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Abstract

Motivated by studying synchronization mechanisms in gene regulatory networks (GRNs) and their

relation to evolutionary events such as genetic duplication and genetic redundancy, we consider two

mathematical dynamical models of GRNs. We obtain results on robust synchronization on these

dynamical models inspired by the existing theoretical results in the coupled cell network formalisms.

We also explore the concepts of quotient networks and network lifting in the context of GRNs which

are related to the process of gene duplication and the phenomenon of subfunctionalization as an

outcome of functional divergence.
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act(·) activation regulatory function

rep(·) repression regulatory function

mi concentration of mRNA in gene i

pi concentration of protein in gene i

xi = (mi, pi)
T dynamical variable of gene i

Ai 2× 2-matrix for internal dynamics of gene i

I±i the set of indices j where gene j activates resp. represses gene i

W± = (w±ij) weight adjacency matrix for activation resp. repression with “+” resp. “−”

w±ij non-negative weight in activation resp. repression from gene j to gene i

M± = (m±ij) multiplicity adjacency matrix for activation resp. repression

C the set of all gene indices

P a partition of C

Ck the k-th equivalence class under P

[i] the equivalence class of i under P

Q± = (q±ij) quotient weight adjacency matrix for activation resp. repression

N± = (n±ij) quotient multiplicity adjacency matrix for activation resp. repression

Table 1: List of main notations

1. Introduction and Motivation

Gene regulatory networks (GRNs) are biochemically interacting systems that are composed of

molecular regulators in a cell which interact with each other directly or indirectly through their

RNA and protein expression products ([42, 58]). They underlie genetic regulatory mechanisms that

determine and control cellular functions such as cell operations, cell-cycle progression and responses5

to environmental signals ([44]). With the continuous progress in genome sequencing technology,

an enormous amount of experimental data on gene expression and regulation have been made

available, which may provide the first step towards understanding how cells survive, reproduce

and adapt ([51]). However, given the structural and dynamical interconnectedness of genomes,

many cellular processes that control the development and adaptation of multicellular life forms still10

remain widely undetermined ([12, 52]). One such example is the role of gene duplication, genetic

redundancy and functional divergence in network evolution ([31, 54]).
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Mathematical models that offer tractable analysis of dynamical processes in GRNs and their

collective behaviour are sought after for understanding, predicting and controlling regulatory mech-

anisms, see for example [6, 36, 37]. Among others, the theory of coupled cell networks and their15

associated dynamical systems, proposed by Golubitsky and Stewart [27], and by Field [23], have

provided mathematical models for understanding collective dynamics on general coupled networks

such as robust synchronization and synchrony-related bifurcations [53, 23, 29, 27]. Coupled cell

systems are dynamical systems (cells) that are coupled together through mutual interactions, ab-

stracted by the associated network, which exert influences on the temporal evolution of each other.20

A key advantage of applying these formalisms to analyse GRNs is that they allow theoretical deduc-

tion of collective dynamics based only on the underlying network structure, without referring to the

specifics of each gene. This leads to theoretical results that are relatively independent of modelling

specifics of individual genes and are more importantly, naturally compatible with structure-related

dynamical processes in GRNs.25

For example, the existence of different robust patterns of synchrony for a GRN where each

pattern has one or more clusters of synchronized genes. Here, two genes are said synchronized if

their state coincides for all time. In terms of the dynamics on the phase space, this means that a

solution where certain genes are synchronized at one time remain synchronized for all time. Thus,

each pattern of synchony corresponds to a synchrony subspace, that is, to a subspace described in30

terms of equalities of gene coordinates that is flow-invariant under the dynamics of every coupled

cell system - any solution that starts in that space remains there for all time. The synchronization

of the genes in the same cluster (class) is independent of the their internal dynamics which can

range from a steady-state to chaotic dynamics. Moreover, it is robust for the dynamical models (all

the admissible vector fields).35

Morone, Leifera and Maksea [46] introduce the use of network fibration symmetries in the

analysis of the transcriptional regulatory network of bacterium Escherichia coli where nodes are

genes and a directed link represents a transcriptional regulation. They formalize the process of

communication between genes with the notion of input tree of the gene where the input tree of a

gene formalizes the information arriving to a gene containing the entire history transmitted through40

all pathways that reach that gene. Moreover, genes with isomorphic input trees form clusters of

genes and the set of all input tree isomorphisms defines the symmetry fibrations of the network.

They emphasize that the fibration symmetries in GRNs may identify clusters of synchronized genes
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(genes with isomorphic input trees) which can be collapsed, each group into a single gene, as

symmetry fibrations are transformations that preserve the dynamics of information flow in the45

network. See Figure 1.

 

Figure 1: Part of [46, Figure 1] (reproduced with permission from [46]). Left (A) The Escherichia coli subcircuit

controlled by the cpxR gene which regulates its own expression (via an autoregulation activator loop) and also

regulates other genes grouped by the different colors. The circuit regulates more genes represented by the dotted

lines which are not displayed for simplicity. Gene cpxR is not regulated by any other transcription factor in the

network. Right (G) Symmetric genes baeR and spy when activated by its regulator cpxR can synchronize their

activity to produce the same activity levels. See [46] for details including the models used for simulation.

In [18], DeVille and Lerman show that robust synchrony is a consequence of the existence of

graph fibrations and, in particular, that surjective graph fibrations lead to synchrony subspaces.

Moreover, as expected, network symmetries imply network synchronies. In fact, if a network has

permutation symmetry Γ (by permuting the cells) and Σ is a subgroup of Γ, then the fixed point50

subspace of Σ is a synchrony subspace. Nevertheless, as pointed out by Antoneli and Stewart [9],

for general networks there can be synchrony subspaces that are not forced by the symmetries of

the network, if any. In particular, this applies to GRNs. The collapse of each cluster of genes into

a single gene corresponds to the notion of quotient network in the coupled cell network formalism.

See, for example Aguiar, Dias, Golubitsky and Leite [5] and Aguiar and Dias [3]. The quotient55

network associated to a pattern of synchrony is the gene network for the coupled systems in the

restriction to the corresponding synchrony subspace.

In this paper, we consider two mathematical dynamical models of GRNs and identify their ro-
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bust patterns of synchrony inspired by theoretical results from the coupled cell network formalism.

In the context of gene regulations, gene synchronization can be a result of gene duplication. Gene60

duplication is the primary source of new genes. Dewey and Galas [19] discuss a network growth

model based on gene duplication pointing out evidence through a variety of genoma analysis that

new genes are almost always created by duplication. After duplication, the two gene copies are gen-

erally assumed to be entirely redundant, that is, to perform the same function and consequently,

the inactivation of one of the genes has little or no effect on the biological phenotype ([47]). As65

shown in [56, 57], genetic redundancy can be actively maintained by natural selection and it is

not just a transient consequence of recent gene duplication. Nevertheless, the fate of most of the

duplicated genes that are not lost is to undergo functionalization. Theory suggests three alternative

outcomes in the evolution of duplicate genes that are preserved: (i) the conservation of all functions

in both duplicates (gene conservation); (ii) the evolution of a new function in one of the duplicates70

(neofunctionalization); or (iii) the division of ancestral functions among duplicates (subfunctional-

ization) ([43, 32]). In the duplication-degeneration-complementation model of subfunctionalization

the duplicated genes are preserved because each copy of the gene loses some, but not all, of its

functions through degenerating mutations. This results in the degenerating mutations in one gene

being complemented by the other and vice versa. Thus, the two degenerated genes complement75

each other and together carry out the same two functions as the preduplication gene. See [24]

and [35], for several examples supporting the duplication-degeneration-complementation model for

gene duplication, including analysis of a new engrailed gene in zebrafish and yeast genes. In [30],

Gout and Lynch propose a refined version of subfunctionalization, quantitative subfunctionaliza-

tion, where the ancestral gene functions are simply partitioned between the two duplicated genes80

such that expression levels necessary to produce enough of the final product are retained; no change

in biochemical functions or expression patterns (i.e., when/where the genes and their products are

expressed) is necessary. For a very recent work on whole-genome duplication see Kuzmin et al. [39].

