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Abstract

We extend the scope of equivariant degree theory and methods to the realm
of networked dynamical systems. Focusing on two types of hidden symme-
tries of networked systems, we introduce two types of equivariant degrees:
the lattice equivariant degree for quotient symmetries and the interior equiv-
ariant degree for interior symmetries. We show how these degrees can be
applied to study synchrony-breaking bifurcations in general coupled cell
networks, and provide topological classifications of bifurcating branches
by their symmetry and synchrony properties.

Compared to the usual equivariant degrees, the lattice equivariant de-
gree takes on an extensive versatile algebraic properties; and the interior
equivariant degree shows an extreme elegance in treating bifurcations re-
lated to interior symmetries.

We also contribute to the theory of equivariant degrees by re-introducing
equivariant degrees using their computational formulas which embody a
geometric grace. In addition, we introduce a concept of secondary dominating
orbit types in order to extend the classical equivariant classification results
to bifurcating branches of secondary maximal isotropies.
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Chapter 1

Introduction

A network is a set of interconnected elements that influence each other.
They can be a group of people that share common social interests, a range
of aquatic plants and animals that live in a wetland, or a cluster of neurons
that transmit electric signals through dendrites and axons to each other.

Individual elements of a network operate not on their own,but in depen-
dence on each other through connections. These connections can be social
relations that influence the formation of an individual’s mind, food chains
that determine the existence of an individual species, or neural connections
that excite or inhibit an individual neuron’s action (cf. [77, 47, 46]).

More remarkably, individual elements, through connections with each
other, constitute an entire entity that can operate in a global manner, giving
rise to phenomena that cannot be accounted for by the individuals. Exam-
ples of such include conformity in social groups, biodiversity in ecosystems,
and visual perception in cerebral cortices (cf. [54, 51, 78]).

One of the most prevailing collective dynamics on networks is synchro-
nization, where two or more elements of the network start operating in a
synchronous fashion. It is ubiquitous in nature, science and engineering
(cf. [76, 61, 7]). It emerges from physical, biological, chemical, social and
ecological systems. It occurs to networks composed of homogeneous or
heterogeneous elements [30, 31], having strong or weak interactions [18],
configured in a symmetric or non-symmetric, local or global structure [40].

The seemingly inevitable tendency of networks to synchronize in time
has attracted a broad spectrum of research interest across a variety of scien-
tific disciplines (cf. [7] and references therein). Yet, the general understand-
ing of synchronization process on networks remains limited and rigorous
analysis remains scarce.

In the field of complex networks, where networks, as often arise from
social or biological systems, possess structures that are neither entirely
regular nor completely random, many have reported a positive correlation
between synchronization and some statistical property of the network. For
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2 CHAPTER 1. INTRODUCTION

example, it has been suggested that synchronization tends to emerge more
easily in networks having a heterogeneous degree distribution which means
networks that have a number of nodes, known as “hubs”, that reach out
to a large number of nodes and act as pacemakers for the entire network
(cf. [56, 30, 31]). It has also been suggested that synchronization can be
promoted by reducing average path length on the graph which gives way
to a quicker onset of fully synchronized behavior (cf. [53]).

However, observed correlations can be far from being conclusive. They
can sometimes even point to the opposite directions. For example, the
authors in [59] have found that networks with a homogeneous degree dis-
tribution can be easier to synchronize than the heterogeneous ones, even
when the average path length on the graph becomes larger. The surprising
behavior was explained using another statistical property of the network
— the load distribution. A load of a given node is defined by the number of
shortest paths between two nodes passing through it. Apparently, the ad-
vantage of having a few hubs acting as pacemakers can be forfeited by the
overload of traffic communications passing through the hubs. But whether
any single or combination of these statistical properties can be used as a
causal explanation for synchronization remains unclear (cf. [8]).

Network structure is more than a mere graphic description of some in-
terconnected chunk, but it lays down a structural frame within which net-
work dynamics is to develop and unfold. Rigorous mathematical analysis
is almost indispensable in analyzing synchronization as network dynamics.

Study of ensembles of coupled phase oscillators was motivated by spon-
taneous coordination of variety of biological rhythms into life processes (cf.
[79]). Whether and when the oscillators are to synchronize typically relies
on how far apart the frequencies of the oscillators are and how strong the
coupling (interaction) strength is (cf. [7]). A mathematical tractable model
for a rigorous description of this phenomenon was proposed by Kuramoto
[52], who suggested a mean field approach and used a macroscopic complex
order parameter to describe different scales of synchronization that lead to
the final synchronization. Despite its simplicity and clarity, and despite a
series of attempt [62, 63, 42, 43] extending it to more general scenarios such
as finitely many oscillators or general couplings, no exact analytical results
for Kuramoto models on general complex networks are available up to date
(cf. [7]).

At the same time, some stability analysis of fully synchronized states
of ensembles of identical oscillators has been initiated [60] and developed
[17] using the master stability function, which is defined by the largest
Lyapunov exponent transverse to the fully synchronized states. It has
been widely used to assess and engineer synchronizability of networks of
identical oscillators (cf. [57, 58]). It is a convenient tool since it separates the
impact of network structure from particularities of oscillators and measures
this by a single real-valued function. Despite its advantages, the stability
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acquired in this way is a linear and a local stability, which is a necessary, but
not sufficient condition for synchronization.

On the other side of the coin lies the question of instability and bifurca-
tions of the synchronized states. Rarely any real-world systems take on an
unperturbed full synchrony from beginning to the end of their existence.
Fully synchronized states, as ideal and appealing as they may appear, are
frangible and evanescent. They emerge from progressively more synchro-
nized pitches and readily give way to abundance of broken rhymes.

Formalism of coupled cell networks and coupled cell systems has been
introduced [73, 25] and further developed [39, 37] for the study of synchro-
nized dynamics in general networked systems, using coupled ordinary
differential equations and their associated bifurcations. Here, a cell is a set
of ordinary differential equations that describes an individual’s dynamics;
an incoming arrow to the cell indicates the dependence of its evolution on
other cells. A finite set of cells together with the arrows connecting them
constitutes a coupled cell network. A dynamical system that is consistent with
the network structure is an admissible coupled cell system.

In analogue to other structures of dynamical systems such as the sym-
metry of the equivariant systems or the Hamiltonian of the Hamiltonian
systems, network structure imposes strong restrictions on the dynamics of
the associated admissible coupled cell systems.

One striking example is the existence of synchrony subspaces, which are
subspaces defined by equivalence relations on cells such that they are flow-
invariant for every coupled cell system admissible to the network. It has
been shown that synchrony subspaces are intrinsic properties of the net-
work structure, and they are in one-to-one correspondence with equivalence
relations on cells that satisfy a combinatorial property called balanced (cf.
[73, 39]). Coupled cell systems restricted to these synchrony subspaces are
again coupled cell systems admissible to smaller networks, called the quo-
tient networks. They characterize the network dynamics of the initial system
subject to the cell equivalence defining the synchrony subspaces. The ex-
istence of synchrony subspaces and their associated quotient networks has
strong implications on synchronized dynamics in coupled cell systems (cf.
[73, 4, 1, 35]).

It is a scenario reminiscent of symmetry and equivariant systems. In case
of equivariant systems, fixed-point subspaces, which are subspaces defined
by equivalence relations induced by sub-symmetries (isotropy subgroups),
are always flow-invariant for every equivariant system of the symmetry. The
existence of fixed-point subspaces and their restricted systems has played
a central and fundamental role in the study of equivariant dynamics in
equivariant systems (cf. [38, 24, 65]).

One interesting dynamics arising from coupled cell networks is the
synchrony-breaking bifurcations, where a fully synchronized state loses its sta-
bility and breaks into multiple clusters of synchronized cells, characterized
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by their synchrony patterns. A counterpart of synchrony-breaking bifurca-
tions is the symmetry-breaking bifurcations in equivariant systems, where a
completely symmetric state loses its stability and breaks into multiple states
of less symmetry, characterized by their isotropy subgroups. This strong
resemblance has motivated a series of scientific endeavors in adapting a
parallel theory of studying synchronized dynamics on coupled cell net-
works by transferring essential ideas from equivariant bifurcation theory
(cf. [73, 34, 5, 3, 4, 1, 72]).

Equivariant degree theory is a topological degree theory that concerns
equivariant maps, which are maps commuting with the group symmetry
in their domain and image. A topological degree is, in its simplest form,
a generalization of the winding number of continuous maps that map the
unit circle S1 to a punched plane C \ {p} for some punched position p. It
counts how many times the image of the map has traveled counterclockwise
around the point p. The count remains unchanged, if the map is perturbed
slightly or deformed largely without trespassing the point p. The addition of
winding numbers corresponds to the conjunction of maps, and the negation
of winding numbers is realized by rewinding the direction of maps. The
topological degree is thus known as “an algebraic count of the zeros of a
continuous map”.

A main objective of the equivariant degree theory is to attain the topo-
logical structure of the zeros of an equivariant map and their algebraic
properties induced by the equivariance. The past two decades have wit-
nessed continuous progress in the development of equivariant degree, both
in theory and in practice (cf. [21, 44, 29, 28, 68, 16] and the references
therein). Among others, a primary equivariant degree, which is a truncated
part of the full equivariant degree, turns out to be most “computable” and
serves as an effective topological tool in the study of equivariant systems.

As the first part of the thesis, we review in Chapter 3 the two most
common primary equivariant degrees in use: the equivariant degree without
parameter and the equivariant degree with one parameter, which together have
contributed to a systematic treatment of equivariant bifurcations (cf. [12, 13,
14, 15, 10] for example and [16] for further references). We position ourselves
with a slightly different angle from the classical literature and introduce
them by their geometric meanings and subsequently the so-called recurrence
formulas (cf. (3.4), (3.11)). We show that usual properties of an equivariant
degree follow naturally from this definition (cf. Theorem 3.1.4, Theorem
3.1.6). In the application part of these degrees in equivariant bifurcations,
we focus on explaining how to use the one-line command showdegree in
the “Equivariant Degree Maple c© Library Package” (EDML) to produce an

The Equivariant Degree Maple c© Library Package was created by A. Biglands
and W. Krawcewicz at the University of Alberta in 2006 supported by NSERC re-
search grant. It is open source and can be freely downloaded, for example, from
http://www.math.uni-hamburg.de/home/ruan/download.
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instant topological classification of bifurcating branches by their symmetry
types (cf. Subsection 3.2.3). A concept of secondary dominating orbit types
will be introduced to sharpen the statement on the symmetry properties of
the bifurcating branches (cf. Proposition 3.2.2).

The main advantage of using equivariant degree theory lies in both
of its topological and algebraic properties. On one hand, equivariant de-
gree is a topological invariant that remains unchanged against all adequate
deformations of maps. This allows flexibility and freedom in their com-
putations. As a result, equivariant degrees can be applied to equivariant
bifurcations caused by multiple critical eigenvalues. In other words, as a
topological invariant, equivariant degree sees no additional complications
in treating critical eigenvalues with large eigenspaces. On the other hand,
equivariant degree is algebraic and has an extended list of algebraic prop-
erties. For example, it is intrinsically compatible with homomorphisms of
group symmetries. In application, this results in clarity and simplicity in
treating changes of equivariance such as different equivariance (quotient
symmetries) of a coupled cell system at different quotient levels.

As the second part of the thesis, we introduce in Chapter 4 a topological
degree theory that is suitable for studying maps that are equivariant with
respect to different symmetries on different subspaces of their domain. As
shown in [70], the set of all synchrony subspaces of a coupled cell network
forms a (complete) lattice under the inclusion relation. In a way, it gives a
filtration of the total phase space by subspaces. To incorporate additional
symmetry at each quotient level, we introduce the concept of representation
lattices, which are lattices of representation spaces that are fitted together
through connecting homomorphisms of groups alongside the inclusions
of subspaces (cf. Definition 4.1.2). Following the geometric meaning of
equivariant degrees, we define a lattice equivariant degree for maps that are
equivariant at each level of the representation lattice (cf. Definition 4.2.2).
We apply the degree for studying synchrony-breaking (Hopf) bifurcations in
coupled cell systems (with or without quotient symmetries), which results
in a topological classification of bifurcating branches of oscillating states by
their synchrony and symmetry types (cf. Theorem 4.3.2).

Network structure can manifest simultaneously through different types
of symmetry. Besides the quotient symmetries, there can also be interior
symmetries. A interior symmetry is a permutational symmetry on a subset
of cells so that the input structure of the subset is preserved. The concept of
interior symmetry has been introduced in [34], as an intermediate between
the general (groupoid) invariance of a coupled cell network and the strin-
gent group symmetry of a symmetrically coupled cell network. It turns
out that both the equivariant branching lemma and the equivariant Hopf
theorem can be extended for networks with interior symmetries (cf. [34, 5])

As the third part of the thesis, we introduce in Chapter 5 a topological
degree theory for studying maps with interior symmetries. Different from
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the definition of the lattice equivariant degree, which is of an agreeable
algebraic nature, the construction of the interior equivariant degree here is
of somewhat technical nature. We needed to establish an approximation
scheme of regular normal maps following its equivariant counterpart (cf.
Proposition 5.2.9). However, the resulting degree turns out to be an addi-
tionally merciful case when applied to the synchrony-breaking bifurcations.
We show that bifurcating branches arising from breaking an interior sym-
metry are interior-equivariantly homotopic to bifurcating branches arising
from an equivariant bifurcation problem (cf. Theorem 5.3.1). Thus, all the
computational resources available for equivariant bifurcations are directly
applicable for synchrony-breaking bifurcations caused by an interior sym-
metry. In analogue, interior symmetries of a quotient network,known as the
quotient interior symmetries, can also be treated using quotient symmetries.

Throughout the thesis, we use the 5-cell regular network shown in
Figure 1.1 as a running example to illustrate our results. The network arises

Figure 1.1: A regular 5-cell network frequently in use throughout the thesis.

from the discussions in [4] of possible lifts of 3-cell bidirectional rings to a
regular 5-cell coupled cell network (cf. Network (6) of Figure 5 in [4]).

It possesses many interesting structures in one:

(a) Symmetry: Z2 ×Z2 = 〈(2 4)〉 × 〈(3 5)〉 is the permutational symmetry
generated by switching cells 2 with 4 and cells 3 with 5.

(b) Quotient symmetry (cf. Example 2.1.18 and Example 2.1.8):

(b1) The full permutational symmetry S3 on the 3 cell quotient net-
work obtained by identifying cells 2 with 5 and cells 3 with 4,
which is related to the synchrony subspace ∆4 (cf. [4] or Figure
2.6 for notations ∆∗’s).

(b2) The full permutational symmetry S3 on the 3 cell quotient net-
work obtained by identifying cells 2 with 3 and cells 4 with 5,
which is related to the synchrony subspace ∆1.

(b3) The symmetry Z2 = 〈(3 5)〉 on the 3 cell quotient network ob-
tained by identifying cells 1, 2 and 4, which is related to the
synchrony subspace ∆2.
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(b4) The symmetry Z2 = 〈(3 5)〉 on the 4 cell quotient network ob-
tained by identifying cells 2 with 4, which is related to the syn-
chrony subspace ∆00.

(b5) The symmetry Z2 = 〈(2 4)〉 on the 4 cell quotient network ob-
tained by identifying cells 3 with 5, which is related to the syn-
chrony subspace ∆01.

(b6) The symmetry Z2 = 〈(3 5)〉 on the 4 cell quotient network ob-
tained by identifying cells 1 with 2, which is related to the syn-
chrony subspace ∆02.

(b7) The symmetry Z2 = 〈(3 5)〉 on the 4 cell quotient network ob-
tained by identifying cells 1 with 4, which is related to the syn-
chrony subspace ∆03.

(c) Interior symmetry (cf. Example 2.1.12):

(c1) The full permutational symmetry S3 on the subset {1, 2, 4} with
their input arrows.

(c2) The symmetryZ2 on the subset {3, 5} with their input arrows.

(d) Quotient interior symmetry (cf. Example 2.1.18): the permutational
symmetry S3 on the cells 1, 2, 3 of the 4 cell quotient network ob-
tained by identifying cells 3 with 5, which is related to the synchrony
subspace ∆01.

We deal with the quotient symmetry part of this example in Subsection
4.3.3 and the interior symmetry part (including the quotient interior sym-
metry) in Subsection 5.3.3. The summary is given at the end of Chapter 5
(cf. Table 5.3).

Remarks and Open Questions

All the classification results obtained using a degree argument, regardless if
it is equivariant, lattice equivariant or interior equivariant, are topological
results. We refer especially to the statements presented in Subsection 3.2.2,
Subsection 4.3.2 and Subsection 5.3.2. They provide a least estimate on
number of bifurcating branches of solutions to the system, and by no means,
exhaust all possible solutions. Depending on the type of systems and their
nonlinear terms, additional bifurcating solutions can very well exist. We
refer to an interesting case study on the network (6) in [4]. However,
all bifurcating branches of solutions can be adequately deformed to those
inferred by the bifurcation invariants. Additional branches correspond to
zeros of homotopy-null class of maps.
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It is interesting to compare the three different bifurcation invariants
(4.28), (5.42) and (5.46), associated to the same problem of synchrony-
breaking bifurcations in the coupled cell systems associated to our running
example. They describe the total topological invariance of the total bifurcat-
ing branches of solutions from three different angles. The first one portraits
the topological invariance in the light of lattice equivariant deformations;
the second one produces a snapshot of the topological invariance through
the lens of interior equivariant deformations; and the third one is a show-
case of the topological invariance wearing costumes of quotient interior
equivariant deformations. Each tells a story, a story of its own kind and
from its own perspective.

