E4 10011 −(Dz
5) − (Dz

3) − (Zt2
5 ) − (V −

4 ) − (Zt
3) + 2(Z−

2 ) 44

E4 10100 (Dz
5) + (Dz

3) + (Zt2
5 ) − (V −

4 ) + (Zt
3) + (Z2) − (Z1) 44

E4 11110 (Dz
5) − (Dz

3) − (Zt2
5 ) − (Z5) + (V −

4 ) − (Zt
3) − 2(Z−

2 ) − (Z2) + 2(Z1) 44

Table A4.4. Examples of the equivariant classification of the Hopf bifurcation with A5 symmetries

are listed in Table A4.5, which was established by using the Maple routines
for the group Γ = D3, in the following way:

ω(αν,m,k, βν,m,k, 0)1 = (−1)νshowdegree[D3](ε0, ε1, 0,m0(ζk),m1(ζk), 0).

A4.3.2 Hopf Bifurcation in a FPDE-System with A4-Symmetry

We assume here that the matrix C is of type

C =




c d d d
d c d d
d d c d
d d d c




with c = −4 and d = 1. Clearly, C is A4-equivariant. In this case we have
σ(C) = {−1,−5}. We classify the eigenvalues of C as 0ξ

0
0 = −1, 3ξ

3
1 = −5
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jξo ε0, ε1 ω(αν,m,k , βν,m,k , 0)1 #

0ξ0 00 (−1)ν
(

(D3)
)

1

0ξ0 01 (−1)ν
(

(D3) − (Z3)
)

1

0ξ0 10 (−1)ν+1
(

(D3)
)

1

0ξ0 11 (−1)ν+1
(

(D3) − (Z3)
)

1

1ξ1 00 (−1)ν
(

(Zz
3) + (Dz

1) + (D1) − (Z1)
)

6

1ξ1 01 (−1)ν
(

(Zz
3) − (Dz

1) − (D1) + (Z1)
)

6

1ξ1 10 (−1)ν+1
(

(Zz
3) + (Dz

1) + (D1) − (Z1)
)

6

1ξ1 11 (−1)ν+1
(

(Zz
3) − (Dz

1) − (D1) + (Z1)
)

6

Table A4.5. Equivariant classification of the Hopf bifurcation with D3 symmetries

and we have the following multiplicities m(ξ0) = m(ξ1) = 1. Sample invariants
ω(αν,m,k, βν,m,k, 0)1 in this case are listed in Table A4.6. To obtain the other
invariants, use the Maple routines for the group Γ = A4:

ω(αν,m,k, βν,m,k, 0)1 = (−1)νshowdegree[A4](ε0, 0, ε3,m0(ζk), 0, 0,m3(ζk)).

jξo ε0, ε3 ω(αν,m,k , βν,m,k , 0)1 #

0ξ0 00 (−1)ν
(

(A4)
)

1

0ξ0 01 (−1)ν
(

(A4) − 2(Z3) − (Z2) + (Z1)
)

1

0ξ0 10 (−1)ν+1
(

(A4)
)

1

0ξ0 11 (−1)ν+1
(

(A4) − 2(Z3) − (Z2) + (Z1)
)

1

3ξ1 00 (−1)ν
(

(V −
4 ) + (Zt1

3 ) + (Zt2
3 ) + (Z3) − (Z1)

)
12

3ξ1 01 (−1)ν
(

(V −
4 ) − (Zt1

3 ) − (Zt2
3 ) − (Z3) − (Z−

2 ) − (Z2) + 2(Z1)
)

12

3ξ1 10 (−1)ν+1
(

(V −
4 ) + (Zt1

3 ) + (Zt2
3 ) + (Z3) − (Z1)

)
12

3ξ1 11 (−1)ν+1
(

(V −
4 ) − (Zt1

3 ) − (Zt2
3 ) − (Z3) − (Z−

2 ) − (Z2) + 2(Z1)
)

12

Table A4.6. Equivariant classification of the Hopf bifurcation with A4 symmetries
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A4.4 Results for Section 9.3

A4.4.1 Existence in Q8-Symmetric Lotka-Volterra Type System

The quaternionic group Q8 can be described as a subgroup of S8 generated by

i := (1324)(5867), j := (1526)(3748).

We consider the space V := R8 on which Q8 acts by permuting the coordinates

of vectors x ∈ V . Consider the matrix

A :=




a c b b d d e e
c a b b d d e e
b b a c e e d d
b b c a e e d d
d d e e a c b b
d d e e c a b b
e e d d b b a c
e e d d b b c a




The matrix A commutes with the Q8-action on V . The matrix A has the
following eigenvalues and eigenspaces:

µ1 := a− 2e+ c− 2b+ 2d, Ẽ(µ1) ' V2

µ2 := a− 2e+ c+ 2b− 2d, Ẽ(µ2) ' V1,

µ3 := a− c, Ẽ(µ3) ' V4 (quaternionic type),

µ4 := a+ 2e+ c− 2b− 2d, Ẽ(µ4) ' V3,

µ5 := a+ 2e+ c+ 2b+ 2d, Ẽ(µ5) ' V0.

For definiteness, we choose the positive entries of A being a = 8, b = 1, c = 3,
d = 2, e = 1.5 and τ = 4, so

τµ1 = 40, τµ2 = 24, τµ3 = 20, τµ4 = 32, τµ5 = 80,

so we can easily determine (from Table 9.1 the values n(µi), i.e.

n(µ1) = 6, n(µ2) = 3, n(µ3) = 2, n(µ4) = 4, n(µ5) = 12.

Then we have
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m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 6,

m0,7 = 7, m0,8 = 5, m0,9 = 4, m0,10 = 3, m0,11 = 2, m0,12 = 1,

m1,1 = 1, m1,2 = 2, m1,3 = 1, m2,1 = 1, m2,2 = 2, m2,3 = 3,

m2,4 = 3, m2,5 = 2, m2,6 = 1, m3,1 = 1, m3,2 = 2, m3,3 = 2,

m3,4 = 1, m4,1 = 2, m4,1 = 2.

By applying formula (9.41) we obtain

= deg V0,1
+ 2deg V0,2

+ 3deg V0,3
+ 4deg V0,4

+ 5deg V0,5
+ 6deg V0,6

+ 7deg V0,7

+ 5deg V0,8
+ 4deg V0,9

+ 3deg V0,10
+ 2deg V0,11

+ deg V0,12
+ deg V1,1

+ 2deg V1,2

+ deg V1,3
+ deg V2,1

+ 2deg V2,2
+ 3deg V2,3

+ 3deg V2,4
+ 2deg V2,5

+ deg V2,6

+ deg V3,1
+ 2deg V3,2

+ 2deg V3,3
+ deg V3,4

+ 2deg V4,1
+ 2deg V4,1

,

where

deg V0,1
= (Q8), deg Vk,1

= (Qk−
8 ), k = 1, 2, 3

deg V4,1
= (Z1+

4 ) + (Z2+
4 ) + (Z3+

4 ) + (Z4+
4 ) + −(Z−

2 )

The dominating orbit types in H∗ are (Q8), (Qk−
8 ) and (Zk+

4 ) for k = 1, 2, 3.
Consequently, we obtain

• there is at least 1 nonstationary periodic solution with symmetry (Q8) ,

• there is at least 1 nonstationary periodic solution with symmetry (Q1−
8 ),

• there are at least 1 nonstationary periodic solution with symmetries (Q2−
8 ),

• there are at least 1 nonstationary periodic solution with symmetries (Q3−
8 ),

• there are at least 2 nonstationary periodic solutions with symmetries

(Z1+
4 ),

• there are at least 2 nonstationary periodic solutions with symmetries
(Z2+

4 ),
• there are at least 2 nonstationary periodic solutions with symmetries

(Z3+
4 ).