The process of gene duplication for GNRs has its analog in the process of lifting in the theory

of coupled cell networks. A lift of a coupled cell network is a new network where some of the85

cells give rise to copies of themselves and where the interactions linking the new cells in the bigger

network guarantee that the dynamics of the bigger systems contains the dynamics of the smaller

systems. See Aguiar, Dias, Golubitsky and Leite [5] and its extensions to weighted networks in

Aguiar and Dias [3] and Ashwin, Aguiar, Dias and Field [1]. A trivial observation is that, in
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general, there is no uniqueness in this lifting process. That is, fixing a k-cell network, if n > k90

then there are many n-cell networks which are lifts (or inflations) of the k-cell network. Moreover,

there is a method of enumerating the lifts if the k-cell network is fixed. See Theorem 2.5 of Aguiar,

Dias, Golubitsky and Leite [5] valid for coupled cell systems following the formalisms of Stewart,

Golubitsky and Pivato [53], Golubitsky, Stewart and Török [29] and Field [23], where the edges in

the graph network structure have assigned nonnegative integer numbers. See also the extension of95

this result to weighted networks, where the connections have attached strengths that can be any

real number and the coupled cell systems have additive input structure, in Theorem 2.13 of Aguiar

and Dias [3]. For both setups, the enumeration method goes through the characterization of the

network adjacency matrices of the larger networks determined by the smaller network adjacency

matrices. A nice observation in the enumeration method, is that, fixing n, the number of n-cell lifts100

is finite for nonnegative integer matrices and nonfinite in the weighted setup.

The lifting of a network is the reverse process of quotient. As mentioned earlier, an important

aspect of the identification of patterns of synchrony is that, associated with each synchrony pattern,

there is a smaller (quotient) network of the GRN, whose dynamics is related with the total GRN

when restricted to the corresponding synchrony subspace. This is in accordance with a common105

technique used in science, from both theoretical and experimental points of view: to first investigate

small networks either from dynamical or statistical point of view and then to expand the results

to larger networks that can be related to the smaller ones. There are different approaches as to

how smaller networks can be related to larger ones. In this paper, we are following the dynamical

perspective and the process of expanding a (smaller) quotient network to a bigger network which110

ensures that the dynamics associated with the smaller network also occurs at the bigger network.

See Aguiar, Dias, Golubitsky and Leite [5].

We exemplify next the processes of duplication and synchronization of genes taking a particular

GRN.

1.1. Example115

Consider the three transcriptional repressor system used by Elowitz and Leibler [22] to build

a repressilator network, in Escherichia coli. Note that one of the results obtained in [22] is that,

depending on the values of several parameters, such as, the dependence of transcription rate on

repressor concentration, the translation rate, and the decay rates of the protein and messenger
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RNA, at least two types of solutions are possible: the system may converge towards a stable steady

state, or the steady state may become unstable, leading to sustained limit-cycle oscillations. See

also [15]. In the equations model used in [22], each variable xi = (mi, pi), for i = 1, 2, 3, describes

the concentrations of two gene products, the mRNAs and proteins, which vary in continuous time,

and their time derivatives are expressed as functions of the variables. Graphically, each node in

the network represents a gene. Also, an interaction between two nodes is represented by an edge.

Moreover, in this example there is only a repression type of interaction with specific positive real

weight α. See Figure 2. The repression weight adjacency matrix is

W− =
[
w−ij
]

=


0 0 α

α 0 0

0 α 0

 ,

where if there is an interaction from gene j to gene i, the entry w−ij is nonzero and it denotes the

positive weight of the repression type interaction. The three-gene network equations used in [22]

are: 

ẋ1 = Aβx1 + [αrep(p3) + α0]

 1

0


ẋ2 = Aβx2 + [αrep(p1) + α0]

 1

0


ẋ3 = Aβx3 + [αrep(p2) + α0]

 1

0


⇔



ẋ1 = Aβx1 +

(
α

1+p23
+ α0

) 1

0


ẋ2 = Aβx2 +

(
α

1+p21
+ α0

) 1

0


ẋ3 = Aβx3 +

(
α

1+p22
+ α0

) 1

0


, (1.1)

where

Aβ =

 −1 0

1 −β

 and rep(p) = 1− p2

1 + p2
=

1

1 + p2
.

Thus all the three genes have the same internal (linear) dynamics depending on β and all the weights

are equal to α. For each xi gene equation, only the mi mRNA equation depends directly on the

interaction (with weight α) from other gene j through the pj protein concentration. Thus the system

(1.1) has cyclic permutation symmetry Z3 on the three nodes which justifies nicely the oscillatory

behaviour found in [22], see for example Theorem XVII 8.2 of Golubitsky, Stewart and Schaeffer [28]120

and Chapter 4 of Golubitsky and Stewart [26]. Also note that the cyclic permutation symmetry Z3

of the three-gene network in Figure 2 leads to the synchrony subspace {x : x1 = x2 = x3}.
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α

α

α

Figure 2: A GRN with three genes. It corresponds to the repressilator composed by a cyclic negative-feedback loop

of three repressor genes presented in [22].

1 2

3 4

α

α

α
α1

α2

Figure 3: A GRN with four genes that can be interpreted from the three gene GRN of Figure 2 where gene 3 was

duplicated giving rise to genes 3, 4.

Gene duplication example

Consider any 4× 4 repression weighted adjacency matrix of the form
0 0 α1 α2

α 0 0 0

0 α 0 0

0 α 0 0


where α1, α2 > 0 and consider the four gene GRN in Figure 3. Take the following model equations

for the four gene GRN:

ẋ1 = Aβx1 + [α1rep(p3) + α2rep(p4) + α0]

 1

0


ẋ2 = Aβx2 + [αrep(p1) + α0]

 1

0


ẋ3 = Aβx3 + [αrep(p2) + α0]

 1

0


ẋ4 = Aβx4 + [αrep(p2) + α0]

 1

0



(1.2)

where, as above rep(p) = 1/(1 + p2).
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We can interpret the four-gene GRN in Figure 3 obtained from the three-gene GRN of Figure 2125

by duplication of gene 3 into genes 3, 4. The four-gene GRN is said to be a lift network of the

three-gene GRN of Figure 2 and {x : x3 = x4} is a synchrony subspace.

If we assume α1+α2 = α then we are assuming subfunctionalization as the outcome of functional

divergence for gene duplication. Restricting equations (1.2) to the synchrony subspace {x : x3 =

x4} we obtain equations (1.1). In particular, an oscillatory solution of the system (1.1) is in130

correspondence to an oscillatory solution of system (1.2) where genes 3, 4 quantities are synchronized

for all time. Systems with Z3 symmetry can support a discrete rotating wave by Hopf bifurcation

yielding a traveling wave solution for equations whose restriction is Z3-symmetric. See the example

in [53, pages 613-615]. We have then that the three-gene GRN of Figure 2 is obtained from the

four-gene GRN in Figure 3 by collapsing the 3, 4 gene cluster into a single gene 3. This cluster135

exists due to the fibration symmetries of the GRN of Figure 3. Equivalently, this is due to the facts

that both genes 3, 4 receive a repression type interaction with the same weight from (the cluster

formed by the single) gene 2, and the sum of weights of the repression type interactions from the

cells in the cluster of 3, 4 to gene 1 is equal to the weight of the repression type interaction to

gene 1. We use the terminology that the three-gene GRN of Figure 2 is a quotient of the four-gene140

GRN of Figure 3 by the synchrony space {x : x3 = x4}. We note that in the subfunctionalization

model the synchrony subspaces for the quotient network are ‘mantained’ for the lift network. In

this example, the synchrony subspace {x : x1 = x2 = x3} for the three-gene GRN of Figure 2 lifts

to the synchrony subspace {x : x1 = x2 = x3 = x4} for the four-gene GRN of Figure 3.

If we consider gene conservation for the evolution of duplicate genes, that is, if we consider entire145

gene redundancy, then α1 = α2 = α. In this case the lift four-gene GRN also has {x : x3 = x4}

as a synchrony subspace but {x : x1 = x2 = x3 = x4} is not a synchrony subspace. Moreover, the

quotient network in the restriction to the synchrony space {x : x3 = x4} is no longer the three-gene

GRN of Figure 2.

In this work we aim to connect and adapt some of the existent results concerning network robust150

synchronization to GRNs. We address mainly two issues. One concerns the existence of synchrony

spaces in GRNs and their description; the other is related to robustness of such synchrony patterns.

That is, does the answer to the first issue depends on the model equations approach? We address

the robustness question to SUM and MULT models (cf. (2.8)-(2.9). From our results we conclude

that, in general, the synchronization patterns can be quite distinct from the SUM and MULT155
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model. Moreover, we see that if the activation and repression functions involved at the GRNs

models imply structural relation, unexpected synchrony patterns may occur that are arising due to

the specificities of the activation and repression functions. We also address the lifting and quotient

processes in each of the two models, considering subfunctionalization as the outcome of functional

divergence for gene duplication.160

The paper is organized in the following way. In Section 2 we provide some basics of gene

regulatory networks that we follow in this paper. We present two dynamical models, the SUM and

MULT models, which differ in the way the GRN regulatory function operates over the gene inputs.