It is natural to ask whether there is a way to achieve the wholeness and
the entirety of the story, the story of a topological invariance in the full light
of network structure, the story that is told by no more and no less than the
network structure itself. Let this be our inspiration for the further pursuit
and may it guide us through a wonderland of sparkling ideas, with an ever
affirmed hope in seeing the beauty and truth of the whole story.



Chapter 2

Preliminaries

Important and necessary definitions from coupled cell networks, group
representations and Euler rings of compact Lie groups are collected in this
chapter, accompanied by examples. Most examples are based on the di-
hedral group D3 and its permutational actions, which we will use later as
running examples.

2.1 Coupled Cell Networks and Coupled Cell Systems

In this section, we give a brief account of the theory of coupled cell net-
works and coupled cell systems. We collect mainly definitions of important
concept such as balanced equivalence relations and synchrony subspaces
and present some basic examples to illustrate them. We also review several
generalized forms of symmetry for networks. These include the interior
symmetry and quotient symmetry, which will play an important role in
our later discussions. Throughout, we restrict our attention mostly to the
regular coupled cell networks, which give a simple organic setting for the
study of synchrony-related bifurcations that we consider in later chapters.
For details on coupled cell networks and coupled cell systems, we refer to
Stewart et al. [73] and Golubitsky et al. [39, 37].

2.1.1 Coupled Cell Networks

A cell is a set of ordinary differential equations that describes the temporal
evolution of an entity. A set of cells becomes a coupled cell system when
evolution of individual cells is dependent on the evolution of others. In
terms of dynamics, we mean that the change in state variable xi of the cell i
is subject to xi and also possibly x j for some j , i. That is, the evolution of
xi can be described possibly using

ẋi = f (xi, x j1 , . . . , x jk ),

9
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for some function f and xi being influenced by k other cells j1, . . . , jk.

A coupled cell network is a graph representation of a coupled cell sys-
tem, where cells are represented by nodes and dependence is indicated by
arrows.

The theory of coupled cell networks and coupled cell systems was
mainly motivated by studying the phenomena of synchronization in net-
works, where different entities start operating in synchrony as a result of
their interactions. Depending on the definition of synchrony, this can mean
for example, xi(t) = x j(t) for some i , j and for all t ∈ R. If synchrony occurs
as a structural property of the network (that is, not as a result of some special
form of the vector field), then this necessarily means xi, x j satisfy





ẋi = f (xi, x j1 , . . . , x jk )

ẋ j = f (x j, xl1 , . . . , xlk )

for some mutual function f and there is a one-to-one correspondence among
the influencing cells, or input sets, {x j1 , . . . , x jk} and {xl1 , . . . , xlk}.

Cells satisfying such conditions are called input-equivalent cells. For-
mally, on every coupled cell network there is a defined equivalence relation
∼C on the setC of cells and an equivalence relation ∼E on the set E of arrows
such that they are compatible:

(c1, d1) ∼E (c2, d2) =⇒ c1 ∼C c2, d1 ∼C d2,

where (c, d) denotes an arrow from c to d. Two equivalent cells c, d are input
equivalent, written as c ∼I d, if there exists a bijection β : I(c)→ I(d) between
their input sets I(c), I(d) such that

(e, c) ∼E (β(e), d), ∀ e ∈ I(c).

Note that the input equivalence is a refinement of the cell equivalence ∼C.

On a coupled cell network, it is convenient to use the same node sym-
bols for the input-equivalent cells and the same arrow symbols for the
∼E-equivalent arrows. We use an example to explain.

Example 2.1.1. Consider the two graphs in Figure 2.1. The left graph has
three types of nodes ©, �, △ and three types of arrows −−−>, −−◮, · · ·· · · � . They
indicate the cell equivalence:

∼C= {© ={1},� = {2, 3},△ = {4}} (2.1)

and the edge equivalence

∼E= {−−−>= {(1, 2), (1, 3), (2, 4), (3, 4)},−−◮= {3, 1}, · · ·· · · � = {4, 1}}.
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Figure 2.1: Directed graph that is not a coupled cell network (left) and that
is a coupled cell network (right).

It is not a coupled cell network, since (1, 2) ∼E (2, 4) but 1 /C 2. On the
contrary, the right graph is a coupled cell network, where

−−−>= {(1, 2), (1, 3)},−−� = {(2, 4), (3, 4)}

and the compatibility condition is satisfied.
Next, we explain why it is convenient to use the same node symbols for

input equivalent cells (instead of for cell equivalent cells). Consider the two
graphs in Figure 2.2, where both are coupled cell networks. On the left, we

Figure 2.2: Coupled cell networks using same symbols for cell-equivalence
(left) and using input-equivalence (right).

have
2 ∼C 3, 2 /I 3,

since 2, 3 are given the same symbol�, yet receive different number of input.
In terms of dynamics, we have





ẋ2 = f (x2, x1, x1)

ẋ3 = g(x3, x1)

for some functions f, g and the overhead bar means the interchangeability
of the two last variables in f : f (x, y, z) = f (x, z, y), to indicate that the
two input arrows are of the same edge type. Thus, synchronization are
generally not expected to happen between cells 2, 3, since even starting with
a synchronized initial condition, cells 2, 3 will not evolve in a synchronized
way.
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Thus, we prefer to use different symbols for different input equivalent
cells, for example as the right graph in Figure 2.2. In this case, only cells of
the same symbol are relevant for discussion of synchronization. 3

In what follows, we use different node symbols©, �, △, 7 . . . to indicate
different classes of input equivalent cells, and different arrows −−−>, −−◮,
· · ·· · · � , −−� . . . for different classes of edge equivalent arrows.

If we always associate the same vector field to input equivalent cells
and require additional interchangeability for edge equivalent arrows, then
we obtain a vector field that is admissible to the coupled cell network. For
example, for the right graph in Figure 2.1, we have

ẋ = F(x), F(x) =





f (x1, x3, x4)
g(x2, x1)
g(x3, x1)

h(x4, x2, x3)





,

for x = (x1, x2, x3, x4)T. The system of ODEs in this case is also called
admissible.

A coupled cell network having only one input-equivalence class is called
homogeneous; a homogeneous network having only one edge-equivalence
class is called regular.

Example 2.1.2. (Running Example) Consider the two coupled cell networks
in Figure 2.3. In the left one, every cell is input equivalent (indicated by ©)

Figure 2.3: A coupled cell network of 5 cells that is (left) homogeneous
(right) regular.

which receives two input arrows −−◮ and −−�. Thus, it is homogeneous.
The admissible vector field is of form





f (x1, x4, x2)
f (x2, x1, x4)
f (x3, x1, x5)
f (x4, x2, x1)
f (x5, x3, x1)





,
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where the first variable is reserved for the internal dynamics, the second for
−−◮ and the last for −−�.

The right graph gives a regular coupled cell network of valency∗ 2. The
admissible vector field is of form





f (x1, x4, x2)
f (x2, x1, x4)
f (x3, x1, x5)
f (x4, x2, x1)
f (x5, x3, x1)





,

where the overhead bar means f satisfies f (x, y, z) = f (x, z, y). 3

The network (b) in Figure 2.3 arises from [4] by Aguiar et al.as a lift from a
3-cell bidirectional ring. It possesses especially many synchrony subspaces
and hidden symmetries, as we shall see in the following subsections. We
will use it as running example to illustrate our theoretical results in Chapter
4–5.

2.1.2 Synchrony Subspaces

Synchrony subspaces are linear subspaces in phase spaces of coupled cell
systems that are defined by equalities of cell coordinates and are flow-
invariant for all the coupled cell systems admissible to the underlying net-
work structure. They describe synchrony patterns on networks that are
independent of the specific form of vector fields, but induced by the net-
work structure directly. They are an immediate showcase of the influence
of the network structure on network dynamics.

Synchrony subspaces are properties of networks and can be determined
by a graph combinatorial condition on networks, called balanced colorings.
Given an equivalence relation ⊲⊳ on the set of cells of a coupled cell network,
we can color the cells in the following way: two cells i, j receive the same
color precisely when they belong to the same ⊲⊳-equivalence class. The
coloring is called balanced, if any pair of cells of the same color receive the
same number and type of input arrows from cells of color b, for every b.

More formally,

Definition 2.1.3. (cf. [39]) Given a coupled cell network G = (C,E,∼C,∼E),
an equivalence relation ⊲⊳ on the set C is called balanced, if for every c, d ∈ C
with c ⊲⊳ d, there exists a bijection β : I(c) → I(d) between their input
sets, which preserves the edge-equivalence relation ∼E, and such that for
all i ∈ I(c), the tail cells of i and β(i) are in the same ⊲⊳-class. 3

∗ A valency of a cell is the total number of input arrows of this cell. Since every cell in
a regular network has the same input arrows of the same type, one speaks of valency of the
network.
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Example 2.1.4. Let G be the regular network in Example 2.1.2 (cf. Figure
2.3(b)). Consider the equivalence relation

⊲⊳1 = {{1, 2, 4}, {3}, {5}}.

It induces a coloring on the network shown by Figure 2.4 (left). It is a

Figure 2.4: Balanced colorings on the network (b) in Figure 2.3.

balanced coloring, since every red node receives two inputs from red nodes.
Similarly, one can verify that

⊲⊳2 = {{1}, {2, 3}, {4, 5}}, ⊲⊳3= {{1}, {2, 5}, {3, 4}}

are also balanced equivalence relations on the network (cf. Figure 2.4).

For the homogeneous network in Example 2.1.2, it can be similarly
verified that ⊲⊳1 is balanced, but ⊲⊳2 and ⊲⊳3 are not balanced. 3

Given a coupled cell network G, an equivalence relation ⊲⊳ on the cells
and a choice of the total phase space P for the associated coupled cell
systems, there is a polydiagonal subspace

∆\ = {x : xc = xd, if c \ d} ⊂ P

associated with ⊲⊳ defined by equating ⊲⊳-equivalent cell coordinates. A
polydiagonal subspace is called a synchrony subspace, if it is flow-invariant
for all the G-admissible vector fields on P.

Example 2.1.5. Let ⊲⊳1, ⊲⊳2, ⊲⊳3 be given by Example 2.1.4. Choose Rk be
the phase space for each cell, so P = (Rk)5. The associated polydiagonal
subspaces are

∆⊲⊳1 = {(a, a, a, b, c) : a, b, c ∈ Rk}

∆⊲⊳2 = {(a, b, b, c, c) : a, b, c ∈ Rk}

∆⊲⊳3 = {(a, b, c, c, b) : a, b, c ∈ Rk}
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Coupled cell systems admissible to the network with total phase space P
are of form 




ẋ1 = f (x1, x4, x2)

ẋ2 = f (x2, x1, x4)

ẋ3 = f (x3, x1, x5)

ẋ4 = f (x4, x2, x1)

ẋ5 = f (x5, x3, x1)

, xi ∈ R
k. (2.2)

It can be verified that ∆⊲⊳1 , ∆⊲⊳1 , ∆⊲⊳1 are flow-invariant subspaces for (2.2).
The system restricted to these flow-invariant subspaces are of form





ẋ1 = f (x1, x4, x1)

ẋ3 = f (x3, x1, x5)

ẋ5 = f (x5, x3, x1)





ẋ1 = f (x1, x4, x2)

ẋ2 = f (x2, x1, x4)

ẋ4 = f (x4, x2, x1)





ẋ1 = f (x1, x3, x2)

ẋ2 = f (x2, x1, x3)

ẋ3 = f (x3, x1, x2)

. (2.3)

3

This is due to the fact that ⊲⊳1, ⊲⊳2, ⊲⊳3 are balanced.
In general, it is shown in [39] that given a coupled cell network with

a choice of total phase space and an equivalence relation ⊲⊳ on the cells,
the polydiagonal subspace ∆⊲⊳ is a synchrony subspace if and only if ⊲⊳ is
balanced. That is, there is a one-to-one correspondence between balanced
equivalence relations and synchrony subspaces of a coupled cell network.

Lattice of synchrony subspaces

The set of balanced equivalence relations moreover forms a complete lattice
under the refinement of equivalence relations; or equivalently, the set of all
synchrony subspaces (for a choice of total phase space) forms a complete
lattice under the set inclusion (cf. [70], Theorem 5.7).

Definition 2.1.6. (cf. [70]) A lattice is a partially ordered set such that any
two elements have a unique greatest lower bound or meet, and a unique
least upper bound or join. A lattice is complete if every subset has a unique
greatest lower bound or meet, and a unique least upper bound or join. 3

The set of equivalence relations on a finite set C has a partial order

⊲⊳1 � ⊲⊳2, if [c]⊲⊳1 ⊆ [c]⊲⊳2 , ∀ c ∈ C,

given by the refinement “�”. There are meet and join operations on the set
such that it becomes a complete lattice. The meet of ⊲⊳1, ⊲⊳2 is an equivalence
relation ⊲⊳ on C such that

c ⊲⊳ d ⇐⇒ c ⊲⊳1 d and c ⊲⊳2 d
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which is usually denoted by ⊲⊳1 ∧ ⊲⊳2. The join of ⊲⊳1, ⊲⊳2 is an equivalence
relation ⊲⊳ on C such that

c ⊲⊳ d ⇐⇒ c ⊲⊳1 d or c ⊲⊳2 d

which is denoted by ⊲⊳1 ∨ ⊲⊳2. Thus, one can speak of the lattice of balanced
equivalence relations.

The set of balanced equivalence relations on C is a partially ordered set
with respect to “�”, which is a subset of the lattice of equivalence relations.
But it is generally not a sublattice. While the join of two balanced equivalence
relations is again balanced, the meet may not be balanced.

Example 2.1.7. (cf. [70]) Consider the graphs in Figure 2.5. They are three

Figure 2.5: Balanced colorings.

different colorings on a regular network of 8 cells that are induced by

⊲⊳1= {{1, 2, 7, 8}, {3, 4, 5, 6}},

⊲⊳2= {{1, 2, 3, 4}, {5, 6, 7, 8}},

⊲⊳3= {{1, 2}, {3, 4}, {5, 6}, {7, 8}}.

Note that ⊲⊳3= ⊲⊳1 ∧ ⊲⊳2. The equivalence relations ⊲⊳1, ⊲⊳2 are balanced on
the network. However, ⊲⊳3 is not balanced, since the blue cell 5 receives
one input from yellow and one input from gray cells, while the blue cell 6
receives one input from blue and one input from red cells. 3

Nevertheless, it is possible to define the meet for balanced equivalence
relations in terms of join operation and to show that the set of balanced
equivalence relations has a natural structure of a complete lattice. This
structure carries over to the set of all synchrony subspaces through a order-
reversing lattice isomorphism (cf. [70], Theorem 5.7).

Example 2.1.8. Let G be the regular network in Example 2.1.2. It can be
shown that G admits 18 balanced equivalence relations, or equivalently, 18
synchrony subspaces (cf. [4]). See Figure 2.6, where synchrony subspaces
are defined using symbols a, b, c, d, e from a phase space of choice and spaces
are connected if one includes the other.

3
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∆
(a, a, a, a, a)

∆43
(a, b, a, a, b)

∆41
(a, a, b, b, a)

∆21
(a, a, b, a, b)

∆13
(a, b, b, b, b)

∆12
(a, b, b, a, a)

∆11
(a, a, a, b, b)

∆4
(a, b, c, c, b)

∆2
(a, a, b, a, c)

∆6
(a, a, b, c, b)

∆5
(a, b, c, a, c)

∆3
(a, b, c, b, c)

∆1
(a, b, b, c, c)

∆00
(a, b, c, b, d)

∆01
(a, b, d, c, d)

∆02
(a, a, b, c, d)

∆03
(a, b, c, a, d)

P
(a, b, c, d, e)

Figure 2.6: The lattice of synchrony subspaces for network (b) in Figure 2.3.

Synchrony subspaces can also be determined using adjacency matrices.
For a coupled cell network of n cells, these are n × n-matrices, one for each
edge type such that the (i, j)-th entry is equal to the number of edges (of the
given edge type) directing from the j-th to the i-th cell. Algorithms of finding
synchrony subspaces exist in the literature such as an algorithm in [49] that
uses symbolic adjacency matrices, an algorithm in [2] that uses eigenvalue
structure of network adjacency matrices, or more recently, an algorithm in
[55] based on the usage of special Jordan subspaces of adjacency matrices.

2.1.3 Network Structure and Hidden Symmetries

Coupled cell networks are typically non-symmetrically coupled, so sym-
metry is not in general, a character of networks. Yet, networks may possess
various kinds of symmetry that can influence the network dynamics the
same way as symmetry does to the equivariant systems. These include the
interior symmetry and the quotient symmetry.

Symmetry of networks

By a symmetry of a coupled cell network, we mean a permutation σ on the
cells such that both cell equivalence and edge equivalence are preserved.
In case of homogeneous networks, this reduces to requiring

(c, d) ∼E (σ(c), σ(d)), ∀ (c, d) ∈ E.

Lemma 2.1.9. A symmetry of a homogeneous network is an equivariance of the
admissible system.
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Proof. Let σ be a symmetry of a homogeneous network G and F be an
admissible vector field to the network G. For any x, we show that

σẋ = F(σx). (2.4)

Since F is admissible to a homogeneous network, F is generated by a single
function f which takes (v + 1) variables, where the first variable is reserved
for the internal dynamics and the rest for the inputting cells, and the symbol
v stands for the valency.