In summary, there exist at least 10 nonconstant periodic solutions of (9.20).

A4.4.2 Existence in D8-Symmetric Lotka-Volterra Type System

Consider the dihedral group D8 = {1, γ, γ2, . . . , γ7, κ, κγ, γ2, . . . , κγ7} ⊂ O(2),
where γ can be identified with e

πi
4 (i.e. γ is a complex linear operator γ(z) =
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e
πi
4 z) and κ :=

[
1 0
0 −1

]
. We consider the space V := R8, where γ ∈ D8 acts on

a vector (x1, x2, . . . , x8) by sending the k-th coordinate of x to the k+ 1 (mod
n) coordinate and κ ∈ D8 acts by reversing the order of the components of x.
Consider the following D8-equivariant matrix A

A :=




d c d 0 0 0 0 0
0 d c d 0 0 0 0
0 0 d c d 0 0 0
0 0 0 d c d 0 0
0 0 0 0 d c d 0
0 0 0 0 0 d c d
d 0 0 0 0 0 d c




The matrix A has the following eigenvalues and the corresponding eigenspaces

µ1 := c+ 2d, Ẽ(µ1) ' V0

µ2 := c+
√

2d, Ẽ(µ2) ' V1,

µ3 := c, Ẽ(µ3) ' V2,

µ4 := c−
√

2d, Ẽ(µ4) ' V3,

µ5 := c− 2d, Ẽ(µ5) ' V5.

For definiteness, we choose the positive entries of A by letting c = 9, d = 3

and τ = 4, so

τµ1 = 60, τµ2 ≈ 52.97, τµ3 = 36, τµ4 ≈ 19.03, τµ5 = 12.

To determine the numbers n(µi), for i = 0, 1, 2, 3, 5, we list the approximate

values of π
2

+ 2nπ we use Table 9.1 so, we have

n(µ1) = 9, n(µ2) = 8, n(µ3) = 5, n(µ4) = 2, n(µ5) = 1.

Let j1 = 2 and j2 = 1. Then,

m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 4,

m0,7 = 3, m0,8 = 2, m0,9 = 1, m1,1 = 1, m1,2 = 2, m1,3 = 3,

m1,3 = 4, m1,5 = 4, m1,6 = 3, m1,7 = 2, m1,8 = 1, m2,1 = 1,

m2,2 = 2, m2,3 = 3, m2,4 = 2, m2,5 = 1, m3,1 = 1, m3,2 = 2,

m3,3 = 1, m5,1 = 1.
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By applying formula (9.41) we obtain

= deg V0,1
+ 2deg V0,2

+ 3deg V0,3
+ 4deg V0,4

+ 5deg V0,5
+ 4deg V0,6

+ 3deg V0,7

+ 2deg V0,8
+ deg V0,9

+ deg V1,1
+ 2deg V1,2

+ 3deg V1,3
+ 4deg V1,4

+ 4deg V1,5

+ 3deg V1,6
+ 2deg V1,7

+ deg V1,8
+ deg V2,1

+ 2deg V2,2
+ 3deg V2,3

+ 2deg V2,4

+ deg V2,5
+ deg V3,1

+ 2deg V3,2
+ deg V3,3

+ deg V5,1
,

where

deg V0,1
= (D8),

deg V1,1
= (Zt1

8 ) + (D̃d
2) + (Dd

2) − (Z−
2 ),

deg V2,1
= (D̃d

4) + (Dd
4) + (Zt2

8 ) − (Zd
4),

deg V3,1
= (Zt3

8 ) + (D̃d
2) + (Dd

2) − (Z−
2 ),

deg V5,1
= (Dd

8).

The dominating orbit types in H∗ are (D8), (Dd
8), (Zt1

8 ), (Zt2
8 ), (Zt3

8 ) and
(D̃d

4). Consequently, we obtain

• there is at least 1 nonstationary periodic solution with symmetry (D8),
• there is at least 1 nonstationary periodic solution with symmetry (Dd

8),
• there are at least 2 nonstationary periodic solutions with symmetries (D̃d

4),
• there are at least 2 nonstationary periodic solutions with symmetries (Zt1

8 ),

• there are at least2 nonstationary periodic solutions with least symmetries
(Zt2

8 ),
• there are at least 2 nonstationary periodic solutions with least symmetries

(Zt3
8 ).

In summary, there exist at least 10 nonconstant periodic solutions of (9.20).

A4.4.3 Existence in S4-Symmetric Lotka-Volterra Type System

Assume that the octahedral group S4 acts on V := R8 by permuting the
coordinates in such a way that (1234) ∈ S4 corresponds to the permutation

(1234)(5678) ∈ S8 and (12) ∈ S4 corresponds to (17)(28)34)(56) ∈ S8 (i.e.
S4 acts on V in the same way as it permutes the vertices of a regular cube).
Consider the matrix
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A :=




a b c b b c d c
b a b c c b c d
c b a b d c b c
b c b a c d c b
b c d c a b c b
c b c d b a b c
d c b c c b a b
c d c b b c b a




The matrix A commutes with the S4-action on V . The matrix A has the

following eigenvalues and eigenspaces:

µ1 := 3b+ a+ 3c+ d, Ẽ(µ1) ' V0

µ2 := −3b+ a+ 3c − d, Ẽ(µ2) ' V1,

µ3 := −b+ a− c+ d, Ẽ(µ3) ' V4,

µ4 := b+ a− c− d, Ẽ(µ4) ' V3.

For definiteness, we choose the positive entries of A being a = 6, b = 1, c = 2,
d = 2.5 and τ = 4, so

τµ1 = 70, τµ2 = 26, τµ3 = 22, τµ4 = 10,

so we can easily determine (from Table 9.1 the values n(µi), i.e.

n(µ1) = 10, n(µ2) = 3, n(µ3) = 3, n(µ4) = 1.

As before, we choose j2 = 1 and j1 = 2. Then we have

m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 5,

m0,7 = 4, m0,8 = 3, m0,9 = 2, m0,10 = 1, m0,11 = 2, m0,12 = 1,

m1,1 = 1, m1,2 = 2, m1,3 = 1, m3,1 = 1, m3,2 = 2, m3,3 = 1,

m4,1 = 1.

By applying formula (9.41) we obtain

= deg V0,1
+ 2deg V0,2

+ 3deg V0,3
+ 4deg V0,4

+ 5deg V0,5
+ 5deg V0,6

+ 4deg V0,7

+ 3deg V0,8
+ 2deg V0,9

+ deg V0,10
+ deg V1,1

+ 2deg V1,2
+ deg V1,3

+ deg V3,1

+ 2deg V3,2
+ deg V3,3

+ deg V4,1
,

where
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deg V0,1
= (S4),

deg V1,1
= (S−

4 ),

deg V3,1
= (Zc

4) + (Dd
4) + (Dd

2) + (D3) + (Zt
3) − (Z−

2 ) − (D1),

deg V4,1
= (Zc

4) + (Dz
4) + (Dd

2) + (Dz
3) + (Zt

3) − (Z−
2 ) − (Dz

1).

The dominating orbit types in H∗ are (S4), (S−
4 ), (Dd

4), (Dd
2), (Zc

4), (Zt
3)

and (Dz
4). Consequently, we obtain

• there is at least 1 nonstationary periodic solution with symmetry (S4),

• there is at least 1 nonstationary periodic solution with symmetry (S−
4 ),

• there are at least 3 nonstationary periodic solutions with symmetries (Dd
4),

• there are at least 6 nonstationary periodic solutions with symmetries (Dd
2),

• there are at least 6 nonstationary periodic solutions with least symmetries
(Zc

4),
• there are at least 8 nonstationary periodic solutions with least symmetries

(Zt
3),

• there are at least 3 nonstationary periodic solutions with least symmetries
(Dz

4).