In Section 3, we introduce the concept of synchrony pattern (synchrony subspace) for the two types

of GRN models equations and characterize the synchrony patterns for GRNs. See Propositions 3.4-165

3.6 and Propositions 3.12-3.14. When the regulatory functions are Hill-like (cf. (2.6)-(2.7)), a

corollary of these results is that the GRN synchrony patterns are completely determined by the

GRN structural matrices. In Section 4, we combine Theorem 2.13 of Aguiar and Dias [3] with

Propositions 3.4-3.6 and Propositions 3.12-3.14, obtaining a characterization method of the n-

gene GRNs that are lifts of a fixed k-gene GRN, for the SUM using the k-gene GRN activation170

and repression weighed matrices and for MULT models, using the k-gene GRN activation and

repression weighed matrices, and the multiplicities matrices. See Theorems 4.1-4.2. In Section 5,

we remark that for models where the activation and repression regulatory functions are structurally

related, then there may be other synchrony patterns forced by those regulator functions, which we

call regulatory dependent synchrony patterns. We give an example of such regulatory-dependent175

synchrony patterns in the context of circadian rhythms clock models in Section 2.3. Finally, in

Section 6, we summarize the work presented and point out directions for future work.

2. Preliminaries

2.1. Gene Regulatory Networks (GRNs)

Gene regulatory networks can be modelled by a large variety of mathematical formalisms. Here180

we consider the differential equation model, where the variables describe the concentrations of gene

products such as mRNAs and proteins as continuous values, and their time derivative is expressed

as a function of the variables themselves (cf. [16]).

The activity of a gene is regulated by other genes through the concentrations of their gene

products, which function as transcription factors. Regulation can be quantified by the “response
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characteristics” given by the level of gene expression as a function of transcription factors (cf. [41]).

Formally, a GRN can be described by a set of ordinary differential equations, for i = 1, 2, . . . , n, of

the form ṁi(t) = −aimi(t) + bi(p1(t), p2(t), . . . , pn(t))

ṗi(t) = −cipi(t) + dimi(t)

, (2.3)

where mi, pi ∈ R are the concentrations of mRNA and protein, respectively, of the i-th node,

ai, ci > 0 are degradation rates of mRNA and protein, respectively, and di > 0 is a constant.185

Graphically, the set of equations (2.3), for i = 1, 2, . . . , n, translates a GRN as a network of

n nodes, where each node xi := (mi, pi) is connected with another node if there is an interaction

between them via the regulatory function bi.

2.2. Models of GRNs and Regulatory Functions

The regulatory function bi in (2.3) plays a key role in the dynamical modelling of GRNs. It is190

generally a nonlinear function of its variables p1(t), p2(t), . . . , pn(t) and may assume monoticity in

each variable in simplified cases (cf. [55], more references from [41]). Depending on all biochemical

reactions involved, it may have a complicated form which is, in practice, determined heuristically.

There are typically two regulatory logics behind bi, depending on whether each transcription

factor acts additively or multiplicatively to regulate the i-th gene. It is called SUM logic, if

bi =
∑
j

bij(pj(t))

and it is called MULT logic, if

bi = Πjbij(pj(t)).

See for example Chesi [16], Chesi and Hung [17] and [38, 48, 49].

There are two types of regulatory functions: those that activate and those that repress the target195

gene expression in the i-th node, described by a monotonically increasing and decreasing function

bij , respectively.

One of the most commonly used type of activation regulatory function is described by (cf.

[21, 16] for example) the Hill function

act(p) =
pn

βn + pn
, (2.4)

11



where n ∈ N characterizes the steepness of regulation and β marks the mid-value of maximal

reachable value of act. See Remark 2.4 for details. The repression is frequently modelled by

rep(p) = 1− act(p) =
βn

βn + pn
. (2.5)

For our purpose, to allow more general modelling possibilities, we will only assume that act and

rep are strictly monotonic between 0 and 1, satisfy

act(p)→ 0 and rep(p)→ 1 when p→ 0 (2.6)

act(p)→ 1 and rep(p)→ 0 when p→∞, (2.7)

and call them the Hill-like regulatory functions.

Consider a GRN of n nodes (genes), xi = (mi, pi) ∈ R+
0 for i = 1, . . . , n, where the concentration

mi of mRNA and pi of protein are measured for each node. Take the internal dynamics function

of the ith node as the 2× 2 matrix

Ai =

 −ai 0

di −ci

 ,

where ai, ci, di are positive real constants. That is, we assume that the internal dynamics of the

genes is linear. In particular, it follows that each Ai is invertible. Given i, define

I+i = {j ∈ {1, . . . , n} : gene j activates gene i},

I−i = {j ∈ {1, . . . , n} : gene j represses gene i} .

Remark 2.1. We allow I+i ∩ I
−
i 6= ∅. That is, a gene can activate and repress a same gene. 3

Denote the two n × n network adjacency matrices by W+ = [w+
ij ] and W− = [w−ij ]. If there is200

activation (resp. repression) from gene j to gene i, we have that w+
ij > 0 (resp. w−ij > 0) stands for

the maximal achievable level of the activation (resp. repression) from gene j to gene i. Otherwise,

w+
ij = 0 (resp. w−ij = 0). We call W+ (resp. W−) the network weighted activation (resp. repression)

adjacency matrix.

The SUM model205

In the SUM model, the regulatory function is operating by addition:

ẋi = Aixi +
∑
j∈I−i

w−ijrep(pj)

 1

0

+
∑
j∈I+i

w+
ijact(pj)

 1

0

 (i = 1, . . . , n) . (2.8)
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The MULT model

In the MULT model, the regulatory function is operating by multiplication:

ẋi = Aixi +
∏
j∈I−i

w−ijrepm
−
ij (pj)

∏
j∈I+i

w+
ijactm

+
ij (pj)

 1

0

 (i = 1, . . . , n) , (2.9)

where m±i,j indicates the multiplicative regulation of the gene i from the gene j. Graphically, these

multiplicities are usually represented by multiple arrows. However, in the case of 0 − 1 adjacency

matrices we frequently indicate the multiplicity of the arrows with a number next to each arrow.

In the general case, if we have both weights w±ij and exponents m±ij in the model, then we reserve

the number next to the arrow for w±ij and use multiple arrows to indicate m±ij . Let M± = (m±ij)

be the activation and repression multiplicity matrices with the assumption that each entry of W+

(resp. W−) is nonzero if and only if each entry of M+ (resp. M−) is nonzero. The weights w±ij , on

the other hand, can be combined into one weight:

wi =
∏
j∈I−i

w−ij
∏
j∈I+i

w+
ij (i = 1, . . . , n) .

Thus, (2.9) is effectively

ẋi = Aixi + wi
∏
j∈I−i

repm
−
ij (pj)

∏
j∈I+i

actm
+
ij (pj)

 1

0

 (i = 1, . . . , n) . (2.10)

Example 2.2. Consider the three-cell GRN which appears in Figure 4 and have repression and

activation adjacency and multiplicities matrices given by

W− =

(
0 0 w13

0 0 3

2 0 0

)
, W+ =

(
0 w12 0

0 0 0

0 0 0

)
, M− =

(
0 0 1

0 0 1

1 0 0

)
, M+ =

(
0 1 0

0 0 0

0 0 0

)
,

where w12w13 = 4, respectively. Note that gene 1 represses gene 3, gene 2 activates gene 1, and

gene 3 represses genes 1, 2. Moreover, all activations and repressions have multiplicity one. The

MULT model equations in Example 2 of [16] correspond to this three-cell GRN where the activation

function is the Hill function act(p) = p2/(1 + p2), the repression function is rep(p) = 1/(1 + p2)

13



1 2

3
2

w12

w13

3

Figure 4: A GRN with three genes.

and the internal gene dynamics is linear and determined by certain 2× 2 matrices A1, A2, A3:

ẋ1 = A1x1 + w12act(p2)w13rep(p3)

 1

0


ẋ2 = A2x2 + 3rep(p3)

 1

0


ẋ3 = A3x3 + 2rep(p1)

 1

0


⇔



ẋ1 = A1x1 +
4p22

(1+p22)(1+p
2
3)

 1

0


ẋ2 = A2x2 + 3

1+p23

 1

0


ẋ3 = A3x3 + 2

1+p21

 1

0


. (2.11)

3

Remark 2.3. We remark that in some literature, for example [16], PROD models are used, which

correspond to the particular case of the MULT models where m±ij = 1, for all i, j. That is, the