Comparing the left hand and right hand sides of (2.4) and considering
their i-th components, we have

LHS(2.4)i = ẋσ(i) = f (xσ(i), x j1 , . . . , x jv),

where j1, . . . , jv are the inputs of cell σ(i); and we have

RHS(2.4)i = f (xσ(i), xσ(i1), . . . , xσ(iv)),

where i1, . . . , iv are the inputs of cell i.
Since σ is a symmetry of G, there is an edge equivalence preserving

bijection between the input sets of cells i and σ(i). Thus, js = σ(is) for
1 ≤ s ≤ v, up to a re-indexing, which concludes the statement. �

In what follows, we use the standard notion (i1 . . . ik) to denote the
permutation that maps i j to i j+1 for 1 ≤ j ≤ k− 1 and maps ik to i1, where i j’s
are distinct integers.

Example 2.1.10. Consider the networks in Example 2.1.2. The homoge-
neous network on the left is symmetric under the permutation (3 5). The
symmetry group in this case is

Z2 = 〈(3 5〉).

The regular network on the right is symmetric under the permutations (2 4)
and (3 5). Thus, the symmetry of the network is

Z2 ×Z2 = 〈(2 4)〉 × 〈(3 5)〉.

3

Interior symmetry

The concept of interior symmetry of a coupled cell network is a general-
ized notion of a symmetry of a coupled cell network. Roughly speaking, it
is a permutation of the cells that preserves certain amount of input struc-
ture. The notion of interior symmetry was first introduced by Golubitsky
et al. [34]. We adapt and simplify the definition in [34] to define an interior
symmetry of a homogeneous network as follows.
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Definition 2.1.11. Let G = (C,E,∼C,∼E) be a homogeneous network. Let
S ⊆ C be a subset. An interior symmetry of G on S is a permutation σ on
C such that σ fixes every element in C \ S, and there is a bijection between
edges (σ(a), σ(b)) and (a, b), which preserves edge-equivalence relation ∼E,
for a ∈ S, b ∈ C. 3

Note that in the case S = C, an interior symmetry on C is precisely a
symmetry of G. In what follows, when referring to interior symmetry, we
also include the case of symmetry.

Example 2.1.12. Consider the networks in Example 2.1.2 again. Let S =
{1, 2, 4}. Then, both networks possess some interior symmetry. The homo-
geneous network has an interior symmetry of Z3 and the regular network
has an interior symmetry of D3. The different arrow types in the homoge-
neous network prevent the reflection symmetry. 3

The next proposition states that every interior symmetry permutation
determines a balanced equivalence relation.

Proposition 2.1.13. LetG be an n-cell homogeneous network and σ be an interior
symmetry of G on a subset S ⊆ C. If ⊲⊳ is an equivalence relation on the cells C of
G such that

c ⊲⊳ d ⇔ c, d belong to the same orbit under σ,

then ⊲⊳ is balanced.

Proof. Let c, d be such that c ⊲⊳ d. Then, σm(c) = d for some m ∈N. Note that
σm is an interior symmetry of G on S, for all m ∈N. Thus, by the definition
of interior symmetry, there exists an edge-equivalence preserving bijection
between the edges (σm(c), σm(x)) and (c, x), for every input arrows (c, x).
Thus, there exists a bijection between the input sets of d = σm(c) and c,
which preserves the edge-equivalence relation. On the other hand, the tail
cells x and σm(x) are in the same orbit by σ, thus are in the same ⊲⊳-class.
Therefore, ⊲⊳ is a balanced equivalence relation. �

In fact, the set of all these equivalence relations forms a sublattice of the
total lattice of balanced equivalence relations on G (cf. Stewart [70]).

Example 2.1.14. Let G be the regular network in Example 2.1.2. As shown
in Example 2.1.12, G has an interior symmetry of D3 on {1, 2, 4}. Consider
the permutation σ = (1 2 4) and its induced equivalence relation

⊲⊳ = {{1, 2, 4}, {3}, {5}}.

Then, ⊲⊳ is balanced, which is confirmed in Example 2.1.8. 3
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Quotient networks and quotient symmetry

Definition 2.1.15. (cf. [39])Given a balanced equivalence relation ⊲⊳ on a
coupled cell network G, a quotient network G⊲⊳ = (C⊲⊳,E⊲⊳,∼C⊲⊳ ,∼E⊲⊳) can be
defined naturally as follows: the cells in C⊲⊳ are the ⊲⊳-equivalence classes
of the cells of G and the edges in E⊲⊳ from quotient cell [c]⊲⊳ to quotient cell
[d]⊲⊳, where [c]⊲⊳ denotes the ⊲⊳-equivalence class of c, are in correspondence
with the edges (c′, d′) of G, for all c′ ⊲⊳ c, d′ ⊲⊳ d. The cell-equivalence ∼C⊲⊳

and edge-equivalence ∼E⊲⊳ relations for G⊲⊳ are induced from those of G. 3

Let G be a homogeneous network of n-cells with s edge-equivalence
classes whose adjacency matrices are A1,A2, . . . ,As. Let ⊲⊳ be a balanced
equivalence relation, which divides the cells ofG into p equivalence-classes.
Then, G⊲⊳ is a homogeneous network of p-cells with s edge-equivalence
classes. Denote the adjacency matrices of G⊲⊳ by A1⊲⊳ ,A2⊲⊳ , . . . ,As⊲⊳ . Let

Al⊲⊳ = [ā
(l)
αβ

]p×p. Then, for α = [i]⊲⊳, β = [ j]⊲⊳ in C⊲⊳, we have

ā
(l)
αβ
=

∑

k∈[ j]⊲⊳

a
(l)

ik
. (2.5)

Example 2.1.16. Let G be the regular network in Figure 2.3(b) again. Con-
sider the balanced equivalence relations ⊲⊳2, ⊲⊳3 in Example 2.1.4. The quo-
tient networks are shown in Figure 2.7, which correspond precisely to the
middle and right coupled cell systems in (2.3). Note that they both have a
non-trivial symmetry. 3

Figure 2.7: Quotient networks for G in Figure 2.3(b) given by ⊲⊳1=
{{1}, {2, 3}, {4, 5}} (left) and ⊲⊳4= {{1}, {2, 5}, {3, 4}} (right).

Similar for networks, one can also define symmetry and interior sym-
metry for quotient networks.

Definition 2.1.17. Let G be a coupled cell network. We say that a permu-
tation σ is a quotient (interior) symmetry of G, if G has a quotient network
G⊲⊳ which has σ as an (interior) symmetry, for some balanced equivalence
relation ⊲⊳. 3

Example 2.1.18. Continuing from Example 2.1.16, we see that both quotient
networksG⊲⊳1 and G⊲⊳4 have symmetry D3, thus G has a quotient symmetry
D3.
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Moreover,Ghas a quotient interior symmetry. It is related to the quotient
network induced by ⊲⊳= {{1}, {2}, {3, 5}, {4}} (cf. Figure 2.8). The quotient

Figure 2.8: A quotient network for G in Figure 2.3(b) given by ⊲⊳=
{{1}, {2}, {3, 5}, {4}}, which has an interior symmetry D3.

network possesses an interior symmetry on the subset {1, 2, 4}. Thus, G has
a quotient interior symmetry D3.

�

2.2 Groups and Group Representations

Basic concepts from theory of transformation groups and theory of group
representations will be reviewed. They provide a foundation for under-
standing compact Lie groups and their representations, which we use later
in our theory.

2.2.1 Groups and Actions

Groups

A group G is a set of elements together with a binary operation “·” such that
the following axioms are fulfilled:

• closure If a, b ∈ G, then a · b ∈ G

• associativity (a · b) · c = a · (b · c) for all a, b, c ∈ G

• identity An element e ∈ G exists such that e · a = a · e = e for all a ∈ G

• inverse There exists b ∈ G for each a ∈ G such that a · b = b · a = e

If a · b = b · a for all a, b ∈ G, then G is called an abelian group.
A subgroup H ⊂ G is a non-empty subset that is closed under the binary

and the inverse operations. Two subgroups H,H′ of G are conjugate in G, if
H′ = gHg−1 for some g ∈ G. The conjugacy class

(H) := {gHg−1 : g ∈ G}
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of a subgroup H is the set of all its conjugate subgroups. The (left) co-set of
H is defined by

G/H := {gH : g ∈ G}.

There is a canonical identification between (H) and G/H.

Groups can be used to describe symmetry of objects. Indeed, the set of
all transformations under which an object is left invariant forms a group
with the binary operation given by the composition of transformations.
Groups in this case are also referred as symmetry groups.

Example 2.2.1. Consider an equilateral triangle in R2 and all the transfor-
mations that leave it invariant (cf. Figure 2.9). These are rotations of 0◦,

A

B C

Figure 2.9: An equilateral triangle and its transformation symmetry.

120◦, 240◦ around the center point and reflections with respect to the three
hight lines. See Figure 2.9, where the red dot stands for the center and green
lines are the reflection axes.

Together they form a group. Let r0, r1, r2 denote the rotations of 0◦, 120◦,
240◦ respectively; and kA, kB, kC denote the reflection with respect to the
hight lines going through A,B,C respectively. Then,

G = {r0, r1, r2, kA, kB, kC}

gives the set of all transformations that keep the triangle invariant. It forms
a group with r0 being the identity element e. The elements r1, r2 are of order∗

3 being inverse to each other. The elements kA, kB, kC are of order 2 being
self-inverse.

Moreover, every element of G can be written as a product of r1 and kA.
For example, the reflection kB can be written as the product kA · r1 of first
rotating 120◦ around the center and then reflecting around the hight line
through A (cf. Figure 2.10). Similarly, one shows that kC = kA · r

2
1
. We say

∗An element a ∈ G is of order m if m is a smallest positive integer such that am = e.
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A C C

B A BC B A

r1 kA

Figure 2.10: Illustration for showing kB = kA · r1.

that G is a group generated by r1 and kA, denoted as

G = 〈r1, kA〉,

where r1 · kA = kA · r
−1
1

.
3

The group G in Example 2.2.1 is known as the dihedral group of order
6, which is commonly denoted by D3. More generally, the dihedral group
Dn which is defined as the group of order 2n generated by an element r
of order n and an element k of order 2 such that rk = kr−1, describes the
transformation symmetry of n-sided regular polygons in R2.

Group Actions

Formally, groups can be used to describe symmetry of mathematical objects
through group actions. By an action of a group G on an object X, we mean a
homomorphism

ϕ : G→ Aut (X)

from the group G into the group of automorphisms of X. For simplicity,
we write gx instead of (ϕ(g))(x) for the result of applying g on x, for g ∈ G,
x ∈ X.

A subset Y ⊂ X is called G-invariant if gx ∈ Y for all x ∈ Y and g ∈ G. An
action on an invariant subset Y ⊂ X is called free if gx = x for some x ∈ Y
implies g = e is the identity element.

Depending on structure of X, one can endow the group G with addi-
tional structure and set further restrictions on ϕ accordingly. For example,
one can use topological groups to describe symmetry of topological spaces
through continuous actions; or Lie groups to describe symmetry of differ-
entiable manifolds through differentiable actions; or one can use groups to
describe symmetry of vector spaces through linear actions. We give precise
definitions.

Definition 2.2.2. (cf. [22]) A topological group G is a group and a topological
space such that the binary operation and the inverse operation on G are
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continuous functions. An action of a topological group G on a topological
space X is a continuous group homomorphism ϕ : G → Aut (X), in which
case X is called a G-space. 3

Example 2.2.3. Let Q ⊂ R be the set of rational numbers on the real line.
It forms a group under the addition operation with 0 being the identity
element (cf. Figure 2.11). Consider the inherited topology from R on Q,

R

Q

Figure 2.11: The topological group Q ⊂ R under addition.

where a subset ofQ is open if and only if it can be written as an intersection
of an open subset of R with Q. Both addition and inverse operations are
continuous functions under this topology, since they are continuous on R.
Thus, Q endowed with the inherited topology is a topological group. 3

Definition 2.2.4. (cf. [22, 50]) A Lie group G is a group and a differentiable
manifold such that the binary operation and the inverse operation on G are
differentiable maps. An action of a Lie group G on a differentiable manifold
M is a differentiable group homomorphismϕ : G→ Aut (M), in which case
M is called a G-manifold. 3

Lie groups are automatically topological groups using the same topol-
ogy. An example of topological group that is not a Lie group is given by
Example 2.2.3, as Q fails to be a manifold under the inherited topology.

Important examples of Lie groups that we use later are finite groups Γ,
the circle group S1 of complex number of unit length and the product group
Γ × S1. See Section 2.3.3.

In case the differentiable manifold on which a Lie group G acts is indeed a
finite-dimensional vector space, then the group of automorphisms coincides
with the general linear group of the vector space. The G-manifold in this
case becomes a representation.

Definition 2.2.5. Let G be a Lie group and V be a finite-dimensional vector
space. An action of G on V is a differentiable group homomorphism

ϕ : G→ GL (V)

from the group G to the general linear group GL (V) of V. The vector space
V together with the action is called a representation of G.
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Example 2.2.6. Let D3 be the dihedral group discussed in Example 2.2.1. It
is a Lie group under the discrete topology. Let it act on R3 by permuting
the vector components according to

r1 : (x1, x2, x3) 7→ (x3, x1, x2)

kA : (x1, x2, x3) 7→ (x1, x3, x2)

(cf. Figure 2.12). Then, R3 becomes a representation of D3. This action can

1

2 3

x1

x2 x3

Figure 2.12: A representation of D3 in R3.

be extended to P3 for any vector space P. 3

Further representations of D3 can be found in Subsection 2.2.3.

2.2.2 Orbits and Orbit Structure

Let G be a topological group and X be a G-space.
Consider the set

G(x) = {gx : g ∈ G} ⊂ X

of all elements in X that can be reached by applying a group element to x
and call it the orbit of x. An orbit of an element plays a similar role in a
G-space, as an element in a topological space (without group actions). It
represents an elementary unit of the space that is to be treated as a whole.

One sees that orbits of different elements x, y ∈ X are either disjoint or
identical. That is, X is a disjoint union of orbits. Moreover, G(x) = G(y) if
and only if x = gy for some g ∈ G. If we define an equivalence relation ∼ on
X by: x ∼ y if and only if G(x) = G(y), then the quotient space X/G together
with the quotient topology is called the orbit space.

Elements from the same orbit share the same symmetric property in
space. If we use the isotropy subgroup of x defined by

Gx = {g ∈ G : gx = x}
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to measure how symmetric the element x is situated in space, then elements
from the same orbit have conjugate symmetries:

Ggx = gGxg−1, (2.6)

for g ∈ G. Thus, one speaks of the orbit type of an orbit given by

(Gx) := {gGxg−1 : g ∈ G} (2.7)

which can be used to measure the symmetry of the orbit of x. Note that the
obit type is independent of the choice of x and indeed is a property of orbit.

Elements having isotropy subgroups at least H form a closed subspace:

XH = {x ∈ X : hx = x, ∀ h ∈ H} = Fix (H), (2.8)

for any subgroup H ⊂ G, which is called the fixed-point subspace of H. Fixed-
point subspaces of conjugate subgroups are isomorphic, since

gXH = XgHg−1
, ∀ g ∈ G. (2.9)

In particular, (2.9) implies that fixed-point subspaces are generally not G-
invariant. But if g ∈ G is such that gHg−1 = H, then XH = gXH. Thus, XH

is invariant under the normalizer N(H) := {g ∈ G : gHg−1 = H} of H. This
action is redundant, since H acts trivially on XH. Denote by

W(H) = N(H)/H = {g ∈ G : gHg−1 = H}/H, (2.10)

which is called Weyl group of H.

Example 2.2.7. Let D3 act on R3 as in Example 2.2.6. Consider the three
points from the three axes: (1, 0, 0), (0, 1, 0) and (0, 0, 1) (cf. Figure 2.13).
They form an orbit together. The isotropy subgroups of the three points are

D3 (1,0,0) = {1, kA} := D1

D3 (0,1,0) = {1, kAr1} := D′1

D3 (0,0,1) = {1, kAr2
1} := D′′1

which are conjugate to each other through

D′1 = r1D1r−1
1 , D′′1 = r2

1D1r−2
1 .

Thus, the orbit type of the orbit {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is (D1).
Denote by X = R3. Then, the fixed-point subspaces of D1,D

′
1
,D′′

1
are

XD1 = {(a, b, b) : a, b ∈ R}

XD′
1 = {(b, a, b) : a, b ∈ R}

XD′′
1 = {(b, b, a) : a, b ∈ R},

which are isomorphic closed subspaces in R3. 3
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1

2 3

x1

x2 x3

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

Figure 2.13: An orbit of three points under the D3-action in R3.

Observe that in Example 2.2.7, the orbit of (1, 0, 0) consists of three
elements, while the left co-set D3/D1 of the isotropy of (1, 0, 0) as well
consists of three elements: D1, r1D1, r

2
1
D1. This one-to-one correspondence

holds in general. Indeed, one can show directly that

G/Gx ≃ G(x)

are isomorphic as sets (without topology), using the map

f : G/Gx → G(x) (2.11)

gGx 7→ gx

However, f may not be a homeomorphism, with respect to the quotient
topology on G/Gx and the inherited topology on G(x) from X.