In summary, there exist at least 28 nonconstant periodic solutions of (9.20).

Remark A4.4.1. One can consider other symmetry groups in (9.20), such
as D3, D4, D5, D6, D7, D9, D10, D11, D12, A4 or A5, for which there exists
already developed computational database (including Maple c© routines for the

twisted equivariant degree). As it is clear from the formula (9.41) and the
above examples, the similar existence results for all these groups can be easily
obtained.

A4.5 Results for Section 10.1

Consider the system (10.1) assuming that (A1)—(A5). As the symmetry group
Γ , take the dihedral groups D4, D5, D6, the octahedral group S4 and the icosa-

hedral group A5. Assume that V := Rn is an orthogonal Γ -representation,
where Γ acts on u = (u1, u2, . . . , un) ∈ V by permuting its coordinates. More-
over, for Γ = Dn, assume that C is of the type
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C =




c d 0 . . . 0 d
d c d . . . 0 0
...

...
...

. . .
...

...
d 0 0 . . . d c


 .

For Γ = S4, C is of the type

C =




c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d
d 0 d c d 0 0 0
0 0 0 d c d 0 d
d 0 0 0 d c d 0
0 d 0 0 0 d c d
0 0 d 0 d 0 d c




.

For Γ = A5, C is of the type

C=




c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0
d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d
0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d
0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d
0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c




.

For definiteness, let c = 4.5, d = 1 for the matrix A, and c = 9.5, d = 1 for
the matrix B.

A4.5.1 Existence in D4-Symmetric Auto. Newtonian System

In the case Γ = D4, we have V = V0 ⊕ V1 ⊕ V3, to which we associate the
sequence (ε0, ε1, ε3) = (1, 1, 1) and σ(A) = {ξ0

0 = 6.5, ξ1
1 = 4.5, ξ3

3 = 2.5},
σ(B) = {ξ0

0 = 11.5, ξ1
1 = 9.5, ξ3

3 = 7.5}. Thus, we have the following non-zero
m̃k
j ’s for A and B:
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m̃2
0(A) = 1, m̃3

0(B)= 1,

m̃2
1(A) = 1, m̃3

1(B)= 1,

m̃1
3(A) = 1, m̃2

3(B)= 1.

Consequently, we have the non-zero isotypical defect numbers

m2
0 = −1, m3

0 = 1, m2
1 = −1, m3

1 = 1, m1
3 = −1, m2

3 = 1.

Hence,

s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)

= (−1) ·
(

deg V0,1
+ deg V0,2

)
+ 1 ·

(
deg V0,1

+ deg V0,2
+ deg V0,3

)

+ (−1) ·
(

deg V1,1
+ deg V1,2

)
+ 1 ·

(
deg V1,1

+ deg V1,2
+ deg V1,3

)

+ (−1) · deg V3,1
+ 1 ·

(
deg V3,1

+ deg V3,2

)

= deg V0,3
+ deg V1,3

+ deg V3,2
.

Finally,

deg t = Θ3 [showdegree[D4](1, 1, 0, 1, 0, 1, 1, 0, 0, 0)]

+Θ2 [showdegree[D4](1, 1, 0, 1, 0, 0, 0, 0, 1, 0)] .

The dominating orbit types in W are (D4), (Zt
4) := (Zt1

4 ), (Dd
2), (D̃d

2) and
(Dd

4). The value of deg t is listed in Table A4.7.

A4.5.2 Existence in D5-Symmetric Auto. Newtonian System

In the case Γ = D5, we have V = V0 ⊕ V1 ⊕ V2, to which we associate the
sequence (ε0, ε1, ε2) = (1, 1, 1) and σ(A) = {ξ0

0 = 6.5, ξ1
1 = 4.5 +

√
5−1
2
, ξ2

2 =

4.5 −
√

5+1
2

}, σ(B) = {ξ0
0 = 11.5, ξ1

1 = 9.5 +
√

5−1
2
, ξ2

2 = 9.5 −
√

5+1
2

}. Thus, we
have the following non-zero m̃k

j ’s for A and B:

m̃2
0(A) = 1, m̃3

0(B)= 1,

m̃2
1(A) = 1, m̃3

1(B)= 1,

m̃1
2(A) = 1, m̃2

2(B)= 1.

Consequently, we have the non-zero isotypical defect numbers
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m2
0 = −1, m3

0 = 1, m2
1 = −1, m3

1 = 1, m1
2 = −1, m2

2 = 1.

Hence,

s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)

= (−1) ·
(

deg V0,1
+ deg V0,2

)
+ 1 ·

(
deg V0,1

+ deg V0,2
+ deg V0,3

)

+ (−1) ·
(

deg V1,1
+ deg V1,2

)
+ 1 ·

(
deg V1,1

+ deg V1,2
+ deg V1,3

)

+ (−1) · deg V2,1
+ 1 ·

(
deg V2,1

+ deg V2,2

)

= deg V0,3
+ deg V1,3

+ deg V2,2
.

Finally,

deg t = Θ3 [showdegree[D5] (1, 1, 1, 0, 1, 1, 0, 0)]

+Θ2 [showdegree[D5](1, 1, 1, 0, 0, 0, 1, 0)] .

The dominating orbit types in W are (D5), (Zt1
5 ), (Zt2

5 ) and (Dz
1). The value

of deg t is listed in Table A4.7.

A4.5.3 Existence in D6-Symmetric Auto. Newtonian System

In the case Γ = D6, we have V = V0 ⊕ V1 ⊕ V2 ⊕ V4, to which we associate

the sequence (ε0, ε1, ε2, ε4) = (1, 1, 1, 1) and σ(A) = {ξ0
0 = 6.5, ξ1

1 = 5.5, ξ2
2 =

3.5, ξ4
4 = 2.5}, σ(B) = {ξ0

0 = 11.5, ξ1
1 = 10.5, ξ2

2 = 8.5, ξ4
4 = 7.5}. Thus, we

have the following non-zero m̃k
j ’s for A and B:

m̃2
0(A) = 1, m̃3

0(B)= 1,

m̃2
1(A) = 1, m̃3

1(B)= 1,

m̃1
2(A) = 1, m̃2

2(B)= 1,

m̃1
4(A) = 1, m̃2

4(B)= 1.

Consequently, we have the non-zero isotypical defect numbers

m2
0 = −1, m3

0 = 1, m2
1 = −1, m3

1 = 1,

m1
2 = −1, m2

2 = 1, m1
4 = −1, m2

4 = 1.

Hence,
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s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)

= (−1) ·
(

deg V0,1
+ deg V0,2

)
+ 1 ·

(
deg V0,1

+ deg V0,2
+ deg V0,3

)

+ (−1) ·
(

deg V1,1
+ deg V1,2

)
+ 1 ·

(
deg V1,1

+ deg V1,2
+ deg V1,3

)

+ (−1) · deg V2,1
+ (−1) ·

(
deg V2,1

+ deg V2,2

)

+ (−1) · deg V4,1
+ (−1) ·

(
deg V4,1

+ deg V4,2

)

= deg V0,3
+ deg V1,3

+ deg V2,2
+ deg V4,2

.

Finally,

deg t = Θ3 [showdegree[D6](1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0)]

+Θ2 [showdegree[D6] (1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0)] .

The dominating orbit types in W are (D6), (Dd
6), (Zt1

6 ), (Zt2
6 ), (Dd̂

2) and

(Dz
2). The value of deg t is listed in Table A4.7.