PROD model equations are given by:

ẋi = Aixi +
∏
j∈I−i

w−ijrep(pj)
∏
j∈I+i

w+
ijact(pj)

 1

0

 (i = 1, . . . , n) . (2.12)

The PROD model equations in Example 2 of [16] correspond to the MULT model equations that

appear in Example 2.2 above. 3

The SUM and MULT differential equation models considered here are simplistic models for gene210

networks. These artificial gene networks models mimic as much as possible the characteristics of

real gene networks. The study of how topological and kinetic properties of artificial gene networks

may influence their behavior seems to be a good strategy to discover the underlying principles of

biochemical regulation at the level of transcription, Mendes et al. [45] . See Zhang and Li [59] for the

use of a SUM model for the gene regulatory network of the Hematopoietic stem cells differentiation215

and Elahi and Hasan [20] for the use of a MULT model for a network of interconnected nine genes

SOS response in Escherichia coli.
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2.3. An example of mammalian circadian rhythm

Following a statistical mechanical framework proposed in [13, 14], a concise GRN model was

proposed in [38, 49], which consists of only 5 gene variables Bmal1, Rev-erb-α, Per2, Cry1, Dbp in220

studying the complex gene regulatory dynamics of the mammalian circadian oscillator. It was shown

to describe the known phase relations, amplitudes and wave forms of clock gene expression profiles.

Based on the same 5-gene model, different feedback loops (as sub-networks of the 5-gene network)

have been identified to fit circadian gene expression profiles for different mammalian tissues ([48]).

The regulator functions are modelled by (cf. [38], Supplement)

rep(x, b) =
1

1 + bx
(2.13)

act(x, a) =
1 + ax

1 + x
, (2.14)

where a ≥ 1 is a parameter for fold activation and b ≥ 0 is a repression parameter. We compare225

them with the classic Hill regulatory functions in regulation modelling parameters.

Remark 2.4. Many gene regulation functions have been proposed heuristically. Besides the mono-

tonicity with finite asymptotic values, the key features are usually characterized by steepness of

regulation, basal transcription or transcription initiation (detected in the absence of transcription

factors), the required transcription factor level and the maximal achievable level.230

We explain using activators as an example. In case of the regulation given by the Hill functions

(cf. (2.4)-(2.5)), the transcription fold change is described by

H(x) =
axn

bn + xn
,

where a > 1 is the maximal achievable transcription factor level, b is where the mid-value a/2 is

attained and n ∈ N signifies the steepness of the curve measured by the slope at the mid-point

H ′(b) =
a

4b
n. (2.15)

In case of the activating function used for circadian clock models, the transcription fold change

is described by

C(x) =

(
1 + a · xb

1 + x
b

)n
=

(
b+ ax

b+ x

)n
,

where x/b is the normalized concentration, an > 1 is the maximal achievable transcription factor

level, b is where the “mid-value”
(
(a + 1)/2

)n
is attained and n ∈ N signifies the steepness of the
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curve measured by the slope at the mid-point

C ′(b) =
a− 1

4b

(
a+ 1

2

)n−1
n . (2.16)

See Figure 5.

a an

a
2

(
a+1
2

)n

b b

1

x x

H C

Figure 5: Two gene regulation functions for activating transcription factors. The Hill functionH(x) = (axn)/(bn+xn)

(left) and the activating function C(x) =
(
(b+ ax)/(b+ x)

)n
used in circadian rhythm model (right). The steepness

is measured at the mid-point (cf. (2.15)-(2.16)).

These two functions give very similar qualitative descriptions of gene regulation activities in-

cluding monotonicity, maximal achievable levels given by a > 1 and the steepness factor n.

One crucial difference, however, is the basal transcription given by the asymptotic value at x = 0,

which corresponds to how much transcription can be detected in the absence of any activators. The235

Hill function H assumes no transcription activities if no activators are present, the function C

models with a non-zero constant basal transcription, which in case of circadian models, is modulated

by circadian transcription factors and input functions (cf. [38, 48, 48]). 3

Example 2.5. The circadian core 5-gene clock model is composed of genes Bmal1, Rev-erb-α,

Per2, Cry1,Dbp, which interact through transcriptional feedback loops of negative and positive

regulations. It describes gene regulatory dynamics of the mammalian circadian oscillator (cf. [38,

49]). See Figure 6. The equations employed to describe the dynamics are (cf. [38])
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Figure 6: The circadian core 5-gene clock model, where cells 1, 2, 3, 4, 5 correspond to the concentration of genes

Bmal1, Rev-erb-α, Per2, Cry1,Dbp, respectively. The number next to the input arrow indicates the number of

binding sites in the target gene (the red for negative, the green for positive feedback).



ẋ1 = rep 2 (x2, a12)− d1x1
ẋ2 = act 3 (x1, a21)act(x5, a25)rep 3 (x3, 1)rep 3 (x4, 1)− d2x2
ẋ3 = act 2 (x1, a31)act(x5, a35)rep 2 (x3, 1)rep 2 (x4, 1)− d3x3
ẋ4 = act 2 (x1, a41)act(x5, a45)rep 2 (x2, 1)rep 2 (x3, 1)rep2(x4, 1)− d4x4
ẋ5 = act 3 (x1, a51)rep 3 (x3, 1)rep 3 (x4, 1)− d5x5,

where rep, act are given by (2.13)-(2.14) and the exponents are given by the number of binding

sites available in the target gene. The boxed numbers for indicate that these genes xj for j ∈ Ii240

share the same number of binding sites available in the target gene xi. See the numbers in Figure

6. 3

Remark 2.6. As mentioned above, in [38], the authors used (2.17) to model circadian clocks,

where the boxed numbers are kept equal for genes sharing the same number of binding sites (that

is available sites are always occupied) in the target gene. In [49] as an extension of work from245

[38], the authors used the same model to run through all oscillating networks and found statistical

significance of a sub-network of Z3-symmetry composed of Rev-erb-α, Per2, Cry1 (corresponding

to x2, x3, x4) that works as a repressilator. 3

17



3. Synchrony in gene regulatory networks

Motivated by the formalisms of Stewart, Golubitsky and Pivato [53], Golubitsky, Stewart and250

Török [29] and Field [23] on coupled cell networks and robust network synchronization for the

associated coupled cell systems, we define synchronization partitions for GRN model equations.

Definition 3.1. The gene equivalence partition of a GRN is the partition of the genes of the

GRN where each part is formed by all the genes with the same internal dynamics function. Thus

if Ai1 = Ai2 (in (2.8) or (2.10)), we have that i1, i2 belong to the same part of the GRN gene255

equivalence partition. 3

Consider a GRN and an associated dynamical equations model as, for example, the SUM or

MULT equations models, (2.8) and (2.10), respectively.

Definition 3.2. Given a partition P of the gene set of the GRN, define the space ∆P to be the

polydiagonal where gene products concentrations corresponding to the same class of genes in P are260

identified. We say that P is a synchronization partition of the GRN gene set, for the particular

model considered, when ∆P is flow-invariant under the equations of that model, for any given

Hill-like regulator functions (cf. (2.6)-(2.7)). In that case, we call ∆P a synchrony pattern or a

synchrony space of the GRN. 3

In what follows, given a gene partition P of a GRN, we denote by [i] the part of P that contains265

gene i. Moreover, we assume that a necessary condition for genes to synchronize in a robust way

is that the genes have the same internal dynamics. That is, a synchronization partition P has to

refine the gene equivalence partition.