Example 2.2.8. (cf. [50]) Let S1 be the set of complex number of unit length
(with inherited topology from R2) and T2 be the torus S1 × S1. Given an
irrational number a, define

ϕ : R × T2 → T2

(r, (z1, z2)) 7→ (z1 exp(2πir), z2 exp(2πiar)),

for r ∈ R and z1, z2 ∈ S1. Then,ϕ gives a continuous action of the topological
group R (with the standard topology) on T2. The isotropy of (1, 1) ∈ T2 is
Z1 so that R/R(1,1) = R/Z1 = R, which is a locally connected set. But the
orbitR((1, 1)) of (1, 1) is a dense curve that goes by any small neighborhoods
of (1, 1) infinitely many times, which is not a locally connected set. Thus,
R/R(1,1) and R((1, 1)) are not homeomorphic. 3

Example 2.2.8 is due to the lack of compactness of the group R.
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Theorem 2.2.9. (cf. [50], Proposition 1.53) If G is a compact topological group
and X is a Hausdorff G-space, then f in (2.11) is a G-homeomorphism.

A parallel statement holds for compact Lie groups and G-manifolds.

Theorem 2.2.10. (cf. [50], Corollary 4.4) If G is a compact Lie group and M is a
G-manifold, then the orbit G(x) of every point x of M is a G-invariant submanifold
of M and f in (2.11) is a G-diffeomorphism.

The compactness assumption is also important in Theorem 2.2.10, which
can be shown by Example 2.2.8. The group R is in fact a Lie group and
T2 is a differentiable manifold on which R acts smoothly through ϕ. The
orbit R((1, 1)) of (1, 1) is clearly not a submanifold of T2 since any small
neighborhood of (1, 1) looks locally like a union of infinitely many disjoint
copies of R.

Further structure of orbits can be described for compact Lie groups. Let
H ⊂ G be a closed subgroup and M be a G-manifold. Denote by

M(H) = {x ∈M : (Gx) = (H)} (2.12)

MH = {x ∈M : Gx = H} ⊂MH, . (2.13)

Then, they are both submanifolds of M.

Theorem 2.2.11. (cf. [50], Theorem 4.19) Let G be a compact Lie group and M
be a G-manifold. For every H ⊂ G, let W(H) be the Weyl group of H (cf. (2.10)).
Then, we have

(i) M(H) is a G-invariant submanifold of M;

(ii) MH is a W(H)-invariant submanifold of M, and the action is free.

2.2.3 Representations of Compact Lie Groups

Representations

Let G be a Lie group and V be a finite-dimensional vector space. Recall that
an action of G on V is a differentiable group homomorphism

ϕ : G→ GL (V)

from the group G to the general linear group GL (V) of V. The vector space
V together with the action is called a representation of G (cf. Definition 2.2.5).

If V is a real vector space and the action is ϕ : G → GLR(V), then we
call V a real representation of G. Similarly, if V is a complex vector space with
an action ϕ : G→ GL C(V), then we call V a complex representation of G.

A linear map A : V1 → V2 between two representations of G is called
G-equivariant, if A(gv) = g(Av) for all v ∈ V1 and g ∈ G. Two representa-
tions V1,V2 of G are called equivalent, if there exists a G-equivariant linear
isomorphism between them.
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A representation V of G is called irreducible if {0} and V are the only
G-invariant linear subspaces in V. A representation that is not irreducible
is called reducible. Further, a representation is called completely reducible, if
it is equivalent to a direct sum of irreducible representations.

Example 2.2.12. Let G = {

(

1 n
0 1

)

: n ∈ Z} which is a group under matrix

multiplication and forms a topological (and also a Lie) group with respect
to the standard topology on matrices. Let it act on C2 by the usual matrix
multiplication:

(

1 n
0 1

) (

z1

z2

)

=

(

z1 + nz2

z2

)

,

for z1, z2 ∈ C. It gives a continuous (and also differentiable) action of G on
C2 and C2 is a complex representation of G.

The complex representationC2 is reducible, sinceC := {(z1, 0) : z1 ∈ C} is
a G-invariant linear subspace ofC2. It is however, not completely reducible,
since C is the only G-invariant linear subspace in C2 besides {0} and C2. 3

Example 2.2.12 is due to the lack of compactness of the group G.

Theorem 2.2.13. (cf. Proposition (1.9) in [20] or Corollary 2.42 in [50]) Ev-
ery finite-dimensional representation of a compact topological group is completely
reducible.

Example 2.2.14. Let D3 act on R3 as in Example 2.2.6. Then,

U := {(x, y, z) : x = y = z ∈ R}

V := {(x, y, z) : x + y + z = 0, x, y, z ∈ R}

are both D3-invariant linear subspaces of R3 and R3 = U ⊕ V as space.
The group D3 acts on U trivially, that is, every group element acts like the
identity map. The group D3 acts on V by

r1 : (x, y,−x − y) 7→ (−x − y, x, y), kA : (x, y,−x − y) 7→ (x,−x − y, y).

It is convenient to identify V with

V′ := {(x, y) : x, y ∈ R}

using the projection (x, y,−x − y) 7→ (x, y) to the first two coordinates. The
D3-action on V can then be expressed as a D3-action on V′ by

r1 =

(

−1 −1
1 0

)

, kA =

(

1 0
−1 −1

)

.

It follows that V is an irreducible representation of D3 and R3 = U ⊕ V as
G-representation is a direct sum of irreducible representations of D3.

3
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It is interesting to list all irreducible representations of D3.

Example 2.2.15. (cf. [16]) It can be shown, using the character theory
of group representations for example, that there are exactly three distinct
irreducible real representations of the dihedral group D3:

(i) The trivial representationV0 ≃ R, where every group element acts as
the identity map on R.

(ii) The representationV1 ≃ R given by r1 as the identity map and kA as
the antipodal map on R, i.e. kAx = −x.

(iii) The natural representationV2 ≃ R
2 given by r1 as a rotation of 120◦

of the plane and kA as the reflection with respect to the first axis of the
plane.

There are also exactly three distinct irreducible complex representations of
the dihedral group D3:

(i) The trivial representationU0 ≃ C, where every group element acts as
the identity map on C.

(ii) The representationU1 ≃ R given by r1 as the identity map and kA as
the antipodal map on C.

(iii) The natural representationU2 ≃ C
2 given by r1 as the map (z1, z2) 7→

(r1z1, r
−1
1

z2) and kA as the interchange of coordinates: (z1, z2) 7→ (z2, z1).

3

The representationR3 from Example 2.2.14 is equivalent toV0 ⊕V1.

Banach representations

Definition 2.2.16. Let G be a Lie group and W be a Banach space. An action
of G on W is a differentiable group homomorphism

ϕ : G→ GL B(W),

from the group G to the group of invertible bounded linear operators on W.
The Banach space together with this action is called a Banach representation
of G. A Banach representation W is called isometric, if ‖gw‖ = ‖w‖, for all
g ∈ G, w ∈W. 3

Using the Haar measure, one can show that every Banach representation
of a compact Lie group is equivalent to an isometric Banach representation.



2.3. EULER RING AND RING HOMOMORPHISMS 31

Example 2.2.17. Let n ∈ N be a positive integer and C([0,T];Rn) be the set
of all continuous T-periodic functions defined on [0,T] and valued in Rn.
Then, C([0,T];Rn) is a vector space over reals. Moreover, it is a real Banach
space with respect to the supremum norm ‖ · ‖, which is defined by

‖ f ‖ := sup
x∈[0,T]

| f (x)|, ∀ f ∈ C([0,T];Rn).

Let G = S1 and define an action of S1 on C([0,T];Rn) by

(eiθ f )(t) := f (t +
θT

2π
), ∀ f ∈ C([0,T];Rn), eiθ ∈ S1, t ∈ [0,T], (2.14)

which is clearly differentiable. Also, ‖eiθ f ‖ = ‖ f ‖ for all f ∈ C([0,T];Rn).
Thus, C([0,T];Rn) is a real isometric Banach representation of S1 with re-
spect to the action (2.14). 3

2.3 Euler Ring and Ring Homomorphisms

Let G be a compact Lie group. In Subsection 2.2.2, we have seen that the
conjugacy classes of subgroups can be used to measure symmetry of orbits
in G-spaces (cf. (2.7)). Later, we will use their finite sums to define degrees
for equivariant maps. It is interesting to explore the ring structure of the
set of all finite sums of conjugacy classes of subgroups, known as the Euler
ring, which will be very useful in computations of degrees.

In what follows, we consider only closed subgroups of G.

2.3.1 Euler Ring

Let Φ(G) be the set of all conjugacy classes of subgroups of G. Consider the
set A(G) of all finite sums of elements of Φ(G), that is, the set of elements
that look like

(H1) + (H2) + · · · + (Hm)

for (Hi) ∈ Φ(G). If (Hi) = (H j), then we will group them together and write

(Hi) + (H j) = 2(Hi).

The set A(G) forms an abelian group under the addition “+” given by

N∑

i=1

ni(Hi) +

N∑

i=1

mi(Hi) =

N∑

i=1

(ni +mi)(Hi) (2.15)

for (Hi) ∈ Φ(G), with the identity element given by
N∑

i=1
ni(Hi) for all ni = 0.

Technically speaking, A(G) is a free (left) Z-module generated by Φ(G).
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Moreover, one can define a multiplication operation

∗ : A(G) × A(G)→ A(G)

on A(G), with respect to which the abelian group A(G) becomes a ring.

Let (H) ∈ Φ(G). The left co-set G/H is a G-manifold under the action

G × G/H→ G/H, (g′, gH) 7→ (g′g)H. (2.16)

The isotropy subgroup of gH is then given by gHg−1. This coincides with the
conjugate symmetry (2.6) of elements from the same orbit that we observe
earlier. In fact, (2.16) resembles the G-action on the G-invariant submanifold
G(x) under the identification (2.11).

Now consider (H), (K) ∈ Φ(G) and the product space G/H ×G/K (which
is in resemblance of product of orbits) under the same action

G ×
(

G/H × G/K
)

→ G/H × G/K,
(

g′, (g1H, g2K)
)

7→
(

(g′g1)H, (g′g2K)
)

. (2.17)

We are interested in classifying orbit types in G/H × G/K under (2.17).
Note that the isotropy subgroup of (g1H, g2K) ∈ G/H × G/K is

L := g1Hg−1
1 ∩ g2Kg−1

2 .

The set of all elements of orbit type (L) forms a G-invariant submanifold of
G/H × G/K (cf. Theorem 2.2.11). The product

(H) ∗ (K) =
∑

nL(L) (2.18)

expresses a topological count of orbit types in G/H × G/K, where nL is the
count associated with the orbit type (L). The sum in (2.18) is finite, since
G/H × G/K is a compact G-manifold.

Formally, we can define the Euler ring as follows.

Definition 2.3.1. (cf. [22]) Let G be a compact Lie group and Φ(G) be the
set of conjugacy classes of closed subgroups of G. Let A(G) be the set of
all finite sums of elements of Φ(G) equipped with “+” by (2.15) and “∗” by
(2.18), where

nL := χc((G/H × G/K)(L)/G), (2.19)

is defined by the Euler characteristics χc of the orbit space of the G-invariant
submanifold (G/H × G/K)(L) in G/H × G/K (cf. [69]).

3

We explain the geometric meaning of (2.19) using an example.
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Example 2.3.2. Consider the dihedral group D3 in Example 2.2.1, which is
generated by the rotation r1 and the reflection kA. The group D3 has the
following subgroups

D1 = {1, kA}, D′1 = {1, kB}, D′′1 = {1, kC}

Z3 = {1, r1, r2}, Z1 = {1}

besides D3 itself. Since D1,D
′
1
,D′′

1
are conjugate in D3, we have

Φ(D3) = {(D3), (D1), (Z3), (Z1)}

consists of four elements. The Euler ring multiplication is listed in Table 2.1
(cf. [16]).

∗ (D3) (D1) (Z3) (Z1)

(D3) (D3) (D1) (Z3) (Z1)
(D1) (D1) (D1) + (Z1) (Z1) 3(Z1)
(Z3) (Z3) (Z1) 2(Z3) 2(Z1)
(Z1) (Z1) 3(Z1) 2(Z1) 6(Z1)

Table 2.1: Multiplication table for the Euler ring A(D3)

The geometric meaning of (H) ∗ (K) is that it counts the G-orbits in the
product G-space G/H × G/K according to their orbit types. For example,
consider

(D1) ∗ (D1) = (D1) + (Z1).

Note that D3/D1 = {D1, r1D1, r
2
1
D1}. Thus, the product space D3/D1×D3/D1

consists of 9 elements, which are represented by hollow squares and trian-
gles in Figure 2.14. The isotropy of the element (ra

1
D1, r

b
1
D1) ∈ D3/D1×D3/D1

is given by ra
1
D1r−a

1
∩ rb

1
D1r−b

1
, for a, b ∈ {0, 1, 2}, as indicated in Figure 2.14.

These isotropies give rise to two orbit types in D3/D1 ×D3/D1:

(D1) = {D1, r1D1r−1
1 , r

2
1D1r−2

1 },

(Z1) = {Z1},

corresponding to the hollow triangles and squares in Figure 2.14, respec-
tively. Moreover, all the hollow triangles (resp. all the hollow squares)
consist of 1 orbit under the D3-action on D3/D1 × D3/D1. Therefore,
D3/D1 × D3/D1 consists of 1 orbit of orbit type (D1) and 1 orbit of orbit
type (Z1), or equivalently written as

(D1) ∗ (D1) = (D1) + (Z1).

3
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D1 r1D1 r2
1
D1

D1

r1D1

r2
1
D1

D3/D1

D3/D1

D1 Z1 Z1

Z1 r1D1r−1
1 Z1

Z1 Z1 r2
1
D1r−2

1

Figure 2.14: Geometric meaning of (D1) ∗ (D1) in the Euler ring A(D3).

2.3.2 Ring Homomorphisms

The Euler ring defined in Subsection 2.3.1 provides a natural environment
for multiplying group orbits. In this subsection, we discuss how the Euler
ring structure of compact Lie groups behaves with respect to group ho-
momorphisms. The resulting ring homomorphism will play an important
role in Section 4, when we deal with different (quotient) symmetries of a
network at the same time.

Definition 2.3.3. Let G1,G2 be compact Lie groups and h : G2 → G1 be a
group homomorphism. Let X be a G1-space. Define a G2-action on X by

g2x := h(g2)x, for g2 ∈ G2, x ∈ X, (2.20)

and call it the induced action of G2 on X through h. Then, X is also a G2-space.

Let K ⊂ G1 be a closed subgroup. Then, the left co-set G1/K is a G1-space
under the natural action (2.16). Consider the induced action of G2 on G1/K
through h. Then, the isotropy of g1K under this G2-action is given by

K̃ = h−1(g1Kg−1
1 ).

The set of all elements of orbit type (K̃) forms a G2-invariant submanifold
of the G2-space G1/K by Theorem 2.2.11. Based on the topological nature of
this submanifold (G1/K)(K̃), one can define a map

H : A(G1)→ A(G2)

(K) 7→
∑

nK̃(K̃), (2.21)
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between the Euler rings A(G1) and A(G2), where

nK̃ = χc((G1/K)(K̃)/G2), (2.22)

is defined by the Euler characteristics of the orbit space of (G1/K)(K̃) and

expresses the topological count of orbits of orbit type (K̃).
In a sense, the map H enables us to view G1-orbits as G2-orbits under

the induced action (2.20). It “lifts” a G1-orbit of orbit type (K) to several
G2-orbits of orbit type (K̃) for K̃ = h−1(g1Kg−1

1
), g1 ∈ G1.

One can show that the map H defined by (2.21)-(2.22) is indeed a ring
homomorphism, which we call the Euler ring homomorphism induced by h.

Theorem 2.3.4. (cf. [22, 15]) Let Gi be a compact Lie group for i = 1, 2, 3 and
hi : Gi → Gi+1 a group homomorphism for i = 1, 2. Let Hi be defined by (2.21) for
i = 1, 2. Then, we have

(i) Hi is an Euler ring homomorphism, for i = 1, 2.

(ii) H2 ◦ H1 is precisely the Euler ring homomorphism induced by h2 ◦ h1.

We explain the geometric meaning of the ring homomorphism using an
example.

Example 2.3.5. Let G1 = D3,G2 = D1 and h : D1 ֒→ D3 be the inclusion
homomorphism. Let H : A(D3)→ A(D1) be the Euler ring homomorphism
induced by h. Then, we have

H : (D3) 7→ (D1), (Z3) 7→ (Z1)

(D1) 7→ (D1) + (Z1), (Z1) 7→ 3(Z1).

The geometric meaning of H((K)) is that it counts the G2-orbits in the G2-
space G1/K according to their orbit types. For example, consider K = D1.
Then, the space D3/D1 consists of 3 elements: D1, r1D1, r2

1
D1. Consider the

D1

r1D1

r2
1
D1

D1

r1D1

r2
1
D1

(D1)

(D1)

(Z1)

Figure 2.15: (left) The space D3/D1 considered as D3-space; (right) the space
D3/D1 considered as D1-space.
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D1-action on D3/D1. Then, the isotropies are

h−1(D1) = D1, h−1(r1D1r−1
1 ) = Z1, h−1(r2

1D1r−2
1 ) = Z1,

respectively (cf. Figure 2.15). Moreover, the elements r1D1, r
2
1
D1 belong to

the same orbit under the D1-action, since

h(kA)r1D1 = kAr1D1 = r2
1kAD1 = r2

1D1.