A4.5.4 Existence in S4-Symmetric Auto. Newtonian System

For the octahedral group S4 we consider the representation V = R8, which has

the isotypical decomposition V = V0 ⊕ V1 ⊕ V3 ⊕ V4, to which we associate
the sequence (ε0, ε1, ε3, ε4) = (1, 1, 1, 1), and σ(A) = {ξ0

0 = 7.5, ξ1
1 = 1.5, ξ3

2 =
5.5, ξ4

3 = 3.5}, σ(B) = {ξ0
0 = 12.5, ξ1

1 = 6.5, ξ3
2 = 10.5, ξ4

3 = 8.5}. Thus, we

have the following non-zero m̃k
j ’s for A and B:

m̃2
0(A) = 1, m̃3

0(B)= 1,

m̃1
1(A) = 1, m̃2

1(B)= 1,

m̃2
3(A) = 1, m̃3

3(B)= 1,

m̃1
4(A) = 1, m̃2

4(B)= 1.

Consequently, we have the non-zero isotypical defect numbers

m2
0 = −1, m3

0 = 1, m1
1 = −1, m2

1 = 1,

m2
3 = −1, m3

3 = 1, m1
4 = −1, m2

4 = 1.

Hence,
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Γ deg t # Sols

D4 −(D3
4) − (Zt,3

4 ) + (Dd,3
2 ) − (D̃d,3

2 ) + (D3
2) 8

+(Z−,3
2 ) − (Dz,3

1 ) + (D̃z,3
1 ) − 2(D3

1) + 2(D̃3
1)

−(Dd,2
4 ) + (D2

2) + (D̃z,2
1 ) − (D2

1)

D5 −(D3
5) − (Zt1,3

5 ) − (Dz,3
1 ) − (D3

1) + (Z3
1) 10

−(Zt2,2
5 ) − (Dz,2

1 ) − (D2
1) + (Z2

1)

D6 −(Dd,3
6 ) − (Zt1,3

6 ) + (D3
3) + 3(Dd,3

2 ) + (Dd̂,3
2 ) 11

+(Zt,3
3 ) − 2(D̃z,3

1 ) − (D̃3
1) − (D3

1) − 2(Z−,3
2 )

+2(Z3
1) − (Dd,2

6 ) − (Zt2,2
6 ) + (D2

3) + (Dz,2
2 )

+2(Dd,2
2 ) + (D2

2) + (Zt,2
3 ) − 2(D̃z,2

1 ) − (D̃2
1)

−(D2
1) − (Z−,2

2 ) − (Z2
2) + 2(Z2

1)

S4 −(S3
4 ) + (A3

4) − (Dd,3
4 ) + 3(D3

3) + (Dd,3
2 ) 32

+2(D3
2) + (Zc,3

4 ) + (Z−,3
4 ) + (Z3

4) + (V −,3
4 )

+(Zt,3
3 ) − (Z3

3) − 3(D3
1) − (Z−,3

2 ) − 2(Z3
2)

+(Z3
1) − (S−,2

4 ) + (A2
4) − (Dz,2

4 ) + 3(Dz,2
3 )

+(Dd,2
2 ) + 2(Dz,2

2 ) + (Zc,2
4 ) + (Z−,2

4 ) + (Z2
4)

+(V −,2
4 ) + (Zt,2

3 ) − (Z2
3) − 3(Dz,2

1 ) − (Z−,2
2 )

−2(Z2
2) + (Z2

1)

A5 −(A3
5) − (At1,3

4 ) − (At2,3
4 ) − (A3

4) + (Dz,3
5 ) 66

+3(D3
5) + 2(Dz,3

3 ) + 4(D3
3) + 3(Zt1,3

5 ) + 2(Zt2 ,3
5 )

−3(V −,3
4 ) + 6(Zt,3

3 ) + (Z3
3) + 3(Z−,3

2 ) − 5(Z3
1)

−(A2
4) + (Dz,2

5 ) + 2(Dz,2
3 ) + (D2

3) + (Zt1,2
5 )

+2(Zt2,2
5 ) − 2(V −,2

4 ) + 2(Zt,2
3 ) + (Z2

3) + (Z−,2
2 )

+2(Z2
2) − 3(Z2

1)

Table A4.7. Existence results for the system (10.1) with symmetry group Γ .

s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)

= (−1) ·
(

deg V0,1
+ deg V0,2

)
+ 1 ·

(
deg V0,1

+ deg V0,2
+ deg V0,3

)

+ (−1) · deg V1,1
+ 1 ·

(
deg V1,1

+ deg V1,2

)

+ (−1) ·
(

deg V3,1
+ deg V3,2

)
+ 1 ·

(
deg V3,1

+ deg V3,2
+ deg V3,3

)

+ (−1) · deg V4,1
+ 1 ·

(
deg V4,1

+ deg V4,2

)

= deg V0,3
+ deg V1,2

+ deg V3,3
+ deg V4,2

.

Finally,
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deg t = Θ3 [showdegree[S4](1, 1, 0, 1, 1, 1, 0, 0, 1, 0)]

+Θ2 [showdegree[S4](1, 1, 0, 1, 1, 0, 1, 0, 0, 1)] .

The dominating orbit types in W are (S4), (S−
4 ), (Dd

4), (Dd
2), (Zc

4) := (Zt1
4 ),

(Zt
3) := (Zt1

3 ) and (Dz
4). The value of deg t is listed in Table A4.7.

A4.5.5 Existence in A5-Symmetric Auto. Newtonian System

Finally, we consider the system (10.1) with the group of symmetries G = A5×
S1, where A5 denotes the icosahedral group. The A5-representation V = R20

has the following isotypical decomposition

V = V0 ⊕ (V1 ⊕V1) ⊕ V2 ⊕ V3 ⊕ V4,

to which we associate the sequence (ε0, ε1, ε2, ε3, ε4) = (1, 0, 1, 1, 1), and σ(A) =
{ξ0

0 = 7.5, ξ1
1 = 4.5, ξ1

2 = 2.5, ξ2
3 = 5.5, ξ3

4 = 4.5 +
√

5, ξ4
5 = 4.5 −

√
5}, σ(B) =

{{ξ0
0 = 12.5, ξ1

1 = 9.5, ξ1
2 = 7.5, ξ2

3 = 10.5, ξ3
4 = 9.5 +

√
5, ξ4

5 = 9.5 −
√

5}}.

Thus, we have the following non-zero m̃k
j ’s for A and B:

m̃2
0(A) = 1, m̃3

0(B)= 1,

m̃1
1(A) = 1, m̃3

1(B)= 1,

m̃2
1(A) = 1, m̃2

1(B)= 1,

m̃2
2(A) = 1, m̃3

2(B)= 1,

m̃2
3(A) = 1, m̃3

3(B)= 1,

m̃1
4(A) = 1, m̃2

4(B)= 1.

Consequently, we have the non-zero isotypical defect numbers

m2
0 = −1, m3

0 = 1, m1
1 = −1, m3

1 = 1, m2
2 = −1,

m3
2 = 1, m2

3 = −1, m3
3 = 1, m1

4 = −1, m2
4 = 1.

Hence,
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s∑

j=0

∞∑

k=1

(
mk
j

k∑

l=1

deg Vj,l

)

= (−1) ·
(

deg V0,1
+ deg V0,2

)
+ 1 ·

(
deg V0,1

+ deg V0,2
+ deg V0,3

)

+ (−1) · deg V1,1
+ 1 ·

(
deg V1,1

+ deg V1,2
+ deg V1,3

)

+ (−1) ·
(

deg V2,1
+ deg V2,2

)
+ 1 ·

(
deg V2,1

+ deg V2,2
+ deg V2,3

)

+ (−1) ·
(

deg V3,1
+ deg V3,2

)
+ 1 ·

(
deg V3,1

+ deg V3,2
+ deg V3,3

)

+ (−1) · deg V4,1
+ 1 ·

(
deg V4,1

+ deg V4,2

)

= deg V0,3
+ deg V1,2

+ deg V1,3
+ deg V2,3

+ deg V3,3
+ deg V4,2

.