Definition 3.3. Consider a GRN and an associated dynamical equations model. Given a syn-

chronization partition P of the gene set of the GRN for the fixed model, if the restriction of the270

model equations to the synchrony subspace ∆P are equations of the same model type then they are

associated to a quotient GRN. The genes of the quotient GRN correspond to the parts in the syn-

chronization partition P ; the activation (repression) interactions between two genes in the quotient

are the projection of the activation (repression) interactions between the genes in the corresponding

parts of P in the original GRN. We also say that the original GRN is a lift of the quotient GRN. 3275

We address now the issue of synchronization for gene regulatory networks, assuming the models

equations are the SUM or the MULT models. More precisely, we characterize the synchrony patterns
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for GRNs, for the SUM and MULT models, using the activation and repression adjacency and

multiplicity matrices. From that, it follows that for the same GRN, distinct patterns of synchrony

can occur for the two models, which in particular, lead to distinct dynamical properties for the280

corresponding dynamical systems. As already remarked, the synchrony subspaces that are forced

by the symmetries of a symmetric GRN graph, the fixed-point subspaces, occur for both SUM and

MULT GRN models considered here, as the associated GRNs equations for both models inherit

the symmetries of the GRN. But, there can be synchrony subspaces that are not forced by the

symmetries of the graph, if any. See, Antoneli and Stewart [9].285

3.1. Synchrony for the SUM model

Proposition 3.4. Take an n-gene GRN with adjacency matrices W+ and W− and a partition P of

the gene set into classes C1, . . . , Cm refining the gene equivalence class. The partition P corresponds

to a synchrony pattern ∆P for the SUM equations model (2.8) if and only if for each part C, we

have that for k = 1, . . . ,m, ∑
j∈I+i ∩Ck

w+
ij is constant for i ∈ C (3.17)

and ∑
j∈I−i ∩Ck

w−ij is constant for i ∈ C . (3.18)

Proof. Assume that (3.17)-(3.18) hold for k = 1, . . . ,m on any equivalence class C under partition

P . Then, we have for any i ∈ C that

ẋi = Axi +
∑
j∈I−i

w−ijrep(pj)

 1

0

+
∑
j∈I+i

w+
ijact(pj)

 1

0


= Axi +

m∑
k=1

∑
j∈I−i ∩Ck

w−ij︸ ︷︷ ︸
w−
i,k

rep(pj)

 1

0

+

m∑
k=1

∑
j∈I+i ∩Ck

w+
ij︸ ︷︷ ︸

w+
i,k

act(pj)

 1

0

 ,

where the sums w±i,k by (3.17)-(3.18), remain the same in the equivalence class of i. Thus, for any

i ∈ C, the dynamics of x[i] ∈ ∆P is governed by

ẋ[i] = Ax[i] +
∑
k

w−[i],krep(p[j])

 1

0

+
∑
k

w+
[i],kact(p[j])

 1

0

 , (3.19)

19



where [j] := Ck if j ∈ Ck and k is such that I±i ∩Ck 6= ∅. Notice that by (3.17)-(3.18), I±i ∩Ck 6= ∅

if and only if I±l ∩ Ck 6= ∅ for any l ∈ [i]. It follows that ∆P is flow-invariant and consequently, a

synchrony space for the SUM equations model (2.8).

Assume that ∆P is a synchrony space for (2.8). Then, ∆P is flow-invariant. In particular, we

have I±i ∩ Ck 6= ∅ if and only if I±l ∩ Ck 6= ∅ for any i, l in the same part of P. Moreover, the flow

restricted to ∆P is of form (3.19) and for i, l in the same part of P, we have

m∑
k=1

w−i,krep(p[j]) +

m∑
k=1

w+
i,kact(p[j]) =

m∑
k=1

w−l,krep(p[j]) +

m∑
k=1

w+
l,kact(p[j]).

For k ∈ {1, . . . ,m}, let p[j] = 0 for all [j] 6= Ck. For [j] = Ck, if we let p[j] → 0, then rep(p[j])→ 1290

and act(p[j]) → 0 hold, which implies that w−i,k = w−l,k (cf. (2.6)). Similarly, if we let p[j] →∞ for

[j] = Ck, then w+
i,k = w+

l,k (cf. (2.7)).

Remark 3.5. It follows from Proposition 3.4 that, given a partition P of the gene set of a GRN,

the associated polydiagonal susbspace ∆P is a synchrony subspace for the SUM model of the GRN

if and only if it is left invariant by the weighted adjacency matrices W+ and W− of the GRN. We295

have then, using the work of Aguiar and Dias in [2] and [3], that the set of the synchrony subspaces

(synchrony patterns) for the SUM model of a GRN can be computed using the algorithm in Section

6 of [2]. The algorithm can be executed to find the set of polydiagonal subspaces that are left

invariant by one of the adjacency matrices W+ or W− and then the set of synchrony subspaces of

the GRN is the subset of those polydiagonals that are also left invariant by the other adjacency300

matrix. 3

Proposition 3.6. Take an n-gene GRN with adjacency matrices W+ and W−. Let P be a syn-

chronization partition of the gene set with classes C1, . . . , Cm refining the gene equivalence partition.

Consider the m×m matrices Q+ =
[
q+ik
]

and Q− =
[
q−ik
]

where∑
j∈I+i ∩Ck

w+
ij = q+ik and

∑
j∈I−i ∩Ck

w−ij = q−ik (i, k = 1, . . . ,m) .

The restriction of SUM equations model (2.8) to ∆P is a SUM equations model consistent with the

quotient GRN of m genes with activation and repression weighted adjacency matrices Q+ and Q−,

respectively.

Proof. Follows trivially from the conditions in Proposition 3.4 and its proof.305
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Figure 7: The GRNs of Example 3.7: (left) a five gene GRN and (right) its quotient network corresponding to the

partition P = {[1] = {1, 2, 3}, [4] = {4, 5}}.

Example 3.7. Take the five gene GRN on the left of Figure 7 with the following 5× 5 activation

and repression weighted adjacency matrices:

W+ =



0 2 0 0 0

2 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


, W− =



0 0 0 4 5

0 0 0 5.5 3.5

0 0 0 0 9

0 2 1 0 0

3 0 0 0 0


.

By Proposition 3.4, the partition P = {[1] = {1, 2, 3}, [4] = {4, 5}} is a synchronization partition

and corresponds to the synchrony space ∆P = {x : x1 = x2 = x3, x4 = x5} for the SUM model

equations if P refines the gene equivalence partition. By Proposition 3.6, the corresponding quotient

network is the two-gene GRN on the right of Figure 7 with the following activation and repression

weighted adjacency matrices:

Q+ =

 2 0

0 0

 , Q− =

 0 9

3 0

 . (3.20)

Note that ∆P is not a synchrony space for the MULT model equations. 3

Remark 3.8. For any five gene GRN with 5 × 5 activation and repression weighted adjacency
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matrices given by

W+ =



0 2 0 0 0

2 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


, W− =



0 0 0 w−14 w−15

0 0 0 w−24 w−25

0 0 0 0 9

0 2 1 0 0

3 0 0 0 0


where the weights satisfy w−14 + w−15 = w−24 + w−25 = 9, if the gene set partition P with classes

{1, 2, 3}, {4, 5} refines the gene equivalence partition, then P is a synchronization partition corre-

sponding to the synchrony space ∆P = {x : x1 = x2 = x3, x4 = x5} for the SUM model equations.

The corresponding quotient network of two-gene GRN has activation and repression weighted adja-310

cency matrices given in (3.20). This follows from Propositions 3.4 and 3.6. This example illustrates

that there is an infinite number of five gene GRNs admitting the synchronization partition P and

leading to the same two-gene quotient GRN for the SUM models. 3

Remark 3.9. Under the assumptions of Proposition 3.4 and recall equation (3.19), if w+
i,k = w−i,k,

then as rep(pk) = 1− act(pk), the influence of the k-th cluster Ck to the evolution of the i-th gene315

reduces to w+
i,kact(pk) +w−i,krep(pk) = w−i,k = w+

i,k, which becomes independent on the variable pk.

See Example 3.11. For general weighted networks, Aguiar, Dias and Ferreira [4] point out a similar

phenomenon and in that case ∆P is called a spurious synchrony pattern. See Definition 2.9 of [4].

3

Remark 3.10. There are GRNs such that I+i ∩ I
−
i = ∅, for all genes i, and admitting a synchro-320

nization partition such that, in the quotient, the same gene activates and represses another gene,

as the following example illustrates. 3

1 23

Figure 8: A GRN with three genes. Assuming genes 1 and 2 are equivalent then P = {C1 = {1, 2}, C2 = {3}} is a

synchronization partition for the GRN SUM equations models with the two-gene quotient GRN pictured in Figue 9.

Example 3.11. Consider the three-gene GRN in Figure 8 with 3 × 3 activation and repression
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[1] [3]

Figure 9: GRN with two genes where gene [1] activates and supresses gene [3] with the same strenght.

weighted adjacency matrices given by

W+ =


0 0 1

0 0 1

1 0 0

 , W− =


0 0 0

0 0 0

0 1 0

 .