Therefore, the space D3/D1 (with respect to the induced D1-action) consists
of 1 orbit of orbit type (D1) and 1 orbit of orbit type (Z1), i.e.

H((D1)) = (D1) + (Z1).

2.3.3 Euler Ring of Γ × S1

Important groups that we use later are compact Lie groups of form

Γ × S1

where Γ is a finite group and S1 is the group of complex numbers of unit
length with standard topology. In the setting of (equivariant) bifurcations,
the group Γ is usually used to describe the symmetry of the system in phase
space while S1 describes the temporal symmetry of possible periodic states.

Twisted subgroups of Γ × S1

There are two kinds of (closed) subgroups in Γ×S1: those that are finite and
those that are of dimension one. The latter one is always of form K × S1 for
subgroups K ⊂ Γ, while the finite ones are what we call the twisted subgroups.
Twisted subgroups are of particular importance, since they are precisely the
symmetries of non-constant periodic states in Hopf bifurcations.

Definition 2.3.6. (cf. [16])A subgroup H ⊂ Γ × S1 is called a twisted l-folded
subgroup, if there exists a subgroup K ⊂ Γ, an integer l ≥ 0 and a group
homomorphism ϕ : K→ S1 such that

H = Kϕ,l := {(γ, z) : ϕ(γ) = zl}.

3

It can be verified that every finite subgroup H ⊂ Γ × S1 is twisted.

Example 2.3.7. Let Γ = D3, where D3 = Z3 ∪κZ3 andZ3 = 〈ξ〉. Then, up to
conjugacy, D3 × S1 has the following twisted 1-folded subgroups: Z1, Z3,
D1, D3 and (cf. [16])

Zt
3 = {(1, 1), (ξ, ξ), (ξ2, ξ2)}, Dz

1 = {(1, 1), (κ,−1)},

Dz
3 = {(1, 1), (ξ, 1), (ξ2, 1), (κ,−1), (κξ,−1), (κξ2,−1)}.
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Let D3 act on R3 as the permutation group S3 ≃ D3. Let C([0,T];R3) be
given by Example 2.2.17. Define a D3 × S1-action on C([0,T];R3) by

(

(γ, eiθ) f
)

(t) := γ• f (t +
θT

2π
),

where “•” stands for the D3-action on R3. Then, a function u ∈ C([0,T];R3)
has an isotropy subgroup Zt

3
under this action if and only if

(ξ, ξ)u(t) := (ξ, ξ)





x(t)
y(t)
z(t)




=





z(t + T
3 )

x(t + T
3 )

y(t + T
3 )




=





x(t)
y(t)
z(t)




, ∀ t ∈ [0,T].

Thus, x(t) = y(t + 2T
3 ) = z(t + T

3 ) and u is of form

u(t) = (x(t), x(t +
T

3
), x(t +

2T

3
)), ∀ t ∈ [0,T].

That is, knowing the (twisted) isotropy subgroups of a periodic function u
helps determine the form of u. More examples of this kind can be found in
Table 4.1. 3

Euler ring of Γ × S1

We describe the Euler ring of Γ×S1 for a finite group Γ. For a more detailed
discussion, we refer to [67], Section 2.3.

In this case, the setΦ(Γ×S1) of all conjugacy classes of closed subgroups
in Γ × S1, splits into two subsets

Φ0(Γ × S1) = {(H) : H = K × S1, for K ⊂ Γ}, (2.23)

Φ1(Γ × S1) = {(H) : H = Kϕ,l, for K ⊂ Γ, ϕ : K→ S1, l = 0, 1, 2, . . . }, (2.24)

Let
Ak(G) := Z

[

Φk(G)
]

, for k = 0, 1, (2.25)

be the free Z-module generated by Φk(G). Then,

A(Γ × S1) = A0(Γ × S1) × A1(Γ × S1).

The multiplication can be summarized using Table 2.2, where the parts (I)

and (II) are related to the identification (K × S1) 7→ (K) from A0(Γ × S1) to
the Euler ring A(Γ) of Γ. The part (III) is zero (cf. [67], Proposition 2.3.3.1)

Example 2.3.8. Let Γ = D3. Consider the Euler ring A(D3 × S1) of D3 × S1.
The multiplication table of the Euler ring A(D3×S1) is given in Table 2.3 (cf.
[64], Appendix A3.2).

3
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∗ A0(Γ × S1) A1(Γ × S1)

A0(Γ × S1) (I): A(Γ)-multiplication (II): A(Γ)-module multiplication

A1(Γ × S1) (II): A(Γ)-module multiplication (III): 0

Table 2.2: The Euler ring multiplication table for G = Γ × S1, where Γ is a
finite group.

∗ (D3 × S1) (D1 × S1) (Z3 × S1) (Z1 × S1)

(D3 × S1) (D3 × S1) (D1 × S1) (Z3 × S1) (Z1 × S1)
(D1 × S1) (D1 × S1) (D1 × S1) + (Z1 × S1) (Z1 × S1) 3(Z1)
(Z3 × S1) (Z3 × S1) (Z1 × S1) 2(Z3 × S1) 2(Z1 × S1)
(Z1 × S1) (Z1 × S1) 3(Z1 × S1) 2(Z1 × S1) 6(Z1 × S1)

(Dz
3
) (Dz

1
) (Z3) (Z1) (Dz

3
)

(Dz
1
) (Dz

1
) + (Z1) (Z1) 3(Z1) (Dz

1
)

(Zt
3
) (Z1) 2(Zt

3
) 2(Z1) (Zt

3
)

Table 2.3: Multiplication table for the Euler ring A(D3×S1), where the upper
half is essentially Table 2.1.



Chapter 3

Equivariant Degree and
Equivariant Bifurcations

Equivariant degree theory is a mapping degree theory for equivariant maps,
that is, maps that commute with a group of symmetries. Zeros of equiv-
ariant maps form orbits under the group action, so one speaks from zero
orbits of equivariant maps. Different orbits can exhibit different symme-
tries: some situate more symmetrically in space than others. These can be
conveniently measured by the orbit type, which is defined as the conjugacy
class of the isotropy of any point on the orbit. One aim of the equivariant
degree theory is to provide a “count” of these zero orbits by their orbit
types, using possibly integer numbers, like in the case of a usual mapping
degree. However, this turns out to be not always possible, as one deals with
different orbit types of potentially different dimension. Indeed, the original
definition of an equivariant degree for abelian groups in [45] introduced
it as an element in some group of equivariant homotopy classes of maps
between spheres, which cannot generally be expressed as an integer count.
Nevertheless, as shown in [29], part of the equivariant degree is “express-
ible” as integer count of zero orbits by their orbit types. This is the so-called
primary equivariant degree and takes the form

n1 · (H1) + n2 · (H2) + · · · + nk · (Hk), ni ∈ Z.

In this chapter, we review two most common (primary) equivariant
degrees: the equivariant degree without parameter and the equivariant degree
with one parameter. They provide together, foundation to effective (topo-
logical) treatment of equivariant bifurcation problems in various context
(cf. [12, 13, 14, 15, 10] for example and [16] for further references). Here,
we introduce them in a slightly different fashion as in the literature (where
equivariant topology, representation theory and equivariant approxima-
tions stand in the foreground) in that we define these degrees based on
their geometric meanings and using directly the so-called recurrence for-

39
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mulas (cf. (3.4), (3.11)). We show that degrees defined in this way satisfy
the usual properties of a degree theory including the existence, homotopy,
suspension (cf. Theorem 3.1.4, Theorem 3.1.6).

In Section 3.2, we review the standard degree-approach for treating
equivariant bifurcations which reformulates the bifurcation problem into
an (equivariant) fixed point problem in an appropriate functional setting,
and then defines a bifurcation invariant for the locally bifurcating equilibium.
Based on the value of the bifurcation invariant, one can make various state-
ment about the bifurcating branches including their existence and symme-
try properties. Here, we introduce the concept of secondary dominating orbit
types, to sharpen the symmetry statement about the bifurcating solutions.
The main result is stated in Proposition 3.2.2.

In Subsection 3.2.3, we explain how to use the command showdegree
from the “Equivariant Degree Maple c© Library Package” (EDML) to obtain
exact values of the bifurcating invariant. As we will see, it only takes input
from the spectrum of the Jacobian operator. Thus, topological existence of
bifurcating branches of solutions is a linear property of the system, even
though bifurcations are non-linear phenomena.

3.1 Equivariant Maps and Equivariant Degrees

Let X,Y be two isometric Banach representations of a compact Lie group G.

Definition 3.1.1. A continuous map f : X → Y is called equivariant if
f (g◦x) = g∗ f (x), for all x ∈ X and g ∈ G, where ◦ and ∗ stand for the G-
actions on X and Y, respectively. A homotopy h : [0, 1] × X → Y is called
equivariant, if h(t, ·) is equivariant for all t ∈ [0, 1]. 3

Remark 3.1.2. Note that by equivariance, if f (x) = 0 for some x ∈ X, then
f (g◦x) = 0 for all g ∈ G. Thus, the zero set of f is composed of (disjoint)
group orbits. An equivariant degree counts zero orbits of equivariant maps
in bounded domains according to their orbit types. 3

To define an adequate equivariant degree,one needs a no-zero boundary
condition on the domain, since any meaningful topological count should
remain stable against homotopies including small perturbations on the map.

Definition 3.1.3. Let Ω ⊂ X be an open bounded invariant subset. A map
f : X→ Y is called admissible onΩ if f (x) , 0 for all x ∈ ∂Ω. A pair ( f,Ω) is
called admissible if f is admissible on Ω. A homotopy h : [0, 1] × X → Y is
called admissible if h(t, ·) is admissible for all t ∈ [0, 1]. 3

The condition of being admissible is necessary for defining any degree
theory, since a non-admissible map would have zeros on the boundary
of Ω, which may fall inside or outside of Ω depending on the kind of
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perturbations involved. Then, it would be hard, if not impossible, to count
zeros of f in Ω that stays the same for any perturbations.

In the next two subsections we review from [12, 16] two types of equiv-
ariant degrees defined for equivariant maps with one parameter or without
parameters. They provide a basis for defining degrees for networks in later
chapters. In both cases, we focus on the simplest case of group forms and
discuss the computational properties of the equivariant degrees.

3.1.1 Equivariant Degree without Parameters

Let G = Γ be a finite group and Φ collect all conjugacy classes of subgroups
of Γ. In particular, all possible orbit types of zero orbits of Γ-equivariant
maps are elements of Φ. Let ≥ be the partial order on Φ defined by

(K1) ≥ (K2) ⇐⇒ ∃γ ∈ Γ s.t.K1 ⊇ γK2γ
−1. (3.1)

Let X be a finite-dimensional Γ-representation and Ω ⊂ X be an open

bounded Γ-invariant subset. Consider an equivariant map f : Ω ⊂ X → X
that is admissible onΩ. For every (K) ∈ Φ, consider the restriction of f on the
fixed point setΩK = Fix (K)∩Ω. One is allowed to take any representative
from conjugacy class (K), due to the equivariance of f . Then, the restricted
map

f |ΩK : ΩK → XK

is admissible on ΩK, so one can define the usual Brouwer degree to the
pair ( f |ΩK ,ΩK), which we will denote by deg ( f |ΩK ,ΩK) ∈ Z. This gives a
topological count of zeros of f lying in ΩK, i.e. having isotropy at least K.

We use these integers {deg ( f |ΩK ,ΩK) : (K) ∈ Φ} to define an equivariant
degree for ( f,Ω), which gives an integer nK to every orbit type (K) ∈ Φ. We
explain in details.

Since we are interested in counting zero orbits instead of zeros, we
need to “quotient out” the repetition of counting zeros from the same orbit.
The set ΩK is generally not invariant under the whole group Γ-action (see
dihedral example), but is invariant under the normalizer group N(K)-action.
Indeed, if γ ∈ N(K), then γK = Kγ, so for all x ∈ ΩK and k ∈ K, we have

kγx = γk̃x = γx,

that is, γx ∈ ΩK. The subgroup K ⊂ N(K) acts trivially on ΩK, so we
effectively have a Weyl group W(K) = N(K)/K-action on ΩK. Even better,
this action is free on the open dense subsetΩK ⊂ Ω

K, which is composed of
x ∈ ΩK that has isotropy precisely K.

Therefore, if nK ∈ Z counts the zero orbits of f of orbit type (K), then
nK · |W(K)| counts the zeros of f of isotropy precisely K. It follows that

∑

K̃≥K

nK̃ · |W(K̃)| = deg ( f |ΩK ,ΩK). (3.2)
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It is convenient to rewrite the above in terms of (K) ∈ Φ as
∑

(K̃)≥(K)

nK̃ · n(K, K̃) · |W(K)| = deg ( f |ΩK ,ΩK), (3.3)

where n(K, K̃) is the number of distinct subgroups γK̃γ−1 that contain K.
Following the order (3.1) on Φ and using (3.3), we can define nK’s as

follows. For a maximal orbit type (K max ) ∈ Φ, define

nK max =
deg ( f |ΩK max ,ΩK max )

|W(K max )|
.

Assume that nK̃’s are defined for all (K̃) > (K). Then,

nK =

deg ( f |ΩK ,ΩK) −
∑

(K̃)>(K)

nK̃ · n(K, K̃) · |W(K̃)|

|W(K)|
, (3.4)

which is known as the recurrence formula in the literature.
Define the equivariant degree (without parameter) of f inΩ by a finite sum

of integer-indexed orbit types:

Γ-Deg ( f,Ω) =
∑

(K)∈Φ

nK · (K), (3.5)

where nK ∈ Z is defined by (3.4).
We show that the degree defined in this way satisfies all classical prop-

erties of a degree theory. It should be pointed out that the Theorem 3.1.4
below has been proven for equivariant degrees in a much broader sense
using regular normal approximations (cf. [12, 16]). But the proof using
recurrence formula (3.4) can be much easier and present a direct connection
to the classical Brouwer degree.

Theorem 3.1.4. The degree defined by (3.4)–(3.5) satisfies the following properties:

(P1) (Existence) If Γ-Deg ( f,Ω) =
∑

(K)∈Φ
nK · (K) is such that nKo , 0 for some

(Ko) ∈ Φ, then there exists x ∈ f−1(0) ∩ΩKo .

(P2) (Additivity) Assume that Ω1 and Ω2 are two open invariant subsets of Ω
such that f−1(0) ∩Ω ⊂ Ω1 ∪Ω2. Then,

Γ-Deg ( f,Ω) = Γ-Deg ( f,Ω1) + Γ-Deg ( f,Ω2).

(P3) (Homotopy) Suppose h : [0, 1] × X → X is an Ω-admissible equivariant
homotopy. Then,

Γ-Deg (ht,Ω) = constant

(here ht := h(t, ·, ·), t ∈ [0, 1]).
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(P4) (Suspension) Suppose that Y is another orthogonal Γ-representation and let
U be an open bounded invariant neighborhood of 0 in Y. Then,

Γ-Deg ( f × Id,Ω ×U) = Γ-Deg ( f,Ω).

Proof. (P1) Consider the set {(K) : (K) ≥ (Ko), nK , 0} and let (M) be a
maximal element of the set. Then, nK = 0 for all (K) > (M). It follows from
(3.4) that

nM =
deg ( f |ΩM ,ΩM)

|W(M)|
.

Since nM , 0, we have deg ( f |ΩM
,ΩM) , 0. By existence property of deg ,

we have f−1(0) ∩ΩM , ∅. By equivariance of f , we have

f−1(0) ∩ΩγMγ−1
, ∅, ∀γ ∈ Γ.

On the other hand, (M) ≥ (Ko) means γMγ−1 ⊇ Ko for some γ ∈ Γ, so

ΩγMγ−1
⊂ ΩKo . Thus, f−1(0) ∩ΩKo , ∅.

(P2) The statement follows from the additivity property of deg :

deg ( f |ΩK ,ΩK) = deg ( f |ΩK
1
,ΩK

1 ) + deg ( f |ΩK
2
,ΩK

2 ),

applied inductively to (3.4). (P3) It is sufficient to notice that h|[0,1]×ΩK is an
ΩK-admissible homotopy. By applying the homotopy property of deg , we
obtain (P3).
(P4) It follows from the suspension property of deg :

deg ( f × Id|ΩK×U,Ω
K ×U) = deg ( f |ΩK ,ΩK).

�

Example 3.1.5. Let Γ = D3 be the dihedral group of order 6:

D3 = {1, ξ, ξ
2, κ, κξ, κξ2},

where ξ3 = 1, κ2 = 1 and κξ = ξ−1κ. Consider the natural action of D3

on the complex plane C where ξ rotates by 120◦ and κ reflects around the
x-axis. Denote by

D1 = {1, κ}, Z1 = {1}.