Finally,

deg t = Θ3 [showdegree[A5](1, 0, 1, 1, 1, 1, 1, 1, 1, 0)]

+Θ2 [showdegree[A5](1, 0, 1, 1, 1, 0, 1, 0, 0, 1)] .

The dominating orbit types: (A5), (Dz
3), (V −

4 ), (Zt1
5 ), (Zt2

5 ), (At1
4 ), (At2

4 ) and
(Dz

5). The value of deg t is listed in Table A4.7.

A4.6 Results for Section 10.2

We present the computational examples for Γ = Dn and V = Rn for n =
6, 8, 10, 12. Consider the potential ϕ : V → R satisfying (A1)—(A3) and (A5).
The degeneracy assumptions are listed in Table A4.8.

Γ deg 0 deg ∞

D6 (DA)+(Y1) (DB)+(N1’)

D8 (DA)+(Y1) (D′
B)+(N2’)

D10 (D′
A)+(N2) (DB)+(Y1’)

D12 (D′
A)+(N2) (D′

B)+(Y2’)

Table A4.8. Summary of the assumptions in the computational examples.
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A4.6.1 Existence in D6-Symmetric Auto. Degen. Newtonian Sys.

Let Γ = D6 and V = V0 ⊕ V1 ⊕ V2 ⊕ V4. Consider the potential ϕ : V → R
satisfying (A1)—(A3) and (A5) with the matrices A and B being of the type

C =




c d 0 0 0 d
d c d 0 0 0
0 d c d 0 0
0 0 d c d 0
0 0 0 d c d
d 0 0 0 d c



.

It can be easily obtained that σ(C) = {µ0 = c+2d, µ1 = c+d, µ2 = c−d, µ4 =

c − 2d}, where each µi has its eigenspace E(µi) ' Vi. Take c = 8.8, d = 4.4
for A and c = d = 1.1 for B, and list eigenvalues of A and B in Table A4.9.
Notice that the assumptions (H30) and (H40) are satisfied in this case. The

dominating orbit types in W are (D6), (Dd
6), (Zt1

6 ), (Zt2
6 ), (Dd̂

2) and (Dz
2).

c d µ0 µ1 µ2 µ4

A 8.8 4.4 17.6 13.2 4.4 0

B 1.1 1.1 3.3 2.2 0 -1.1

Table A4.9. Eigenvalues of A and B, Γ = D6

Using the Table A4.9, we compute the numbers

m̃4
0(A) = 1, m̃3

1(A) = 1, m̃2
2(A) = 1,

m̃1
0(B) = 1, m̃1

1(B) = 1.

The value of deg tA is

deg t
A

=
∏

µ∈σ+(A)

r∏

i=0

(deg Vi
)mi(µ) ∗

s∑

j=0

∞∑

k=0

m̃k
j (A)

k∑

l=1

deg Vj,l
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=
2∏

i=0

deg Vi
∗
(
1 ·

4∑

l=1

deg V0,l
+ 1 ·

3∑

l=1

deg V1,l
+ 1 ·

2∑

l=1

deg V2,l

)

=
2∏

i=0

deg Vi
∗
(
deg V0,1

+ deg V1,1
+ deg V2,1

)
+

2∏

i=0

deg Vi
∗
(
deg V0,2

+ deg V1,2

+ deg V2,2

)
+

2∏

i=0

deg Vi
∗
(
deg V0,3

+ deg V1,3

)
+

2∏

i=0

deg Vi
∗ deg V0,4

= Θ1 [showdegree[D6](1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0)]

+Θ2 [showdegree[D6] (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0)]

+Θ3 [showdegree[D6] (1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0)]

+Θ4 [showdegree[D6] (1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0)]

= −(Dd
6) − (Zt1

6 ) − (Zt2
6 ) + (Dz

2) + 3(Dd
2) + (Dd̂

2) + (D2) − 3(D̃z
1) − 2(D̃1)

− 2(Dz
1) − 3(D1) − 2(Z−

2 ) − (Z2) + 5(Z1) − (Dd,2
6 ) − (Zt1,2

6 ) − (Zt2,2
6 )

+ (Dz,2
2 ) + 3(Dd,2

2 ) + (Dd̂,2
2 ) + (D2

2) − 3(D̃z,2
1 ) − 2(D̃2

1) − 2(Dz,2
1 ) − 3(D2

1)

− 2(Z−,2
2 ) − (Z2

2) + 5(Z2
1) − (Dd,3

6 ) − (Zt1,3
6 ) + 3(Dd,3

2 ) + (Dd̂,3
2 ) − 2(D̃z,3

1 )

− (D̃3
1) − (Dz,3

1 ) − 2(D3
1) − 2(Z−,3

2 ) + 3(Z3
1) − (Dd,4

6 ) + 2(Dd,4
2 )

− (D̃z,4
1 ) − (D4

1) − (Z−,4
2 ) + (Z4

1).

Since Z0 = KerA ' V4, we have the set of all orbit types is J (V4) = {(D6×
S1), (D3 × S1)}. By (Y1) and Proposition 10.2.7(i), there exist the following
nontrivial (Hϕ,l)-terms in deg 0 (as shown using the above bold symbols):

(Dd
6), (Zt1

6 ), (Zt2
6 ), (Dz

2), (Dd̂
2), (Dd,2

6 ), (Zt1,2
6 ), (Zt2,2

6 ),

(Dz,2
2 ), (Dd̂,2

2 ), (Dd,3
6 ), (Zt1,3

6 ), (Dd̂,3
2 ), (Dd,4

6 ). (A4.5)

On the other hand,
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deg tB

=
∏

µ∈σ+(B)

r∏

i=0

(deg Vi
)mi(µ) ∗

s∑

j=0

∞∑

k=0

m̃k
j (B)

k∑

l=1

deg Vj,l

=
∏

i=0,1

deg Vi
∗
(
1 · deg V0,1

+ 1 · deg V1,1

)

= Θ1 [showdegree[D6](1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)]

= −(Dd
6) − (Zt1

6 ) − (Dd
2) − (Dd̂

2) + 2(D̃z
1) + (D̃1)

+ (Dz
1) + 2(D1) + (Z−

2 ) − 3(Z1).

By (N1’) and a similar statement as Proposition 10.2.7(ii) for ϕ satisfying
(H0), (H1) and (H40), we have that deg ∞ does not contain any nontrivial
terms as listed in (A4.5) except possibly for (Dd

6), (Zt1
6 ) and (Dd

2). Therefore,

the following orbit types will appear in the value deg ∞ − deg 0:

(Dd,2
6 ), (Dd,3

6 ), (Dd,4
6 ), (Zt1,2

6 ), (Zt1,3
6 ), (Zt2

6 ), (Zt2,2
6 ), (Dz

2), (Dz,2
2 ), (Dd̂,2

2 ), (Dd̂,3
2 ).

Conclusion: Under the assumptions (A1)—(A3), (DA), (DB) and (A5), by
Theorem 10.1.3d, there exist at least 11 nonstationary solutions of (10.1). To

be more specific, there are

� 1 nonstationary solution with least symmetry (Dd,4
6 );

� 2 nonstationary solutions with least symmetries (Zt1 ,3
6 );

� 2 nonstationary solutions with least symmetries (Zt2 ,2
6 );

� 3 nonstationary solutions with least symmetries (Dz,2
2 ) and

� 3 nonstationary solutions with least symmetries (Dd̂,3
2 ).

A4.6.2 Existence in D8-Symmetric Auto. Degen. Newtonian Sys.