By Proposition 3.4, assuming genes 1 and 2 are equivalent, we have that P = {C1 = {1, 2}, C2 =

{3}} is a synchronization partition for the SUM equations models. Now, the two-gene quotient GRN

as defined in Proposition 3.6, with 2×2 activation and repression weighted adjacency matrices given

by

Q+ =

 0 1

1 0

 , Q− =

 0 0

1 0

 ,

and satisfies I+[3] ∩ I
−
[3] = {[1]} 6= ∅. That is, in the quotient, gene [1] activates and represses gene

[3], see Figure 9. This follows from the fact that I+3 = {1}, I−3 = {2} and 1, 2 form the part C1 of

the synchronization partition P . Equations for the SUM model

ẋ1 = A1x1 + act(p3)

 1

0


ẋ2 = A1x2 + act(p3)

 1

0


ẋ3 = A3x3 + [act(p1) + rep(p2)]

 1

0


restricted to ∆P = {x : x1 = x2} are given by:

ẋ1 = A1x1 + act(p3)

 1

0


ẋ3 = A3x3 + [act(p1) + rep(p1)]

 1

0

 .
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With the assumption act(p1) + rep(p1) ≡ 1, these equations simplify to
ẋ1 = A1x1 + act(p3)

 1

0


ẋ3 = A3x3 +

 1

0

 .

Thus, the gene equation for [3] becomes independent of gene [1]. This example also illustrates

Remark 3.9. 3

3.2. Synchrony for the MULT model325

Let W± = (w±ij) and M± = (m±ij) be, respectively, the weighted matrices and the multiplicity

matrices of the MULT model (2.10).

Proposition 3.12. Take an n-gene GRN with adjacency matrices W± and M± and a partition

P of the gene set into classes C1, . . . , Cm refining the gene equivalence class. The partition P

corresponds to a synchrony pattern for the MULT equations model (2.10) if and only if for each

part C of P , we have that:

(i) for k = 1, . . . ,m, ∑
j∈I−i ∩Ck

m−ij is constant for i ∈ C

and ∑
j∈I+i ∩Ck

m+
ij is constant for i ∈ C

(ii) ∏
j∈I+i

w+
ij

∏
j∈I−i

w−ij is constant for i ∈ C. (3.21)

Proof. Assume that (i)-(ii) hold on any equivalence class C under partition P . Denote by m±i,k the

sum of the multiplicities m±ij in I±i ∩Ck, that is, m−i,k =
∑
j∈I−i ∩Ck

m−ij and m+
i,k =

∑
j∈I+i ∩Ck

m+
ij .
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Then, we have for any i ∈ C that

ẋi = Axi +
∏
j∈I−i

w−ijrepm
−
ij (pj)

∏
j∈I+i

w+
ijactm

+
ij (pj)

 1

0


= Axi +

( ∏
j∈I−i

w−ij
∏
j∈I+i

w+
ij︸ ︷︷ ︸

wi

)∏
k

∏
j∈I−i ∩Ck

repm
−
ij (pj)

∏
k

∏
j∈I+i ∩Ck

actm
+
ij (pj)

 1

0

 ,

where the product wi, by (ii), remains the same in the equivalence class of i. In fact, wi is the

product of the w±ij where j runs through I±i . Moreover, by (i), the sums m±i,k are also constant in

the equivalence class of i. Thus, for any i ∈ C, the dynamics of x[i] ∈ ∆P is governed by

ẋ[i] = Ax[i] + w[i]

∏
k

rep
m−

[i],k(p[j])
∏
k

act
m+

[i],k(p[j])

 1

0

 , (3.22)

where [j] := Ck for j ∈ Ck and k is such that I±i ∩ Ck 6= ∅. By (ii), I±i ∩ Ck 6= ∅ if and only

if I±l ∩ Ck 6= ∅ for any l ∈ [i]. Thus, ∆P is flow-invariant and a synchrony space for the MULT

equations model (2.10).330

Assume that ∆P is a synchrony space for (2.10). Then, ∆P is flow-invariant. In particular,

I±i ∩ Ck 6= ∅ if and only if I±l ∩ Ck 6= ∅ for any i, l in the same part of P . Moreover, the flow

restricted to ∆P is of shape (3.22) and for any i, l in the same part of P , we have

wi
∏
k

rep
m−

[i],k(p[j])
∏
k

act
m+

[i],k(p[j]) = wl
∏
k

rep
m−

[l],k(p[j])
∏
k

act
m+

[l],k(p[j]). (3.23)

Assume to the contrary of (i) that m−i,k 6= m−l,k for some k. Then, by letting p[j] = 0 for all [j]

except when [j] = Ck in (3.23), we have repM (p)actN (p) ≡ constant for p = p[j] and some positive

integers M,N . But since repM (p)actN (p)→ 0 both when p→ 0 and p→∞ by (2.6)-(2.7), we must

have repM (p)actN (p) ≡ 0, which contradicts to the fact that rep and act are non-zero functions.

Therefore, m±i,k = m±l,k and (i) follows. By (3.23), we conclude that wi = wl and (ii) follows.335

Remark 3.13. Given a GRN with weighted adjacency matrices W+ and W−, consider the diagonal

matrix W ∗ where the ii entry is given by the product of the non-zero entries of the i-th row of

both matrices W+ and W−,or zero otherwise. From Proposition 3.12, given a partition P of the

gene set of the GRN, the associated polydiagonal susbspace ∆P is a synchrony subspace for the

MULT model of the GRN if and only if it is left invariant by the multiplicity matrices M+ and M−340
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of the GRN and by the matrix W ∗. We have then, using the work of Aguiar and Dias in [2] and

[3], that the set of the synchrony patterns for the MULT model of a GRN can be computed using

the algorithm in Section 6 of [2]. The algorithm can be executed to find the set of polydiagonal

subspaces that are left invariant by one of the multiplicity matrices M+ or M− and then the set

of synchrony subspaces of the GRN is the subset of those polydiagonals that are also left invariant345

by the other multiplicity matrix and by the diagonal matrix W ∗. 3

Proposition 3.14. Take an n-gene GRN with multiplicity matrices M± and weight matrices W±

and a synchronized partition P of the gene set into classes C1, . . . , Cm refining the gene equivalence

class for MULT equations model (2.9). The restriction of (2.9) to the synchrony space ∆P is a

MULT equations model consistent with any quotient m-gene GRN with the m × m multiplicity

matrices N+ =
[
n+ik
]

and N− =
[
n−ik
]

given by

n+ik =
∑

j∈I+i ∩Ck

m+
ij , n−ik =

∑
j∈I−i ∩Ck

m−ij , (i, k = 1, . . . ,m)

and m × m activation and repression weighted adjacency matrices Q+ =
[
q+ik
]

and Q− =
[
q−ik
]

satisfying
m∏
k=1

q+ik q
−
ik =

m∏
k=1

 ∏
j∈I+i ∩Ck

w+
ij

 ∏
j∈I−i ∩Ck

w−ij

 (i = 1, . . . ,m) . (3.24)

Here, each product
∏
j∈I+i ∩Ck

w+
ij is considered only for k such that I+i ∩ Ck 6= ∅. In that case,∏

j∈I+i ∩Ck
w+
ij is positive. Similarly, each product

∏
j∈I−i ∩Ck

w−ij is taken for k such that I−i ∩Ck 6= ∅.

Proof. This follows from Proposition 3.12 and the definition of MULT equations model (2.9).

Remark 3.15. Note that, in general, there is no uniqueness on the quotient GRN associated with350

the MULT model equations restricted to a synchrony space. This lack of uniqueness is due to

the dependence of the product conditions (3.24), defining the activation and repression weighted

adjacency matrices. See Example 3.16 below. Thus, the choice of a particular quotient GRN can

be made taking into account the specifics of the problem under analysis. 3

Example 3.16. Take the 4-gene GRN in Figure 10 with the following 4×4 activation and repression
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weighted adjacency matrices,

W+ =


2 0.5 0 0

1 9 0 0

0 0 0 0

0 0 0 0

 , W− =


0 0 3 3

0 0 1 1

0 2 0 0

3 0 0 0

 ,

and multiplicity matrices,

M+ =


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 , M− =


0 0 1 1

0 0 1 1

0 1 0 0

1 0 0 0

 .

Assume that genes 1, 2 have the same internal dynamics. Consider the gene set partition P =

{C1 = {1, 2}, C2 = {3}, C3 = {4}}. By Proposition 3.12, we have that P is a synchronization par-

tition. Note that 2 × 0.5 × 3 × 3 = 1 × 9 × 1 × 1 = 9 and so condition (3.21) is satisfied. The

synchronization partition P corresponds to the synchrony space ∆P = {x : x1 = x2} for the MULT

model equations: 

ẋ1 = A1x1 + [2act(p1) 0.5act(p2) 3rep(p3) 3rep(p4)]

 1

0


ẋ2 = A1x2 + [act(p1) 9act(p2) rep(p3) rep(p4)]

 1

0


ẋ3 = A3x3 + 2rep(p2)

 1

0


ẋ4 = A4x4 + 3rep(p1)

 1

0



(3.25)

The restriction of equations (3.25) to ∆P = {x : x1 = x2} is:

ẋ1 = A1x1 +
[
9 (act(p1))

2
rep(p3) rep(p4)

] 1

0


ẋ3 = A3x3 + 2rep(p1)

 1

0


ẋ4 = A4x4 + 3rep(p1)

 1

0


. (3.26)
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Figure 10: The four gene GRN of Example 3.16.