It can be directly verified that points of C, depending on their location
in space, can have isotropy of D3, D1, ξD1ξ

−1, ξ2D1ξ
−2 or Z1 (cf. Figure

3.1). These isotropy subgroups form three classes under group conjugation:
(D3), (D1) and (Z1). Thus, equivariant degree of any D3-equivariant map
f : Ω ⊂ C→ C on an admissible domain Ω is of form

Γ-Deg ( f,Ω) = n1(D3) + n2(D1) + n3(Z1),
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D3 D1

ξD
1
ξ
−

1ξ 2
D

1 ξ −
2

Z1

Figure 3.1: Orbit types in C under D3-action: (D3), (D1) and (Z1).

for some integers n1, n2, n3 ∈ Z.
As an example, consider f = −Id : B ⊂ C→ C defined by

f (x) = −x, ∀ x ∈ B,

on a disc B of positive radius r > 0. It is admissible since f (x) = 0 if and
only if x = 0, which is not on the boundary of B. We use (3.4) to compute
Γ-Deg (−Id,B). As illustrated in Figure 3.1, we have BD3 = {0}, BD1 = x-axis
and BZ1 = B. It follows that

deg (−Id|BD3 ,B
D3) = 1, deg (−Id|BD1 ,B

D1) = −1, deg (−Id|BZ1 ,B
Z1) = 1,

(3.6)
since deg (−Id,Bo) = (−1)d for the dimension d of Bo. On the other hand,
we have

N(D3) = D3, N(D1) = D1, N(Z1) = D3. (3.7)

Moreover, n(D1,D3) = 1 since {ξD3ξ−1 ⊃ D1 : ξ ∈ D3} contains only one
element D3; n(Z1,D1) = 3 since {ξD1ξ

−1 ⊃ Z1 : ξ ∈ D3} contains three
elements D1, κD1κ

−1, κ2D1κ
−2. Therefore, we have

n1 =
deg (−Id|BD3 ,B

D3)

|N(D3)/D3|
=

1

1
= 1

n2 =
deg (−Id|BD1 ,B

D1) − 1 · 1 · 1

|N(D1)/D1|
=
−2

1
= −2

n3 =
deg (−Id|BZ1 ,B

Z1) − 1 · 1 · 1 − (−2) · 1 · 3

|N(Z1)/Z1|
=

6

6
= 1.

The above amounts to a Maple c© command:

showdegree[D3](0, 0, 1, 1, 0, 0)
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3.1.2 Equivariant Degree with One Parameter

In the same spirit, one can define an equivariant degree for maps with one
parameter using a recurrence formula. In this case, we consider groups of
form G = Γ × S1 for a finite group Γ and the circle group S1, and maps of
form f : R × X → X. The choice of the product form of G is motivated by
the study of equivariant Hopf bifurcations in equivariant systems, where Γ
describes the spatial symmetry of the system and S1 describes the temporal
symmetry of potential periodic solutions. The basic topological count of
zeros is given by the S1-equivariant degree as counterpart of the Brouwer
degree in the Subsection 3.1.1.

There are two types of subgroups in Γ × S1: those of form K × S1 for
subgroup K ⊂ Γ, and those that are twisted (cf. Definition 2.3.6). Subgroups
of form K × S1 and twisted subgroups can also be distinguished by the
dimension of their Weyl groups. Indeed, we have

H = K × S1 ⇐⇒ dim W(H) = 0

H = Kφ,l ⇐⇒ dim W(H) = 1.

LetΦ1 be the set of all conjugacy classes of twisted subgroups. It permits
a partial order given by

(H1) > (H2) ⇐⇒ ∃ g ∈ G s.t.H1 ⊃ gH2g−1. (3.8)

Let X be a finite-dimensional G-representation and O ⊂ R × X be an

open bounded G-invariant subset. Consider an equivariant map F : O ⊂
R × X → X that is admissible on O. We define an equivariant degree for
(F,O), which associates an integer nH to every twisted orbit type (H) ∈ Φ1

as follows.
For every (H) ∈ Φ1, consider the fixed point subspace OH, which is

invariant under S1-action, since S1 is abelian. The restricted map

F|OH : OH ⊂ R × XH → XH

is a map with one parameter and admissible on OH. Moreover, it is S1-
equivariant, since S1 acts on OH. Thus, for the admissible pair (F|OH ,OH),
the classical S1-degree is defined (cf. [45]) and of form

S1-Deg (F|OH ,OH) = s1 · (Z1) + · · · + sm · (Zm), si ∈ Z. (3.9)

The integer si gives a topological count of circles in the zero set of f |OH that
have isotropy precisely Zi. So the total count of circles in the zero set of
f |OH will be

∑

i si. On the other hand, as explained in Subsection 3.1.1, the
total equivariance in OH is given by the Weyl group W(H) = N(H)/H. Thus,
besides S1-equivariance, the additional equivariance on OH is W(H)/S1,
which is a finite group, since dim (W(H)) = 1.
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Therefore, if nH gives a count of zero orbits of f of orbit type (H), then
nH · |W(H)/S1| counts the zero orbits of f of isotropy precisely H. It follows
that ∑

H̃≥H

nH̃ · |W(H̃)/S1| =
∑

i

si.

The above can be conveniently rewritten in terms of orbit types by

∑

(H̃)≥(H)

nH̃ · |W(H̃)/S1| · n(H, H̃) =
∑

i

si, (3.10)

where n(H, H̃) is the number of distinct subgroups gH̃g−1 that contain H for
g ∈ G.

Based on (3.10) and following the order (3.8), we can define nH induc-
tively. For a maximal orbit type (H max ) ∈ Φ1, define

nH max =

∑

i sH max

i

|W(H max )/S1|
,

where we use the superscript H max to indicate the si’s are from the map
f |OH max . Assume that nH̃’s are defined for all (H̃) > (H). Then, define

nH =

∑

i
sH

i
−

∑

(H̃)>(H)

nH̃ · |W(H̃)/S1| · n(H, H̃)

|W(H)/S1|
, (3.11)

which is known as the recurrence formula with one parameter.
Define an equivariant degree (with one parameter) of f inΩ by a finite sum

of integer-indexed twisted orbit types:

Γ × S1-Deg ( f,Ω) =
∑

(H)∈Φ1

nH · (H), (3.12)

where nH ∈ Z is defined by (3.11).
In the same way as for the equivariant degree without parameter, one

can show that Γ× S1-Deg defined using the recurrence formula (3.11) satis-
fies the existence, additivity, homotopy, suspension properties in a similar way
as shown in Theorem 3.1.4. We state this result without direct proof. A
proof of a much more general result using regular normal approximations
can be found in [16].

Theorem 3.1.6. The degree defined by (3.11)–(3.12) satisfies the following prop-
erties:

(P1) (Existence) If Γ × S1-Deg (F,O) =
∑

(H)∈Φ1

nH · (H) is such that nHo , 0 for

some (Ho) ∈ Φ1, then there exists x ∈ F−1(0) ∩OHo .
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(P2) (Additivity) Assume that O1 and O2 are two open invariant subsets of O
such that F−1(0) ∩O ⊂ O1 ∪O2. Then,

Γ × S1-Deg (F,O) = Γ × S1-Deg (F,O1) + Γ × S1-Deg (F,O2).

(P3) (Homotopy) Suppose h : [0, 1] × O → X is an O-admissible equivariant
homotopy. Then,

Γ × S1-Deg (ht,O) = constant

for ht := h(t, ·, ·).

(P4) (Suspension) Suppose that Y is another orthogonal G-representation and
let U be an open bounded invariant neighborhood of 0 in Y. Then,

Γ × S1-Deg (F × Id,O ×U) = Γ × S1-Deg (F,O).

3.1.3 Multiplication of Equivariant Degrees

Recall that the Γ × S1-equivariant degree with one parameter has a multi-
plication property corresponding to the A(Γ)-module structure on the set
A1(Γ × S1), which coincides with the Euler ring multiplication in A(Γ × S1)
(cf. [16, 67]).

Proposition 3.1.7. Let F : O ⊂ R × X→ X be an admissible Γ × S1-equivariant

map in O ⊂ R × X. Let f : Ω ⊂ Y → Y be an admissible Γ-equivariant map in
Ω ⊂ Y. Then, we have

(P5) (Multiplication) The product map F× f : R×X ×Y→ X ×Y is O×Ω-
admissible and

Γ × S1-Deg (F × f,O ×Ω) = Γ-Deg ( f,Ω) ∗ G-Deg ( f1,Ω1),

where “∗” stands for the Euler ring multiplication (II) in Table 2.2.

3.2 Equivariant Bifurcations

In this section, we review the standard procedure of treating equivariant
bifurcations using equivariant degrees. It starts with reformulating the bi-
furcation problem as a fixed point problem in an equivariant functional
setting, and then it defines a bifurcation invariant for the bifurcating equi-
librium using equivariant degrees of appropriate maps. The exact value of
bifurcation invariant then gives a complete topological classification of the
bifurcating branches by their symmetry properties.

Before we review this procedure, it is worthwhile pointing out that bi-
furcation invariants can be exactly calculated using the EDML (Equivariant
Degree Maple Library) Package, by calling

showdegree[Γ](n0, n1, . . . , nr,m0,m1, . . . ,ms), for ni,m j ∈ Z, (3.13)
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where Γ stands for the symmetry group, ni’s and m j’s are integers to be
determined by the critical spectrum of the linearization at the equilibrium.
The integers r and s in (3.13) are predetermined by Γ and are equal to the
number of all distinct (nontrivial) irreducible representations of Γ over reals
and over complex numbers, respectively.

3.2.1 Definition of a Bifurcation Invariant

Let Γ be a finite group and Rn be an (orthogonal) Γ-representation.
Consider

ẋ = f (λ, x), (λ, x) ∈ R ×Rn, (3.14)

where f : R ×Rn → Rn is an equivariant map of class C1 and λ ∈ R is the
bifurcation parameter. Here, Γ acts trivially on the parameter space R.

Assume that

(E1) xo ∈ R
n is an equilibrium of (3.14), i.e. f (λ, xo) = 0, ∀λ ∈ R.

Let J(λ) := D fx(λ, xo) be the Jacobian of f at xo. We call (λo, xo) a bifurcation
center of (3.14), if J(λo) has a purely imaginary eigenvalue iβo. Assume that

(B1) (λo, xo) is an isolated bifurcation center, i.e. (λo, xo) is the only bifurca-
tion center in a neighborhood of (λo, xo) in R ×Rn.

Moreover, to avoid steady-state bifurcations, we assume

(B2) J(λo) : Rn → Rn is an isomorphism.

We are interested in describing possible oscillating states arising from
xo as λ crosses λo.

Functional Reformulation Let p > 0 be the unknown period of the bifur-
cating solution x of (3.14). Let β := 2π

p and u(t) := x(1
β t). Then, finding a

p-periodic solution x of (3.14) is equivalent to solving




u̇ = 1
β f (λ, u),

u(0) = u(2π).
(3.15)

Let W := H1(S1;Rn) be the first Sobolev space of Rn-valued functions de-
fined on S1. Then, W admits a natural Γ × S1-action by

((γ, eiθ)u)(t) := γu(t + θ), γ ∈ Γ, eiθ ∈ S1.

Define

L : W → L2(S1;Rn), L(u) = u̇ (3.16)

j : W → C(S1;Rn), j(u) = ũ (3.17)

N f : R × C(S1;Rn)→ L2(S1;Rn), (N f (λ, v))(t) = f (λ, v(t)). (3.18)
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Then, (3.15) is equivalent to

Lu =
1

β
N f (λ, j(u)). (3.19)

Define K : W → L2(S1;Rn) by Ku := 1
2π

∫ 2π

0
u(t)dt. Then, (L +K) is invertible

and (3.19) is equivalent to

u = (L + K)−1
[1

β
N f (λ, j(u)) + Ku

]

:= F1(λ, β, u), (3.20)

where F1 is a Γ × S1-equivariant compact map, due to the compactness of j.

Bifurcation Invariant Let (λo, xo) be the isolated bifurcation center given
by (B1) and iβo be the purely imaginary eigenvalue of J(λo). Define a
neighborhood O ⊂ R2 ×W of (λo, βo, uo) by (cf. Figure 3.2)

O := {(λ, β, u) :

√

(λ − λo)2 + (β − βo)2 < ε, ‖u‖ < r} ⊂ R2 ×W, (3.21)

whereR2 is considered as a parameter space (on which Γ× S1 act trivially).
Note that O is Γ × S1-invariant, since Γ × S1 acts isometrically on W.

W W

α

β R

Fζ

O

ζ > 0

ζ > 0

ζ < 0

Figure 3.2: Bifurcation invariant as equivariant degree of Fζ in O: non-trivial
bifurcating solutions (in red) are “separated” from the trivial solutions using
an auxiliary function ζ.

To define an admissible map on O and consider only the non-trivial

solutions for (3.20), we introduce an auxiliary function ζ : O→ R such that





ζ > 0, for ‖u‖ = r

ζ < 0, for ‖u‖ = 0
. (3.22)
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Such auxiliary function can be defined for example, by

ζ(λ, β, u) :=

√

(λ − λo)2 + (β − βo)2(‖u‖ − r) + ‖u‖ −
r

2
.

For the definition of bifurcation invariant, it is not essential how the auxil-
iary function is precisely defined, but the property (3.22) that it satisfies.

Now, we are ready to define an admissible map on O:

Fζ : O→ R ×W

Fζ(λ, β, u) = (ζ(λ, β, u), u − F1(λ, β, u)). (3.23)

By construction, non-trivial solutions of (3.15) near (λo, xo) are precisely ze-
ros of Fζ in O for some auxiliary function ζ. Also, Fζ is Γ×S1-equivariant and
amounts to a compact perturbation of identity up to parameters. Therefore,
we can define

ω(λo, βo, xo) := Γ × S1-Deg (Fζ,O)

and call it the bifurcation invariant around (λo, xo).

3.2.2 Classification Results

Based on the existence property of the equivariant degree, a non-zero coef-
ficient nH in ω(λo, βo, xo) indicates the existence of a zero of Fζ in O having
isotropy at least H. As we will see in the next subsection, the value of
ω(λo, βo, xo) is independent of choice of ζ, thus a non-zero coefficient nH

implies indeed the existence of a branch of bifurcating zeros of Fζ in O hav-
ing isotropy at least H, since these bifurcating zeros can be “traced” along
by varying the choice of auxiliary functions. For a rigorous proof in this
perspective, we refer to Lemma 9.19 in [16].

Theorem 3.2.1. (cf. [16]) If ω(λo, βo, xo) =
∑

(H)
nH · (H) contains a non-zero

coefficient nH , 0 for some (H), then there exists a bifurcating branch of oscillating
states of isotropy at least (H).

Theorem 3.2.1 gives an existence result of bifurcating branches with
their least symmetry. To sharpen to the precise symmetry, one can work with
orbit types satisfying certain maximality condition. We recall the concept of
dominating orbit types from [16] and introduce a complementing definition
of secondary dominating orbit types (cf. [9]).

There is a natural way of “converting” a complex Γ-representation into a real
Γ×S1-representation. Let U be a complex Γ-representation. Define a Γ×S1-action
on U by

(γ, z)u = z · (γu), for (γ, z) ∈ Γ × S1, u ∈ U, (3.24)

where · stands for the complex multiplication. The obtained representation is
denoted by Ū and called the Γ × S1-representation induced from U. Note that
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Ū is irreducible as a real Γ × S1-representation if U is irreducible as a complex
Γ-representation.

Definition 3.2.1. Let {U1,U2, . . . ,Um}be the set of irreducibleΓ-representations
that occur in Cn, where Cn is the complexification of the phase space Rn

of the system (3.14). Let Ū j be the Γ × S1-representation induced fromU j,
for j = 1, 2, . . . ,m (cf. (3.24)). Collect maximal orbit types from Ū j, for
j = 1, 2, . . . ,m, and denote this collection by M. An orbit type (H) ∈ M
is called dominating if (H) is maximal inM. A non-dominating orbit type
(L) ∈ M is called secondary dominating if all orbit types (H) ∈ M satisfying
(L) < (H) are dominating. 3

Proposition 3.2.2. Under the assumptions of Theorem 3.2.1, we have

(i) If (H) = (Kφ,l) is a dominating orbit type, then there exist at least |Γ/K|
different bifurcating branches of non-constant oscillating states of (3.14),
which have isotropy subgroups γHγ−1, as γ run through Γ/K.

(ii) If (H) is a secondary dominating orbit type and for every dominating orbit
type (H̃) > (H) there exists a flow-invariant subspace S ⊂ Rn such that

(a) S contains every state of isotropy H̃; and

(b) J(λo)|S has no purely imaginary eigenvalues.

Then there exists a bifurcating branch of oscillating states of symmetry
precisely (H). Moreover, if (H) = (Kφ,l), then the conclusion of (i) also holds
for (H).

Proof. Statement (i) follows from [16], and (ii) follows from the implicit
function theorem. More precisely, let (H) be a secondary dominating orbit
type with a nonzero coefficient inω(λo, βo, xo). By Theorem 3.2.1, there exists
a a bifurcating branch of oscillating states of symmetry at least (H). Let (H̃)
be the precise symmetry of this branch and suppose that (H) < (H̃). By
definition of secondary dominating orbit types, the only orbit types that are
strictly larger than (H) are dominating orbit types. Thus (H̃) is dominating,
and so there exists a flow-invariant subspace S in Rn satisfying (a)–(b).
Consider the restricted flow on S. The bifurcating branch of oscillating
states, by condition (a), is contained in S. However, by condition (b) and
the implicit function theorem, there can be no bifurcation taking place in S.
This leads to a contradiction.

�

3.2.3 The Command showdegree

Exact value of bifurcation invariants can be obtained by calling

showdegree[Γ](n0, n1, . . . , nr,m0,m1, . . . ,ms), for ni,m j ∈ Z, (3.25)
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from the EDML (Equivariant Degree Maple Library) package.
We explain below how to use showdegree to obtain value of the bifur-

cation invariant.