Let Γ = D8 and V = V0⊕V1⊕V2⊕V3⊕V5. Consider the potential ϕ : V → R
satisfying (A1)—(A3) and (A5) with the matrices A and B being of the type

C =




c d 0 0 0 0 0 d
d c d 0 0 0 0 0
0 d c d 0 0 0 0
0 0 d c d 0 0 0
0 0 0 d c d 0 0
0 0 0 0 d c d 0
0 0 0 0 0 d c d
d 0 0 0 0 0 d c



.
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It can be easily obtained that σ(C) = {µ0 = c+2d, µ1 = c+
√

2d, µ2 = c, µ3 =

c −
√

2d, µ5 = c − 2d}, where each µi has its eigenspace E(µi) ' Vi. Take
c = 4

√
2, d = 4 for A and c = 3, d =

√
2 for B, and list eigenvalues of A and

B in Table A4.10∗ . Notice that the assumptions (H30) and (H4l) (for l∞ = 1)

are satisfied in this case. The dominating orbit types in W are (D8), (Dd
8),

(Zt1
8 ), (Zt2

8 ), (Zt3
8 ), (D̃d

4).

c d µ0 µ1 µ2 µ3 µ5

A 4
√

2 4 13.7 11.3 5.7 0 -2.3

B 3
√

2 5.8 5 3 1 0.2

Table A4.10. Eigenvalues of A and B, Γ = D8

Using the Table A4.10, we compute the numbers

m̃3
0(A) = 1, m̃3

1(A) = 1, m̃2
2(A) = 1,

m̃2
0(B) = 1, m̃2

1(B) = 1, m̃1
2(B) = 1, m̃3(l

2
∞) = 1.

Compute the value of deg tA by

deg tA

=
∏

µ∈σ+(A)

r∏

i=0

(deg Vi
)mi(µ) ∗

s∑

j=0

∞∑

k=0

m̃k
j (A)

k∑

l=1

deg Vj,l

=
2∏

i=0

deg Vi
∗
(
1 ·

3∑

l=1

deg V0,l
+ 1 ·

3∑

l=1

deg V1,l
+ 1 ·

2∑

l=1

deg V2,l

)

=
2∏

i=0

deg Vi
∗
(
deg V0,1

+ deg V1,1
+ deg V2,1

)

+
2∏

i=0

deg Vi
∗
(
deg V0,2

+ deg V1,2
+ deg V2,2

)

+
2∏

i=0

deg Vi
∗
(
deg V0,3

+ deg V1,3

)

∗ The eigenvalues are evaluated only up to 10−1, which is sufficient for determining the numbers
m̃k

j for the computations of degree.
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= Θ1 [showdegree[D8](1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0)]

+Θ2 [showdegree[D8](1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0)]

+Θ3 [showdegree[D8](1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)]

= −(D8) − (D̃d
4) − (Dd

4) − (Zt1
8 ) − (Zt2

8 ) + (D̃z
2) + 2(D̃d

2) + 2(D̃2)

+ (Dz
2) + 2(Dd

2) + 2(D2) + (Zd
4) − 2(D̃z

1) − 3(D̃1) − 2(Dz
1) − 3(D1)

− (Z−
2 ) − 3(Z2) + 5(Z1) − (D2

8) − (D̃d,2
4 ) − (Dd,2

4 ) − (Zt1,2
8 ) − (Zt2,2

8 )

+ (D̃z,2
2 ) + 2(D̃d,2

2 ) + 2(D̃2
2) + (Dz,2

2 ) + 2(Dd,2
2 ) + 2(D2

2) + (Zd,2
4 )

− 2(D̃z,2
1 ) − 3(D̃2

1) − 2(Dz,2
1 ) − 3(D2

1) − (Z−,2
2 ) − 3(Z2

2) + 5(Z2
1)

− (D3
8) − (Zt1,3

8 ) + (D̃d,3
2 ) + (D̃3

2) + (Dd,3
2 ) + (D3

2) − (D̃z,3
1 )

− 2(D̃3
1) − (Dz,3

1 ) − 2(D3
1) − (Z−,3

2 ) − (Z3
2) + 3(Z3

1).

Since Z0 = KerA ' V3, we have the set of all orbit types is J (V3) =

{(D8×S1), (D1×S1), (D̃1×S1), (Z1×S1)}. By (Y1) and Proposition 10.2.7(i),
there exist the following nontrivial (Hϕ,l)-terms in deg 0 (as shown using the
above bold symbols):

(D8), (D̃
d
4), (Zt1

8 ), (Zt2
8 ), (D2

8), (D̃d,2
4 ), (Zt1,2

8 ), (Zt2,2
8 )(D3

8), (Zt1,3
8 ). (A4.6)

On the other hand,

deg tB

= deg 0
B ∗
( s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
+

s∑

j=0

m̃j(l
2
∞)

l∞−1∑

l=1

deg Vj,l

)

(l∞=1)
=

∏

i=0,1,2,3,5

deg Vi
∗
(
1 · (deg V0,1

+ deg V0,2
) + 1 · (deg V1,1

+ deg V1,2
) + 1 · deg V2,1

)

= Θ1 [showdegree[D8] (1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0)]

+Θ2 [showdegree[D8](1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0)]

= −(D8) − (D̃d
4) + (Dd

4) − (Zt1
8 ) − (Zt2

8 ) + (D̃z
2)

+ (D̃d
2) + 2(D̃2) − (Dz

2) − (Dd
2) − 2(D2) + (Zt1

4 )

+ (Zd
4) − (D2

8) + (D2
4) − (Zt1,2

8 ) + (D̃d,2
2 ) − (D̃2

2)

− (Dd,2
2 ) − (D2

2) + (Zt1,2
4 ).
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By (N2’) and a similar statement as Proposition 10.2.8(ii) for ϕ sat-

isfying (H0)—(H2) and (H4l), we have that deg ∞ does not contain any
nontrivial terms as listed in (A4.7) except possibly for (D8), (D̃d

4), (Zt1
8 ),

(Zt2
8 ), (D2

8) and (Zt1,2
8 ). Moreover, since Z∞ ' V3,1, we have that J (Z∞) =

{(D8×S1), (Zt3
8 ), (Dd

2), (D̃d
2), (Zd

2)}. Therefore, the following orbit types (Hϕ,l)
will appear in the value deg ∞ − deg 0:

(D3
8), (D̃d,2

4 ), (Zt1,3
8 ), (Zt2,2

8 ). (A4.7)

Conclusion: Under the assumptions (A1)—(A3), (DA), (DB) and (A5), by
Theorem 10.1.3d, there exist at least 7 nonstationary solutions of (10.1). To be
more specific, there are

� 1 nonstationary solution with least symmetry (D3
8);

� 2 nonstationary solutions with least symmetries (D̃d,2
4 );

� 2 nonstationary solutions with least symmetries (Zt2 ,2
8 ) and

� 2 nonstationary solutions with least symmetries (Zt1 ,3
8 ).

A4.6.3 Existence in D10-Symmetric Auto. Degen. Newtonian Sys.

Let Γ = D10 and V = V0 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V6. Consider the potential
ϕ : V → R satisfying (A1)—(A3) and (A5) with the matrices A and B being
of the type

C =




c d 0 0 0 0 0 0 0 d
d c d 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0
0 0 0 d c d 0 0 0 0
0 0 0 0 d c d 0 0 0
0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 d c d
d 0 0 0 0 0 0 0 d c




.