These equations are MULT model equations for any 3-gene GRN with the following 3×3 multiplicity

matrices,

N+ =


2 0 0

0 0 0

0 0 0

 , N− =


0 1 1

1 0 0

1 0 0


and activation and repression weighted adjacency matrices,

Q+ =


q+11 0 0

0 0 0

0 0 0

 , Q− =


0 q−12 q−13

2 0 0

3 0 0

 ,

such that q+11q
−
12q
−
13 = 9. Two particular choices of activation and repression weighted adjacency

matrices are given by, respectively,

Q+ =


1 0 0

0 0 0

0 0 0

 , Q− =


0 3 3

2 0 0

3 0 0

 .

and

Q+ =


9 0 0

0 0 0

0 0 0

 , Q− =


0 1 1

2 0 0

3 0 0

 .

3355

Note that in Example 3.16 above, the MULT model equations (3.25) fit the PROD model

(recall Remark 2.3) but its restriction to the synchrony space ∆P = {x : x1 = x2} providing

equations (3.26) fit the MULT model but do not fit the PROD model. Thus the PROD model
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shows some weaknesses in the context of synchrony spaces and their quotient networks, which are

indispensable in describing robust synchrony patterns accommodated by GRN network structure.360

This disadvantage ceases to exist in the more general MULT model.

Example 3.17. Motivated by the Case Study presented in Elahi and Hasan [20, Section 4], we

consider now the network of nine genes SOS response in Escherichia coli and 43 interconnections in

Figure 3.2 taken from [10, 25]. The nine genes named lexA, recA, recF, rpoD, rpoS, dinI, umuDC,

rpoH and ssB are considered to be directly participating in the SOS response. As mentioned in [20],

SOS response in Escherichia coli is an inducible DNA repair system that enables bacteria to survive

under severe DNA damage. The associated MULT model considered in Elahi and Hasan [20] has

the form

ẋi = fi(X,Θ) (i = 1, . . . , 9)

where X = [x1, . . . , x9] = [lexA, recA, recF, rpoS, rpoD, umuD, dinI, ssB, rpoH] denotes the state

gene variables and Θ is the set of 104 unknown parameters which have to be estimated from the

experimental genome data. See Section 4 of [20] for more details on the equations form.

We remark that, depending on the model parameters, the gene network can have the following365

synchrony subspaces: {lexA = ssB}, {recA = dinI}, {umuDC = dinI} and {rpoS = rpoH}.

Moreover, the intersection on any number of these synchrony subspaces is also a synchrony subspace

for the gene network. 3

4. Network lifting enumeration and gene duplication

As stated in the introductory Section 1, network lifting, as defined in the theory of coupled cell370

networks, corresponds to gene duplication in GRNs followed by subfunctionalization as divergence

process given that the sum of the weights of the edges from the duplicate genes that target a given

gene corresponds to the weight of the edge from the ancestral gene targeting that gene. It was

also remarked that, for general coupled cell networks and weighted networks, fixing a k-cell (quo-

tient) network, if n > k then there are many n-cell networks which are lifts (or inflations) of the375

k-cell network, that is, that admit the fixed network as a quotient. Moreover, there is a method

of enumerating the lifts of a fixed k-cell network. See Theorem 2.5 of Aguiar, Dias, Golubitsky

and Leite [5] valid for coupled cell systems following the formalisms of Stewart, Golubitsky and
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Figure 11: Figure taken from [10] of a GRN network between nine genes SOS response in Escherichia coli and 43

interconnections. Solid lines denote activating interactions, dotted lines denote inhibiting interactions and arrow

heads show the direction of effect. Reproduced with permission from [10].

Pivato [53], Golubitsky, Stewart and Török [29] and Field [23], and its extension to weighted net-

works for coupled cell systems with additive input structure in Theorem 2.13 of Aguiar and Dias [3].380

The enumeration method relies upon the characterization of the network adjacency matrices of the

larger networks determined by the smaller network adjacency matrices. Also, fixing n, the number

of n-cell lifts is finite for nonnegative integer matrices and nonfinite in the weighted setup.

In this section, we combine Theorem 2.13 of Aguiar and Dias [3] with Propositions 3.4, 3.6,

and Propositions 3.12, 3.14, obtaining a characterization method of the n-gene GRNs that are lifts385

of a fixed k-gene GRN, for both the SUM and MULT models, using the activation and repression

weighed matrices (and the multiplicities matrices for the MULT model quotients).

Theorem 4.1. Consider Q an m-gene GRN for the SUM equations model with activation and

repression weighted adjacency matrices Q+ =
[
q+ik
]

and Q− =
[
q−ik
]
. An n-gene GRN for the SUM

equations model with set of genes {1, . . . , n}, where n > m, is a lift of Q if and only if there is a

partition of {1, . . . , n} into m classes, C1, . . . , Cm, refining the gene equivalence partition such that,

after renumbering the genes if necessary, the activation and repression weighted adjacency matrices
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W+ and W− have the following block structures:

W+ =


Q+

11 · · · Q+
1m

... · · ·
...

Q+
m1 · · · Q+

mm

 , W− =


Q−11 · · · Q−1m

... · · ·
...

Q−m1 · · · Q−mm

 (4.27)

where each Q±ik is an #Ci ×#Ck-matrix with nonnegative real entries whose row sum is q±ik.

Proof. Direct application of Proposition 3.4 and Theorem 2.13 in [3].

Theorem 4.2. Consider Q an m-gene GRN for the MULT equations model with m×m multiplicity

matrices N+ =
[
n+ik
]
, N− =

[
n−ik
]

and activation and repression weighted adjacency matrices

Q+ =
[
q+ik
]

and Q− =
[
q−ik
]
. An n-gene GRN for the MULT equations model with set of genes

{1, . . . , n}, where n > m, is a lift of Q if and only if there is a partition of {1, . . . , n} into m

classes, C1, . . . , Cm, refining the gene equivalence partition such that, after renumbering the genes

if necessary:

(i) The n× n multiplicity matrices M+ and M− have the following block structures:

M+ =


N+

11 · · · N+
1m

... · · ·
...

N+
m1 · · · N+

mm

 , M− =


N−11 · · · N−1m

... · · ·
...

N−m1 · · · N−mm

 (4.28)

where each N±ik is an #Ci ×#Ck-matrix with nonnegative integer entries whose row sum is n±ik.

(ii) The activation and repression matrices W+ and W− have block structures

W+ =


Q+

11 · · · Q+
1m

... · · ·
...

Q+
m1 · · · Q+

mm

 , W− =


Q−11 · · · Q−1m

... · · ·
...

Q−m1 · · · Q−mm


where the matrices Q+

ij, Q
−
ij have nonnegative real entries satisfying the following: for i = 1, . . . ,m,390

the product of the nonzero entries of each row of
(
Q+
i1 . . . Q

+
imQ

−
i1 . . . Q

−
im

)
equals the product of the

nonzero entries of
(
q+i1 . . . q

+
im q

−
i1 . . . q

−
im

)
.

Proof. Direct application of Proposition 3.12 and Theorem 2.13 in [3].
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Example 4.3. Let Q be the 3-gene GRN for the MULT model equation (considered in Exam-

ple 3.16) with the 3× 3 multiplicity matrices:

N+ =


2 0 0

0 0 0

0 0 0

 , N− =


0 1 1

1 0 0

1 0 0


and activation and repression weighted adjacency matrices

Q+ =


1 0 0

0 0 0

0 0 0

 , Q− =


0 3 3

2 0 0

3 0 0

 .

Considering the 4-gene GRNs that are lifts of Q for the MULT model, we have that any 4-gene

GRN with 4× 4 multiplicity matrices

M+ =


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 , M− =


0 0 1 1

0 0 1 1

0 1 0 0

1 0 0 0


and activation and repression weighted adjacency matrices

W+ =


w+

11 w+
12 0 0

w+
21 w+

22 0 0

0 0 0 0

0 0 0 0

 , W− =


0 0 w−13 w−14

0 0 w−23 w−24

0 2 0 0

3 0 0 0

 ,

where w+
11w

+
12w
−
13w
−
14 = w+

21w
+
22w
−
23w
−
24 = 9, is a lift of the 3-gene GRN. By Proposition 3.12,

assuming that genes 1, 2 have the same internal dynamics, any such lift has the synchronization395

partition P with the parts {1, 2}, {3}, {4}, {5} and the restriction of MULT model equations to the

synchrony space ∆P = {x : x1 = x2} gives rise to the MULT model equations (3.26). 3

5. Regulatory-dependent synchrony spaces

Gene regulation functions provide an unique characteristic of GRNs relating concentrations

of transcription factors such as activators or repressors to the promoter activities. They have400
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been investigated in two ways ([55]). Classical molecular biology explores mechanistic details of

transcription and translation activities ([34, 50]), whereas the emerging field of system biology

quantifies gene expressions on a larger scale in a statistical mechanical framework without requiring

physical details of macromolecular interactions ([12, 52, 13, 14]).