The Symmetry Γ The entry Γ of showdegree refers to the phase symmetry
of (3.14). Currently available groups in EDML are the quaternion group Q8,
the dihedral groups Dn for 3 ≤ n ≤ 13, the symmetric group S4, the alter-
nating groups A4,A5, the orthogonal group O(2) and the special orthogonal
group SO(3).

The integers r and s in (3.25) are predetermined by Γ and equal to the
total number of its distinct (nontrivial) irreducible representations over reals
and over complex numbers, respectively.

We usually useV0,V1, . . . ,Vr for the distinct real irreducible represen-
tations and U0,U1, . . . ,Us for the complex ones, where V0 and U0 are
reserved for the trivial representations.

The Integers n0, n1, . . . , nr Consider J(λo) : Rn → Rn as a real linear trans-
formation. Denote by σ+ the set of all its positive eigenvalues.

For µ ∈ σ+, let E(µ) be the generalized eigenspace of µ. We decompose
E(µ) into pieces ofVi’s as follows. SinceRn is a Γ-representation ovre reals,
we can decomposeRn as

Rn = V0 × V1 × · · · × Vr,

where every Vi

Vi =Vi × · · · × Vi
︸          ︷︷          ︸

ci times

(3.26)

is a product of ci copies of Vi for some integer ci ∈ N ∪ {0}. Now, since
E(µ) ⊂ Rn is Γ-invariant, this leads to a decomposition of E(µ) as

E(µ) = E0 × E1 × · · · × Er,

for Ei = E(µ) ∩ Vi which can be then written as

Ei =Vi × · · · × Vi
︸          ︷︷          ︸

ni(µ) times

(3.27)

for some integer ni(µ) with 0 ≤ ni(µ) ≤ ci. Then,

ni :=
∑

µ∈σ+

ni(µ) (3.28)

are the integer input n0, n1, . . . , nr to showdegree.
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The Integers m0,m1, . . . ,ms Consider J(λo) : Cn → Cn as a complex linear
transformation. Recall that it has iβo as a purely imaginary eigenvalue.
Denote by Ec(iβo) the eigenspace. We decompose Ec(iβo) into pieces ofU j’s.

There is a natural extension of the Γ-action onRn toCn, which is defined
by

γ · (z ⊗ x) = z ⊗ (γ · x),

for γ ∈ Γ, z ∈ C and x ∈ Rn. Then, Cn, as a Γ-representation over complex
numbers, can be decomposed as

Cn = U0 ×U1 × · · · ×Ur,

where every U j

U j =U j × · · · × U j
︸           ︷︷           ︸

d j times

(3.29)

is a product of d j copies ofUi for some integer d j ∈N ∪ {0}.
Note that Ec(iβo) is invariant under this induced action, thus it admits a

decomposition as

Ec(iβo) = C0 × C1 × · · · × Cs,

where every C j = Ec(iβo) ∩U j can be written as

C j =U j × · · · × U j
︸           ︷︷           ︸

m j times

(3.30)

a product of m j copies of U j for some integer m j with 0 ≤ m j ≤ d j. These
are the integer input m0,m1, . . . ,ms to showdegree.

Remark 3.2.3. The integers m0,m1, . . . ,ms defined above differs from the
usual definition in the literature by a sign.Indeed, these integers are usually
given by the crossing numbers t j’s, which count the net escape of eigenvalues
through iβo (with respect to U j), as the bifurcation parameter λ moves
across λo (cf. Figure 3.3).

The relation between m j’s and t j’s are (cf. Remark 9.33 in [16])

m j = ±t j,

depending on whether there are more eigenvalues escaping or more eigen-
values entering through iβo. In the case illustrated by Figure 3.3 for example,
these quantities coincide.

3

Thus, we have

ω(λo, βo, xo) = ±showdegree[Γ](n0, n1, . . . , nr,m0,m1, . . . ,ms),
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λoλ− λ+

C

iβo

Figure 3.3: Geometric meaning of crossing numbers: it measures the net
escape of eigenvalues through iβo, as the bifurcation parameter λ moves
across λo. The eigenvalues are counted by their algebraic multiplicities.

where Γ stands for the phase symmetry of (3.14), the integers ni’s are given
by (3.28) and m j’s are indicated in (3.30).

Note that

ω(λo, βo, xo) =
∑

(H)∈Φ1

nH · (H) ⇔ −ω(λo, βo, xo) =
∑

(H)∈Φ1

− nH · (H).

Also, nH , 0 if and only if −nH , 0. Therefore, Theorem 3.2.1 and Proposi-
tion 3.2.2 can be applied to showdegree[Γ](n0, n1, . . . , nr,m0,m1, . . . ,ms) di-
rectly.



Chapter 4

Quotient Symmetry and
Equivariant Degree

Genuine similarity exists between equivariant bifurcations in equivariant
systems and synchrony-related bifurcations in networked systems. Sym-
metry, as the main feature of equivariant systems, places strong restrictions
on possible bifurcating states of the equivariant systems in their occurrence
and pattern. Network structure, on the other hand, as the global structure
obeyed by the networked systems, prescribes balanced equivalence rela-
tions, robust synchronies and their associated bifurcations. The key idea
is to replace symmetry with network structure, isotropy subgroups with
equivalence relations, fixed-point subspaces with synchrony subspaces,and
orbit types with synchrony patterns (cf. [73]).

Network structure is more than an extended version of symmetry. Sys-
tems that lie in the intersection of equivariant systems and networked sys-
tems are symmetrically coupled systems. Examples of such systems show
that even in this case symmetry alone cannot always reveal all synchrony
patterns dictated by network structure (cf. [33]).

Network structure also often induces different kinds of symmetry at the
same time. These include those that occur at quotient level, the quotient
symmetry, and those that occur at subnetwork level, the interior symmetry.
As we have seen in Subsection 2.1.1, the network (b) in Figure 2.3 has
quotient symmetry at different quotient levels and also interior symmetry
for some subnetwork.

In this chapter, we focus on the aspect of quotient symmetry and intro-
duce an equivariant degree theory that is suitable for studying synchrony-
related bifurcations in networks, with or without quotient symmetry. The
key idea is to explore algebraic structure of lattices of synchrony subspaces
and to use Euler ring homomorphisms to bridge zero orbits at different
quotient level. The resulting equivariant degree theory will be called the
lattice equivariant degree.

55
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It is worthwhile mentioning that in case of symmetrically coupled net-
works, the lattice equivariant degree coincides with the usual equivariant
degree. In case of coupled networks with adjacency matrices having only
simple eigenvalues, the networks are free of symmetry and the lattice equiv-
ariant degree reduces to the lattice indices introduced by Kamei in [48].

The content of this chapter is based on [66].

4.1 Representation Lattices

In this section, we give the definition of representation lattices and discuss
some of their properties, which include basic properties as lattices and
algebraic properties related to the lattice inclusion and product operations.

Definition 4.1.1. Let X be a real (resp. complex) Banach space and L be a
finite set of closed linear subspaces of X. L is called a lattice in X, if X ∈ L
and

U1 ∩U2 ∈ L, ∀ U1,U2 ∈ L.

We write U1 ≤ U2 (resp. U1 < U2), if U1 ⊂ U2 (resp. U1 ( U2). A subset
S ⊂ L is called a sublattice of L, if it is a lattice on its own right.

A representation lattice is a lattice of compatible representations, where
different representations are “connected” by group homomorphisms.

Definition 4.1.2. Let X be a real (resp. complex) Banach space and L be a
lattice in X. Assume that

(i) (representation) U is a real (resp. complex) isometric Banach repre-
sentation of a compact Lie group GU, for every U ∈ L;

(ii) (compatibility) there exists a group homomorphism

hU1,U2 : GU2 → GU1
,

for every U1,U2 with U1 ≤ U2 such that

g2♣x = h1,2(g2)♦x, ∀ g2 ∈ GU2 , x ∈ U1,

where “♣” and “♦” stand for the G2-action on U2 and the G1-action on
U1, respectively.

(iii) (consistence) hU1,U2 ◦ hU2,U3 = hU1,U3 for every U1 ≤ U2 ≤ U3.

Then,L is called a real (resp. complex) representation lattice in X. The collection

{(Ui,GUi
, hUi,U j

) : Ui,U j ∈ L, Ui ≤ U j}

is called the structure of representation lattice of L. 3
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It is instantly clear that a sublattice of a representation lattice L is again
a representation lattice, which we call a representation sublattice of L.

We illustrate the definition with the following example, which will serve
as a running example throughout the chapter.

Example 4.1.3. Let X = R5 and L be a lattice given in Figure 4.1, where the
pair (∆∗, Γ∗) indicates that ∆∗ is a representation of Γ∗ and ∆∗ is the linear
subspace composed of vectors of form indicated below the pair (∆∗, Γ∗). The
arrows give the direction of homomorphisms between Γ∗’s.

(∆,Z1)
a, a, a, a, a

(∆21,Z1)
a, a, b, a, b

(∆4,D3)
a, b, c, c, b

(∆2,Z2)
a, a, b, a, c

(∆1,D3)
a, b, b, c, c

(∆00,Z2)
a, b, c, b, d

(∆02,Z2)
a, a, b, c, d

(∆03,Z2)
a, b, c, a, d

(∆01,Z2)
a, b, d, c, d

(X,Z1)
a, b, c, d, e

Figure 4.1: A representation lattice L in R5.

The structure of the representation lattice L is specified as follows:

Representations: Z1 acts on∆,∆21,R
5 trivially;Z2 = 〈κ〉 acts on∆00,∆02,∆03,∆2

by the permutation κ = (3 5); Z2 = 〈κ̃〉 acts on ∆01 by the permutation
κ̃ = (2 4); and D3 ≃ S3 acts on ∆4,∆1 by the natural action of S3 on symbols
a, b, c.

Homomorphisms: Z1 → Γx are given by the inclusion; homomorphisms
Γx → Z1 are given by the projection; and homomorphisms Z2 → Z2

are given by the identity homomorphism. Under the above structure, L
becomes a real representation lattice in X. 3

4.1.1 Basic Properties of Lattices

We discuss some basic properties of representation lattices viewed as lattices
(without the representation structure).

Let L be a lattice in a Banach space X and U1,U2 ∈ L. If U1 < U2, then
U2 is called a descendant of U1. A minimal descendant is called an immediate
descendant. Denote by

L⊤ := {U ∈ L : U has a unique immediate descendant in L}.
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Lemma 4.1.4. Let X be a Banach space and L be a lattice in X. Then,

(i) L has a unique minimal element;

(ii) for U ∈ L, the set L \ {U} is a sublattice of L if and only if U ∈ L⊤;

(iii) Let S ⊂ L be a sublattice and set k := |L \ S|, where | · | is the count of
elements. Then there exists a flag of lattices of length k

L = L0 ⊃ L1 ⊃ · · · ⊃ Lk = S

such that Li+1 = Li \ {Ui} for certain Ui ∈ Li, i = 0, 1, . . . , k − 1;

(iv) Let X′ be another Banach space andM be a lattice in X′. Then,

L ×M := {U ×M : U ∈ L, M ∈ M}

is a lattice in X × X′.

Proof. (i) Since L is closed under set intersections, the minimal element is
given by the intersection of all elements of L.
(ii) Let S = L \ {U}. If U ∈ L⊤, then U , X and U = U1 ∩ U2 for some
U1,U2 ∈ L only if U ∈ {U1,U2}. It follows that X ∈ S and U , U1 ∩ U2 for
any U1,U2 ∈ S. Thus,S is a sublattice. If U < L⊤, then U has more than one
immediate descendants. Let U1,U2 be two distinct immediate descendants
of U inL. Then, U = U1 ∩U2 for U1,U2 ∈ S. But U < S, which implies that
S is not a sublattice.
(iii) We claim that

P⊤ \ S , ∅, for every lattice P s.t. L ⊃ P ) S. (4.1)

Assume to the contrary and let U be a maximal element of P \ S. In
particular, since U , X, U has descendants. By assumption, U has at least
two distinct immediate descendants in P, say U1,U2. Then, U = U1 ∩ U2.
Moreover, since U is a maximal element of P \ S, we have U1,U2 ∈ S. It
follows that U = U1∩U2 ∈ S, which is a contradiction to the fact that U < S.
Thus, (4.1) holds.

It follows from (4.1) that there exists U0 ∈ L
⊤\S. By (ii),L1 := L\{U0} is

a sublattice. By applying (4.1) inductively toLi+1 = Li\{Ui}, for Ui ∈ L
⊤
i
\S,

i = 1, . . . , k − 1, we obtain the desired flag of lattices.
(iv) It follows from the fact that

(U1 ×Q1) ∩ (U2 ×Q2) = (U1 ∩U2) × (Q1 ∩Q2)

for Ui ∈ L, Qi ∈ M, i = 1, 2. �

In analogue, we have

Corollary 4.1.5. The properties (i)–(iv) in Lemma 4.1.4 hold for representation
lattices.
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Proof. Let L be a representation lattice. Then, (i) clearly holds. Moreover,
since representation sublattices are precisely sublattices of representation
lattices, (ii) and (iii) also hold.

Let X′ be another Banach space andM be a lattice in X′. Then,

{(U ×Q,GU × GQ, hU,V × hQ,P) : U,V ∈ L, Q,P ∈ M,U ⊂ V,Q ⊂ P} (4.2)

gives L ×M a structure of representation lattice. �

Definition 4.1.6. LetLbe a representation lattice with structure {U,GU, hU,V}
and M be a representation lattice with structure {Q,GQ, hQ,P}. Then, the
latticeL×Mwith the structure (4.2) is called the product representation lattice
of L andM. 3

4.1.2 Algebraic Properties of Representation Lattices

Using Euler rings of compact Lie groups, we associate to a representation
lattice an algebraic structure that serves to be the range of the lattice equiv-
ariant degree that we introduce later. We show that this algebraic structure
is compatible with the usual lattice operations such as the inclusion and the
product operation.

Definition 4.1.7. LetLbe a representation lattice with structure {U,GU, hU,V}.
For U ∈ L, let A(GU) be the Euler ring of the compact Lie group GU (cf.
Definition 2.3.1). Let

R(L) :=
{ ∑

U∈L

(U, aU) : aU ∈ A(GU)
}

, (4.3)

which is a free (left) Z-module with respect to

∑

U∈L

(U, aU) +
∑

U∈L

(U, bU) :=
∑

U∈L

(U, aU + bU), aU, bU ∈ A(GU),

k
∑

U∈L

(U, aU) :=
∑

U∈L

(U, kaU), k ∈ Z.

Define a ring multiplication on R(L) by

∑

U∈L

(U, aU) ·
∑

U∈L

(U, bU) :=
∑

U∈L

(U, aU ∗ bU), aU, bU ∈ A(GU), (4.4)

where ‘∗’ stands for the Euler ring multiplication in A(GU). The free (left)
Z-module R(L) together with the ring multiplication (4.4) is called the
associated ring of L. 3
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Reduction Map

Let L be a representation lattice and S ⊂ L be a representation sublattice.
Then, every U ∈ L \ S has a unique minimal descendant in S, which is
given by the intersection of all the descendants of U in S.

Definition 4.1.8. LetL be a representation lattice with structure {U,GU, hU,V}
and S ⊂ L be a representation sublattice. Define the reduction map from
R(L) to R(S) by

ΦL
S

: R(L)→ R(S)

(U, a) 7→





(Ud,HU,Ud
(a)), if U ∈ L \ S,

(U, a), if U ∈ S,
(4.5)

where U ∈ L, a ∈ A(GU), Ud stands for the unique minimal descendant of
U in S and HU,Ud

is the Euler ring homomorphism induced by hU,Ud
(cf.

(2.21)). 3

The reduction map is compatible with the lattice inclusion.

Proposition 4.1.9. Let L be a representation lattice, S,P ⊂ L be representation
sublattices such that L ⊃ P ⊃ S. Then, we have ΦL

S
= ΦP

S
◦ΦL

P
.

Proof. Let U ∈ L and a ∈ A(GU). If U ∈ S, then (U, a) is a fixed point of ΦL
S

,

ΦP
S

and ΦL
P

. Thus, the statement holds.
Let U ∈ L\S and Ud be the unique minimal descendant of U inS. Then,

ΦL
S

(

(U, a)
)

=
(

Ud,HU,Ud
(a)

)

.

If U ∈ P, then (U, a) is a fixed point ofΦL
P

and ΦP
S

((U, a)) = (Ud,HU,Ud
(a)).

So ΦP
S
◦ ΦL

P

(

U, a)
)

agrees with ΦL
S

(

(U, a)
)

. Otherwise if U ∈ L \ P, then

ΦL
P

((U, a)) = (Uc,HU,Uc(a)), where Uc is the unique minimal descendant of U
in P. In the case Uc ∈ S, we have Uc = Ud, by the uniqueness of minimal
descendant. In the case Uc ∈ P \S, Ud is the unique minimal descendant of
Uc in S. Consequently, in both cases, we have

ΦP
S
◦ΦL

P

(

(U, a)
)

= ΦP
S

(

(Uc,HU,Uc(a))
)

=
(

Ud,HU,Ud
(a)

)

.