It can be easily obtained that σ(C) = {µ0 = c + 2d, µ1 = c + 2d cos π
5
, µ2 =

c + 2d cos 2π
5
, µ3 = c + 2d cos 3π

5
, µ4 = c + 2d cos 4π

5
, µ6 = c − 2d}, where each

µi has its eigenspace E(µi) ' Vi. Take c = −2, d = 3 for A and c = 4,

d = 2(cos(2π/5))−1 for B, and list eigenvalues of A and B in Table A4.11.
Notice that the assumptions (H3l) and (H40) are satisfied in this case (for
l0 = 2). The dominating orbit types in W are (D10), (Dd

10), (Zt1
10), (Zt2

10), (Zt3
10),

(Zt4
10), (Dd̂

2), (Dz
2).

Using the Table A4.11, we compute the numbers
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c d µ0 µ1 µ2 µ3 µ4 µ6

A -2 3 4 2.9 -0.1 -3.9 -6.9 -8

B 4 2(cos(2π/5))−1 17 14.5 8 0 -6.5 -8.9

Table A4.11. Eigenvalues of A and B, Γ = D10

m̃0(l
2
0) = 1, m̃1

1(A) = 1, m̃4
0(B) = 1, m̃3

1(B) = 1, m̃2
2(B) = 1.

Compute the value of deg tB

deg tB

=
∏

µ∈σ+(B)

r∏

i=0

(deg Vi
)mi(µ) ∗

s∑

j=0

∞∑

k=0

m̃k
j (B)

k∑

l=1

deg Vj,l

=
2∏

i=0

deg Vi
∗
(
1 ·

4∑

l=1

deg V0,l
+ 1 ·

3∑

l=1

deg V1,l
+ 1 ·

2∑

l=1

deg V2,l

)

=
2∏

i=0

deg Vi
∗
(
deg V0,1

+ deg V1,1
+ deg V2,1

)
+

2∏

i=0

deg Vi
∗
(
deg V0,2

+ deg V1,2

+ deg V2,2

)
+

2∏

i=0

deg Vi
∗
(
deg V0,3

+ deg V1,3

)
+

2∏

i=0

deg Vi
∗ deg V0,4

= Θ1 [showdegree[D10] (1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)]

+Θ2 [showdegree[D10](1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)]

+Θ3 [showdegree[D10](1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)]

+Θ4 [showdegree[D10](1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)]

= −(D10) − (Zt1
10) − (Zt2

10) + (Dd
2) + (Dd̂

2) + (Dz
2) + 3(D2) − 2(D̃z

1)

− 3(D̃1) − 2(Dz
1) − 3(D1) − (Z−

2 ) − 2(Z2) + 5(Z1) − (D2
10) − (Zt1,2

10 )

− (Zt2,2
10 ) + (Dd,2

2 ) + (Dd̂,2
2 ) + (Dz,2

2 ) + 3(D2
2) − 2(D̃z,2

1 ) − 3(D̃2
1) − 2(Dz,2

1 )

− 3(D2
1) − (Z−,2

2 ) − 2(Z2
2) + 5(Z2

1) − (D3
10) − (Zt1,3

10 ) + (Dd,3
2 ) + (Dd̂,3

2 )

+ 2(D3
2) − (D̃z,3

1 ) − 2(D̃3
1) − (Dz,3

1 ) − 2(D3
1) − (Z−,3

2 ) − (Z3
2) + 3(Z3

1)

− (D4
10) + 2(D4

2) − (D̃4
1) − (D4

1) − (Z4
2) + (Z4

1).

Since Z∞ = KerB ' V3, we have the set of all orbit types is J (V3) =
{(D10×S1), (D1×S1), (D̃1×S1), (Z1×S1)}. By (Y1’) and a similar statement
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as Proposition 10.2.7(i), there exist the following nontrivial (Hϕ,l)-terms in

deg ∞ (as shown using the above bold symbols):

(D10), (Zt1
10), (Z

t2
10), (D

d̂
2), (Dz

2), (D2
10), (Z

t1,2
10 ), (Zt2,2

10 ),

(Dd̂,2
2 ), (Dz,2

2 ), (D3
10), (Z

t1,3
10 ), (Dd̂,3

2 ), (D4
10). (A4.8)

On the other hand,

deg tA

= deg 0
A ∗
( s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
+

s∑

j=0

m̃j(l
2
0)

l0−1∑

l=1

deg Vj,l

)

(l0=2)
=

1∏

i=0

deg Vi
∗
(
1 · deg V1,1

+ 1 · deg V0,1

)

= Θ1 [showdegree[D10] (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0)]

= −(D10) − (Zt1
10) − (Dd

2) − (Dd̂
2) + (D̃z

1)

+ 2(D̃1) + (Dz
1) + 2(D1) + (Z−

2 ) − 3(Z1).

Since Z0 ' V0,2, we have that J (Z0) = {(D10×S1), (D2
10)}. By (N2), except

for possibly (D10), (Zt1
10), (Dd̂

2) and (D2
10), every orbit types listed in (A4.8) will

appear in the value of deg ∞ − deg 0, namely:

(Zt2
10), (D

z
2), (Zt1,2

10 ), (Zt2,2
10 ), (Dd̂,2

2 ),

(Dz,2
2 ), (D3

10), (Z
t1,3
10 ), (Dd̂,3

2 ), (D4
10).

Conclusion: Under the assumptions (A1)—(A3), (DA), (DB) and (A5), by
Theorem 10.1.3d, there exist altogether at least 15 nonstationary solutions of

(10.1). To be more specific, there are

� 2 nonstationary solutions with least symmetries (Zt2 ,2
10 );

� 5 nonstationary solutions with least symmetries (Dz,2
2 );

� 2 nonstationary solutions with least symmetries (Zt1 ,3
10 );

� 5 nonstationary solutions with least symmetries (Dd̂,3
2 ) and

� 1 nonstationary solution with least symmetry (D4
10).



A4.6 Results for Section 10.2 355

A4.6.4 Existence in D12-Symmetric Auto. Degen. Newtonian Sys.

Let Γ = D12 and V = V0⊕V1⊕V2⊕V3⊕V4⊕V5⊕V7. Consider the potential
ϕ : V → R satisfying (A1)—(A3) and (A5) with the matrices A and B being

of the type

C =




c d 0 0 0 0 0 0 0 0 0 d
d c d 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0
0 0 0 d c d 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 d c d 0 0 0
0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 d c d
d 0 0 0 0 0 0 0 0 0 d c




.

It can be easily obtained that σ(C) = {µ0 = c + 2d, µ1 = c +
√

3d, µ2 = c +

d, µ3 = c, µ4 = c−d, µ5 = c−
√

3d, µ7 = c−2d}, where each µi has its eigenspace
E(µi) ' Vi. Take c = −2, d = 2

√
3 for A and c = 3, d =

√
3 for B, and list

eigenvalues of A and B in Table A4.12. Notice that the assumptions (H3l) (for

l0 = 2) and (H4l) (for l∞ = 3) are satisfied in this case. The dominating orbit

types in W are (D12), (Dd
12), (Zt1

12), (Zt2
12), (Zt3

12), (Zt4
12), (Zt5

12), (D̃d
6), (Dz

4), (Dd̂
4).

c d µ0 µ1 µ2 µ3 µ4 µ5 µ7

A -1 2.5 4 3.3 1.5 -1 -3.5 -5.3 -6

B 9 3.7 16.4 15.4 12.7 9 5.3 2.6 1.6

Table A4.12. Eigenvalues of A and B, Γ = D12

Using the Table A4.12, we compute the numbers

m̃0(l
2
0) = 1, m̃1

1(A) = 1, m̃2
1(A) = 1, m̃4

0(B) = 1, m̃3
1(B) = 1,

m̃3
2(B) = 1, m̃3(l

2
∞) = 1, m̃2

4(B) = 1, m̃1
5(B) = 1, m̃1

7(B) = 1.