So far, assuming that the regulator functions act and rep are Hill-like according to (2.6)-(2.7),405

we have shown, for the GRN equations models SUM and MULT, that the synchrony spaces are

completely determined by their structural matrices (adjacency matrices W± in case of SUM models;

multiplicity matrices M± and adjacency matrices W± in case of MULT models). See Propositions

3.4 and 3.12.

For regulator functions that are not Hill-like this may not be true: there may be other synchrony410

subspaces forced by those regulator functions, which we call regulatory-dependent synchrony spaces.

We illustrate this phenomena with the next example.

Example 5.1. Consider the repressor and activation functions given by (2.13)-(2.14), in Sec-

tion 2.3 of the GRN model for the mammalian circadian oscillator, and the GRN MULT model

equations 

ẋ1 = act(x2, r)rep(x3, r)− x1

ẋ2 = act(x1, a)− x2

ẋ3 = act(x1, a)− x3

ẋ4 = rep(x3, 1)− x4

(5.29)

for any a ≥ 1, r ≥ 0 which can be represented by a multi-arrowed graph. See Figure 12(left). We

have that

So = {x2 = x3}, S = {x1 = x4, x2 = x3}

are synchrony subspaces of (5.29). More precisely, So is a synchrony subspace, since P = {{1}, {2, 3}, {4}}

is a synchronization partition for the MULT model equations (5.29). On the other hand, S is flow-

invariant for the equations (5.29) due to the fact that act(x, r)rep(x, r) = rep(x, 1) holds for all415

r, x ≥ 0. Thus, S is a regulatory dependent synchrony pattern for equations (5.29). Note that

I+1 = {2} while I+4 = ∅. The synchrony subspace So = {x2 = x3} can be recognized on the graph,

since cells 2, 3 have identical positive input sets. However, S = {x1 = x4, x2 = x3} may not be

immediately identified looking at the graph.
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One way to observe that S is a synchrony subspace, is to start with So = {x2 = x3} and consider

its quotient network, which can be represented by two different graphs. Indeed, when restricted to

So, (5.29) becomes 
ẋ1 = act(x2,3, r)rep(x2,3, r)− x1

ẋ2,3 = act(x1, a)− x2,3

ẋ4 = rep(x2,3, 1)− x4

(5.30)

or equivalently, 
ẋ1 = rep(x2,3, 1)− x1

ẋ2,3 = act(x1, a)− x2,3

ẋ4 = rep(x2,3, 1)− x4

(5.31)

due to the relation act(x, r)rep(x, r) = rep(x, 1). They correspond to Figure 12 middle and right,420

respectively. 3

Figure 12: Left: The graph representation of the 4-gene MULT model GRN equations (5.29). When restricted to

So = {x2 = x3}, the system (5.29) has two different graph representations: one corresponds to (5.30) (middle) and

the other corresponds to (5.31) (right). This is due to the particular relation between the activation and repression

functions that are considered in equations (5.29).

As shown by Example 5.1, regulatory dependent synchrony spaces (which are not inferred by

the network structure) can exist, which are directly related to the modelling of the network itself

including the choice of regulator functions and choice of models. Also, as shown in Example 3.11,

hidden relations between act and rep functions can cause cancellations of regulator functions, which425

results in the “de-coupling” from regulating genes.
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6. Conclusions and Outlook

This work is a first contribution to show how the theory of coupled cell systems can play a

relevant role in the study of GRNs. We considered two dynamical models of GRNs, depending

on whether the gene regulatory is additive (the SUM model) or multiplicative (the MULT model).430

Using theoretical results from coupled cell networks, we analyse the robust patterns of synchrony

supported by these gene regulatory models and found out that the gene synchronization patterns

can be quite different for the SUM and MULT models in general. Moreover, we have shown that

other unexpected synchrony patterns may occur when the activation and repression functions satisfy

specific relations.435

Motivated by the study of the process of gene duplication and the divergence phenomena of

subfunctionalization, we explore the concept of quotient networks and network lifting in both SUM

and MULT models. From our results, it follows in particular that, if a SUM or MULT model

of equations for a small GRN presents, for example, oscillatory behaviour, then we can enumerate

bigger GRNs that admit this small GRN as a quotient network while preserving the initial oscillatory440

behaviour with some of the genes being synchronized. That is, each of these bigger GRNs will be a

lifting of the smaller one with the guarantee that the bigger GRN has a synchrony space on which

the associated quotient SUM or MULT equations restricted to the synchrony space are precisely

the SUM or MULT model equations of the smaller GRN presenting the oscillatory behaviour.

Furthermore, we described a method for constructing such network lifts. It was pointed out that445

there is no uniqueness in this process and so the choice of the lifts can be adapted to the particular

types of applications under consideration.

Although our results are theoretical and by no means indicate how they stand in relation to

empirical evidence or experimental data in GRNs, we wish to remark that coupled cell network

formalisms and GRNs do share common features in structural dynamical properties. Therefore,450

it could be worthwhile incorporating theoretical considerations using coupled cell networks in the

discussion of dynamical processes that have been addressed in GRNs.

In a future work, motivated by the work presented in [38] (see Remark 2.6), we aim to explore

other potential approaches of embedding an oscillatory gene network with fewer genes into a bigger

gene network, without using synchrony subspaces and where all genes may oscillate in a non-455

synchronized fashion.
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[38] A.Korenčič, R.Kosir, G.Bordyugov, R.Lehmann, D.Rozman and H.Herzel. Timing of circadian

genes in mammalian tissues. Scientific Reports 4 (2014) 5782.

[39] E.Kuzmin, B.VanderSluis, A.N.Nguyen Ba, W.Wang, E.N.Koch, M.Usaj, A.Khmelinskii,545

M.Mattiazzi Usaj, J.van Leeuwen, O.Kraus, A.Tresenrider, M.Pryszlak, M.-C.Hu, B.Varriano,

M.Costanzo, M.Knop, A.Moses, C. L.Myers, B. J.Andrews, C.Boone. Exploring whole-genome

duplicate gene retention with complex genetic interaction analysis. Science 368 (2020), Issue

6498.

[40] J.Lawrence. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and550

eukaryotes. Curr. Opin. Genet. Dev. 9 (1999) 642–648.

[41] C.Li, L.Chen and K.Aihara. Stability of genetic networks With SUM regulatory logic: Lur’e

system and LMI approach. IEEE Transactions on Circuits and Systems I: Regular Papers 53

(2006) 2451–2458.

[42] E.Liu, L. Li and L.Cheng. Gene regulatory network review. In: S.Ranganathan, K.Nakai,555

C.Sch́’onbach C. and Gribskov, M. (eds.), Encyclopedia of Bioinformatics and Computational

Biology 2 (2019) pp. 155–164, Oxford: Elsevier.

[43] M.Lynch and J.Conery. The evolutionary fate and consequences of duplicate genes. Science,

290 5494 (2000) 1151–1155.

[44] H.McAdams, B.Srinivasan and A.Arkin. The evolution of genetic regulatory systems in bacte-560

ria. Nat. Rev. Genet. 5 (2004) 169–178.

39



[45] P.Mendes, W.Sha and K.Ye. Artificial gene networks for objective comparison of analysis

algorithms. Bioinformatics 19 (2005) (2) ii122–ii129.

[46] F.Morone, I.Leifera and H.A.Maksea. Fibration symmetries uncover the building blocks of

biological networks. PANS 117 (2020) (15) 8306–8314.565

[47] M.A.Nowak, M.C.Boerlijst, J.Cooke and J.M.Smith. Evolution of genetic redundancy. Nature

388 (1997) 167–171.

[48] J.P.Pett, M.Kondoff, G.Bordyugov, A.Kramer, H.Herzel. Co-existing feedback loops gen-

erate tissue-specific circadian rhythms. Life Sci. Alliance 1 (2018) (3) e201800078.

https://doi.org/10.26508/lsa.201800078570
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