Compute the value of deg tB
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deg tB

= deg 0
A ∗
( s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
+

s∑

j=0

m̃j(l
2
∞)

l∞−1∑

l=1

deg Vj,l

)

l∞=3
=

∏

i∈{0,...,5,7}

deg Vi
∗
(
1 ·

4∑

l=1

deg V0,l
+ 1 ·

3∑

l=1

deg V1,l
+ 1 ·

3∑

l=1

deg V2,l

+ 1 ·
2∑

l=1

deg V3,l
+ 1 ·

2∑

l=1

deg V4,l
+ 1 · deg V5,1

+ 1 · deg V7,1

)

=
∏

i∈{0,...,5,7}

deg Vi
∗
(
deg V0,1

+ deg V1,1
+ deg V2,1

+ deg V3,1
+ deg V4,1

+ deg V5,1

+ deg V7,1

)
+

∏

i∈{0,...,5,7}

deg Vi
∗
(
deg V0,2

+ deg V1,2
+ deg V2,2

+ deg V3,2
+ deg V4,2

)

+
∏

i∈{0,...,5,7}

deg Vi
∗
(
deg V0,3

+ deg V1,3
+ deg V2,3

)
+

∏

i∈{0,...,5,7}

deg Vi
∗ deg V0,4

= Θ1 [showdegree[D12](1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0)]

+Θ2 [showdegree[D12](1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0)]

+Θ3 [showdegree[D12](1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)]

+Θ4 [showdegree[D12](1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)]

= −(D12) − (Dd
12) − (Zt1

12) − (Zt2
12) − (Zt3

12) − (Zt4
12) − (Zt5

12) − (D̃d
6)

+ (Dd
6) + 2(D6) + (Zd

6) + 2(Zt1
6 ) + 2(Zt2

6 ) + 3(D4) + 3(Dd
4) + (Dz

4)

+ (Dd̂
4) + 2(D̃3) − 3(D3) − (Dz

3) + 2(D̃z
3) − 2(Zd

4) − 2(Z4) − 2(D̃d
2)

− 2(D̃2) + 2(Dd
2) − 2(D2) − 3(D̃z

2) + 4(D̃1) − 4(D1) + 4(D̃z
1) − 4(Dz

1)

+ 4(Z2) − (D2
12) − (Zt1,2

12 ) − (Zt2,2
12 ) − (Zt3,2

12 ) − (Zt4,2
12 ) − (D̃d,2

6 ) + (Dd,2
6 )

+ (D2
6) + (Dd,2

4 ) + 3(D2
4) + (Dd̂,2

4 ) + (Dz,2
4 ) + (Zd,2

6 ) + (Zt1,2
6 ) + 2(Zt2,2

6 )

+ 2(D̃2
3) − 2(D2

3) + (D̃z,2
3 ) − (Dz,2

3 ) − (Zd,2
4 ) − 2(Z2

4) − (D̃d,2
2 ) − 3(D̃2

2)

+ (Dd,2
2 ) − (D2

2) − 2(D̃z,2
2 ) + 3(D̃2

1) − 3(D2
1) + 3(D̃z,2

1 ) − 3(Dz,2
1 ) + 3(Z2

2)

− (D3
12) + (D3

6) − (Zt1,3
12 ) − (Zt2,3

12 ) + (Dd,3
4 ) + (Dd̂,3

4 ) + 2(D3
4) + (D̃3

3)

− (D3
3) + (Zt1,3

6 ) + (Zt2,3
6 ) − (D̃z,3

2 ) − (D̃d,3
2 ) + (Dd,3

2 ) − 2(D̃3
2) − (D3

2)

− (Zd,3
4 ) − (Z3

4) + 2(D̃z,3
1 ) − 2(Dz,3

1 ) + 2(D̃3
1) − 2(D3

1) + 2(Z3
2) − (D4

12)

+ (D4
6) + 2(D4

4) + (D̃4
3) − (D4

3) − (D̃4
2) − (D4

2) − (Z2
4) + (Z4

2).
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Since Z∞ = V3,3 ' U3, we have the set of all orbit types is J (U3) =

{(Zt3
12), (D

d
6), (D̃d

6), (Zd
6)}. By (Y2’) and Proposition 10.2.8(i), there exist the

following nontrivial terms in deg ∞ (as shown using the above bold symbols):

(D12), (D
d
12), (Z

t1
12), (Z

t2
12), (Z

t3
12), (Z

t4
12), (Z

t5
12), (D̃

d
6), (Dz

4),

(Dd̂
4), (D2

12), (Z
t1,2
12 ), (Zt2,2

12 ), (Zt3,2
12 ), (Zt4 ,2

12 ), (D̃d,2
6 ),

(Dd̂,2
4 ), (Dz,2

4 ), (D3
12), (Z

t1,3
12 ), (Zt2,3

12 ), (Dd̂,3
4 ), (D4

12). (A4.9)

On the other hand,

deg tA

= deg 0
A ∗
( s∑

j=0

∞∑

k=1

m̃k
j (A)

k∑

l=1

deg Vj,l
+

s∑

j=0

m̃j(l
2
0)
l0−1∑

l=1

deg Vj,l

)

l0=2
=

2∏

i=0

deg Vi
∗
(
1 · deg V0,1

+ 1 · deg V1,1
+ 1 · deg V2,1

)

= Θ1 [showdegree[D12](1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)]

= −(D12) − (Zt1
12) − (Zt2

12) − (Dd
4) − (Dd̂

4) + (D̃z
2) + (Dz

2) + (D̃d
2)

+ (Dd
2) + 2(D̃2) + 2(D2) + (Zd

4) − 2(D̃z
1) − 2(Dz

1) − 3(D̃1) − 3(D1)

− (Z−
2 ) − 3(Z2) + 5(Z1).

Since Z0 = V0,2, we have the set of all orbit types is J (Z0) = {(D12 ×
S1), (D12)}. By (N2) and Proposition 10.2.8(ii), except for possibly (D12),

(Zt1
12), (Zt2

12) and (Dd̂
4), every orbit types listed in (A4.9) will appear in

deg ∞ − deg 0, namely

(Dd
12), (Z

t3
12), (Z

t4
12), (Z

t5
12), (D̃

d
6), (Dz

4), (D2
12), (Z

t1,2
12 ),

(Zt2,2
12 ), (Zt3,2

12 ), (Zt4,2
12 ), (D̃d,2

6 ), (Dd̂,2
4 ), (Dz,2

4 ),

(D3
12), (Z

t1,3
12 ), (Zt2,3

12 ), (Dd̂,3
4 ), (D4

12).

Conclusion: Under the assumptions (A1)—(A3), (DA), (DB) and (A5), by
Theorem 10.1.3d, there exist altogether at least 20 nonstationary solutions of
(10.1). To be more specific, there are

� 1 nonstationary solution with least symmetry (D4
12);
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� 1 nonstationary solution with least symmetry (Dd
12);

� 2 nonstationary solutions with least symmetries (Zt1 ,3
12 );

� 2 nonstationary solutions with least symmetries (Zt2 ,3
12 );

� 2 nonstationary solutions with least symmetries (Zt3 ,2
12 );

� 2 nonstationary solutions with least symmetries (Zt4 ,2
12 );

� 2 nonstationary solutions with least symmetries (Zt5
12);

� 2 nonstationary solutions with least symmetries (D̃d,2
6 );

� 3 nonstationary solutions with least symmetries (Dd̂,3
4 ) and

� 3 nonstationary solutions with least symmetries (Dz,2
4 ).
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125. J. Leray, and J. Schauder, Topologie et équations fonctionelles, Ann. Sci. Ecole Norm. Sup
51 (1934), 4578.

126. R. Levins, Evolution in communities near equilibrium, in Ecology and Evolution of Com-
munities, 16—50, Belknap Press of Harvard University Press, Cambridge, Mass. (1975).
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