�

Example 4.1.10. Let L be the representation lattice given in Example 4.1.3
and S be a representation sublattice given by S = L \ {∆01} (cf. Figure
4.2). Let ΦL

S
be the reduction map defined by (4.5). Let H∆01,R5

be the ring
homomorphism induced by the inclusion homomorphism h∆01,R5

: Z1 →
Z2.
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kip-.3cm

(∆,Z1)
a, a, a, a, a

(∆21,Z1)
a, a, b, a, b

(∆4,D3)
a, b, c, c, b

(∆2,Z2)
a, a, b, a, c

(∆1,D3)
a, b, b, c, c

(∆00,Z2)
a, b, c, b, d

(∆02,Z2)
a, a, b, c, d

(∆03,Z2)
a, b, c, a, d

(∆01,Z2)
a, b, d, c, d

(X,Z1)
a, b, c, d, e

kip-.7cm

Figure 4.2: A representation sublattice S ⊂ L, where S = L \ {∆01} and the
dashed arrows are removed.

Then, ΦL
S

fixes all generators of R(L) except

ΦL
S

(

∆01, (Z2)
)

=
(

R5,H∆01,R5

(

(Z2)
))

=
(

R5, (Z1)
)

,

ΦL
S

(

∆01, (Z1)
)

=
(

R5,H∆01,R5

(

(Z1)
))

=
(

R5, 2(Z1)
)

.

3

Product Map

Let L be a representation lattice with structure {U,GU, hU,V} and M be a
representation lattice with structure {P,GP, hP,Q}. The projection homomor-
phisms on groups

projU : GU × GP → GU, projP : GU × GP → GP

induce the inclusion homomorphisms on Euler rings (cf. (2.21))

incU : A(GU) ֒→ A(GU × GP),

incP : A(GP) ֒→ A(GU × GP).

Thus, we can define a product of a ∈ A(GU) and b ∈ A(GP) through

A(GU) × A(GP) ֒→ A(GU × GP) × A(GU × GP)
∗
→ A(GU × GP),

where ∗ is the ring multiplication in A(GU × GP), i.e.

a ⋆ b := incU(a) ∗ incP(b). (4.6)

The product ‘⋆’ is compatible with representation lattice structure.
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Proposition 4.1.11. LetL be a representation lattice with structure {U,GU, hU,V}
andM be a representation lattice with structure {P,GP, hP,Q}. Then, the diagram
in Figure 4.3 commutes, where ‘⋆’ is defined by (4.6) and H∗ is the induced

A(GU) × A(GP) A(GU × GP)

A(GV) × A(GQ) A(GV × GQ)

⋆

⋆

HU,V × HP,Q HU×P,V×Q

Figure 4.3: A commutative diagram for Proposition 4.1.11.

homomorphism through h∗ (cf. (2.21)).

Proof. By Theorem 2.3.4, HU×P,V×Q is an Euler ring homomorphism. Thus,
it suffices to show that the following diagram commutes.

A(GU) A(GU × GP)

A(GV) A(GV × GQ)

incU

incV

HU,V HU×P,V×Q

Let (K) ∈ A(GU). It follows from the definition of H∗ that (cf. (2.21))

HU,V

(

(K)
)

=
∑

(K̃)∈Φ(GV)

χc((GU/K)(K̃)/GV)(K̃),

HU×P,V×Q

(

(K × GP)
)

=
∑

(K′)∈Φ(GV×GQ)

χc((GU × GP/K × GP)(K′)/GV × GQ)(K′).

Note that GP acts trivially on GU × GP/K × GP, which implies that GQ

also acts trivially on GU × GP/K × GP through hU×P,V×Q. Therefore, (GU ×
GP/K × GP)(K′) , ∅ if and only if (K′) = (K̃ × GP) for some K̃ such that
(GU/K)(K̃) , ∅. Moreover, (GU×GP/K×GP)(K′)/GV×GQ is GV-homeomorphic
to (GU/K)(K̃)/GV. Thus, we have

HU×P,V×Q

(

(K × GP)
)

= HU,V

(

(K)
)

, ∀ (K) ∈ A(GU).

�

Definition 4.1.12. LetLbe a representation lattice with structure {U,GU, hU,V}
andM be a representation lattice with structure {P,GP, hP,Q}. Consider the
product latticeL×Mwith the product structure (cf. (4.2)). Let R(L), R(M)
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and R(L×M) be the associated rings defined by (4.3). Define a product map
by

• : R(L) × R(M)→ R(L ×M)

((U, a), (P, b)) 7→ (U × P, a ⋆ b), (4.7)

where U ∈ L, P ∈ M, a ∈ A(GU), b ∈ A(GP) and a ⋆ b is defined by (4.6). 3

4.2 Lattice Equivariant Degree

In this section, we give the definition of lattice equivariant maps and for-
mulate a degree theory for these maps, which we call the lattice equivariant
degree. We show that this degree satisfies the usual properties of a topolog-
ical degree, and moreover, it has algebraic properties compatible with the
inclusion and the product of representation lattices.

In what follows,R stands for a parameter space, in which all groups act
trivially.

Definition 4.2.1. Let L be a representation lattice in Rn with structure
{U,GU, hU,V}. An open bounded subsetΩ ⊂ R ×Rn is called L-invariant, if

Ω∩ (R×U) is GU-invariant, for every U ∈ L. A continuous map f : Ω→ Rn

is calledL-equivariant, if f (Ω∩ (R×U)) ⊂ U and f |
Ω∩(R×U)

is GU-equivariant

for every U ∈ L. The map f is calledΩ-admissible, if f−1(0)∩∂Ω = ∅. In this
case, we say that the pair ( f,Ω) is an admissible pair. Similarly, one defines
Ω-admissible and L-equivariant homotopies. 3

A degree theory can be defined for lattice equivariant maps on their
admissible domains, using equivariant degrees and Euler ring homomor-
phisms. For simplicity, we consider only representation lattices L with a
structure {U,GU, hU,V} such that

GU = ΓU × S1, for a finite groupΓU, U ∈ L.

The resulting degree will be used for studying synchrony-related bifurca-
tions in coupled cell networks, where ΓU describes the quotient symmetry
associated with a synchrony subspace U.

4.2.1 Definition and Basic Properties

Let L be a representation lattice with structure {U,GU, hU,V}, where GU =

ΓU × S1 for a finite group Γu. Recall that (cf. (4.3))

R(L) :=
{ ∑

U∈L

(U, aU) : aU ∈ A(GU)
}

,
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where A(GU) is the Euler ring of GU. Denote by

Rk(L) :=
{ ∑

U∈L

(U, aU) ∈ R(L) : aU ∈ Ak(GU)
}

, for k = 0, 1,

where Ak(G) is defined by (2.25).
The lattice equivariant degree we define below takes value in R(L) and

is directly related to the equivariant degree with one parameter ΓU×S1-Deg
for U ∈ L discussed in Subsection 3.1.2.

Definition 4.2.2. Let L be a representation lattice in Rn with the structure
given by {U,GU, hU,V}, where GU is of form ΓU ×S1 for a finite group ΓU. Let

Ω ⊂ R ×Rn be an open boundedL-invariant subset and f : Ω→ Rn be an
Ω-admissible L-equivariant map.

For the minimal element Umin ∈ L, define

aUmin := ΓUmin × S1-Deg ( f |Ω∩(R×Umin),Ω ∩ (R ×Umin)). (4.8)

Suppose that aU′ is defined for all U′ < U. Then, define

aU := ΓU × S1-Deg ( f |Ω∩(R×U),Ω ∩ (R ×U)) −
∑

U′<U

HU′,U(aU′), (4.9)

where HU′,U is the Euler ring homomorphism induced by hU′,U (cf. (2.21)).
The lattice equivariant degree of f in Ω is then defined by

L-Deg ( f,Ω) :=
∑

U∈L

(U, aU) ∈ R1(L). (4.10)

3

It follows from Definition 4.2.2 that in the case of a trivial lattice structure:
L is composed of a single elementRn as a representation of Γ×S1, the lattice
equivariant degreeL-Deg coincides with the equivariant degree Γ×S1-Deg
with one parameter.

We show that the degree defined by (4.8)–(4.10) satisfies basic properties
of a degree theory.

Theorem 4.2.3. Let L be a representation lattice in Rn with the structure given
by {U,GU, hU,V}, where GU = ΓU × S1 for a finite group ΓU. Then, the function
L-Deg defined by (4.8)–(4.10) satisfies:

(i) (Existence) Suppose that L-Deg ( f,Ω) =
∑

(U, aU) and aU , 0 for some
U ∈ L. Write aU =

∑

nH(H). If (H) is such that nH , 0, then

f−1(0) ∩
(

ΩH ∩ (R ×U)
)

, ∅,

where ΩH is the fixed-point subspace in Ω (cf. (2.8)).
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(ii) (Homotopy Invariance) If H : [0, 1] × Ω → Rn is an Ω-admissible L-
equivariant homotopy, then

L-Deg (H(t, ·),Ω) = constant, ∀t ∈ [0, 1].

(iii) (Additivity) If Ω1,Ω2 ⊂ Ω are disjoint open bounded L-invariant subsets
such that f−1(0) ∩Ω ⊂ Ω1 ∪Ω2 and f is Ωi-admissible for i = 1, 2, then

L-Deg ( f,Ω) = L-Deg ( f,Ω1) +L-Deg ( f,Ω2).

(iv) (Suspension) LetM be a representation lattice in Rm, Id : V′ → V′ be the
identity map and Ω′ ⊂ Rm be an open boundedM-invariant neighborhood
of 0. Then, L×M-Degt ( f × Id,Ω ×Ω′) is well-defined. Moreover,

L ×M-Degt ( f × Id,Ω ×Ω′) = L-Deg ( f,Ω),

under the identification: U 7→ U × Pmin and (H) 7→ (H × ΓPmin) for every
U ∈ L and (H) ∈ Φ1(ΓU × S1), where Pmin ∈ M is the minimal element.

Proof. (ii) and (iii) follow immediately from the corresponding properties
of the equivariant degree with one parameter (cf. Theorem 3.1.6).

To show (i), assume that f−1(0) ∩
(

ΩH ∩ (R × U)
)

= ∅. If U = Umin,
then by the existence property of the equivariant degree, we have that
aUmin = ΓU × S1-Deg ( f |Ω∩(R×Umin),Ω∩ (R×Umin)) has a zero (H)-coefficient,
which is a contradiction. Assume that the statement holds for all U′ < U.
By assumption, aU has a nonzero (H)-coefficient. By the existence property
of the equivariant degree, ΓU × S1-Deg ( f |Ω∩(R×U),Ω ∩ (R × U)) has a zero
(H)-coefficient. It follows from the definition of aU that there exists U′ < U
such that HU′,U(aU′ ) has a nonzero (H)-coefficient. Thus, there exists an
H′ ⊂ ΓU′ × S1 such that H = h−1

U′,U(H′) and the (H′)-coefficient in aU′ is
nonzero. By the induction assumption, we have

f−1(0) ∩
(

ΩH′ ∩ (R ×U′)
)

, ∅.

Let x ∈ f−1(0) ∩
(

ΩH′ ∩ (R × U′)
)

and g ∈ H. Then, hU′,U(g) ∈ H′, so
hU′,U(g)x = x. By the definition of representation lattice (cf. Definition
4.1.2(ii)), we have then

gx = hU′,U(g)x = x.

It follows that x ∈ f−1(0)∩
(

ΩH ∩ (R×U)
)

. In particular, f−1(0)∩
(

ΩH ∩ (R×

U)
)

, ∅, which is a contradiction to our initial assumption.
To show (iv), let

L×M-Degt ( f × Id,Ω ×Ω′) =
∑

(U × P, bU×P)

L-Deg ( f,Ω) =
∑

(U, aU).
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Let Umin ∈ L and Pmin ∈ M be the minimal element, respectively. Let ΓUmin

act trivially on Pmin and ΓPmin act trivially onR×Umin. Then,Ω∩ (R×Umin)
becomes ΓUmin×ΓPmin×S1-invariant and the restricted f is a ΓUmin×ΓPmin×S1-
equivariant map. Similarly,Ω′∩Pmin becomes ΓUmin×ΓPmin-invariant and the
Id is ΓUmin×ΓPmin-equivariant. By the suspension property of the equivariant
degree, we have

bUmin×Pmin = ΓUmin × ΓPmin × S1-Degt ( f × Id, (Ω ∩ (R ×Umin)) × (Ω′ ∩ Pmin))

= ΓUmin × ΓPmin × S1-Degt ( f,Ω ∩ (R ×Umin))

≃ aUmin ,

where ‘≃’ means identifying (H × ΓPmin) with (H), for H ⊂ ΓUmin × S1. Using
the suspension property of the equivariant degree inductively, one shows

bU×Pmin ≃ aU, bUmin×P = 0, for P > Pmin. (4.11)

Let U > Umin and P > Pmin. We show that bU×P = 0. Assume that bU′×P′ = 0
for all U′ × P′ < U × P and P′ > Pmin. Then, we have

bU×P = ΓU × ΓP × S1-Degt ( f, (Ω ∩ (R ×U)) −
∑

U′×P′<U×P

HU′×P′,U×P(bU′×P′)

(4.11)
= ΓU × ΓP × S1-Degt ( f, (Ω ∩ (R ×U)) −

∑

U′≤U

HU′×Pmin,U×P(bU′×Pmin)

(4.11)
≃ ΓU × S1-Degt ( f, (Ω ∩ (R ×U)) −

∑

U′≤U

HU′,U(aU′) = 0.

Thus, (iv) holds.

�

4.2.2 Algebraic Properties

We discuss further algebraic properties of lattice equivariant degrees, with
respect to the reduction map (cf. Definition 4.1.8) and the product map (cf.
Definition 4.1.12) on representation lattices.

Proposition 4.2.4. (Reduction Homomorphism) Let L be a representation
lattice in Rn and S ⊂ L be a representation sublattice. Let ΦL

S
be the reduction

map from L to S defined by (4.5). Then, we have

ΦL
S

(L-Deg ( f,Ω)) = S-Deg( f,Ω), (4.12)

for every admissible L-equivariant pair ( f,Ω).
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Proof. Let ( f,Ω) be an admissible L-equivariant pair. By Proposition 4.1.9
and Lemma 4.1.4(iii), we can assume without loss of generality, that S =
L \ {Uo} for some Uo ∈ L

⊤. Let

L-Deg ( f,Ω) =
∑

U∈L

(U, aU), S-Deg( f,Ω) =
∑

U∈S

(U, bU).

By the definition of aU, we have bU = aU if Uo ≮ U. Let U ∈ L be such that
Uo < U and U+ be the unique immediate descendant of Uo. Then, U+ ≤ U.
In case U = U+, we have

bU+ = ΓU+ × S1-Deg( f,Ω ∩ (R ×U+)) −
∑

U′<U+
U′∈S

HU′,U+(bU′)

= aU+ +
∑

U′<U+
U′∈L

HU′,U+(aU′) −
∑

U′<U+
U′∈S

HU′,U+(bU′)

= aU+ + HUo,U+(aUo ) +
∑

U′<U+
U′∈S

HU′,U+(aU′) −
∑

U′<U+
U′∈S

HU′,U+(bU′)

= aU+ + HUo,U+(aUo ) (4.13)

For U > U+, suppose that aU′ = bU′ for all U+ < U′ < U, then we have

bU = ΓU × S1-Deg( f,Ω ∩ (R ×U)) −
∑

U′<U
U′∈S

HU′,U(bU′)

= aU +
∑

U′<U
U′∈L

HU′,U(aU′) −
∑

U′<U
U′∈S

HU′,U(bU′)

= aU + HU+,U(aU+) + HUo,U(aUo ) − HU+,U(bU+)

(4.13)
= aU + HUo,U(aUo) − HUo,U+HU+,U(aUo ),

which implies that bU = aU by Theorem 2.3.4(ii). �

Recall that the Γ×S1-equivariant degree with one parameter has a multi-
plication property corresponding to the A(Γ)-module structure on A1(Γ×S1),
which coincides with the Euler ring multiplication in A(Γ × S1) (cf. Subsec-
tion 3.1.3). We show that this multiplication can be naturally extended to
the lattice equivariant degree.

Proposition 4.2.5. (Product Property) Let L be a representation lattice with
structure {U, ΓU×S1, hU,V} inR

n andM be a representation lattice with structure
{P, ΓP, hP,Q}, where Γ∗ are finite groups. Suppose thatΩ ⊂ R×Rn (resp. Ω′ ⊂ Rm)

is an open bounded L-invariant (resp. M-invariant) subset and f : Ω → Rn
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(resp. g : Ω
′
→ Rm) is an Ω-admissible L-equivariant (resp. Ω′-admissible

M-equivariant) map. Then, we have

L ×M-Degt( f × g,Ω ×Ω′) = L-Deg ( f,Ω) •M-Deg(g,Ω′), (4.14)

where “•” is defined by (4.7).

Proof. Let L × M-Degt( f × g,Ω × Ω′) =
∑

(U × P, aU×P), L-Deg ( f,Ω) =
∑

U∈L(U, bU) andM-Deg(g,Ω′) =
∑

P∈M(P, cP). It sufficies to show

aU×P = bU ⋆ cP.

Denote by Umin and Pmin the minimal element of L and M respectively.
Then,

aUmin×Pmin = ΓUmin × ΓPmin × S1-Degt ( f × g, (Ω ∩ (R ×Umin)) × (Ω′ ∩ Pmin))

= ΓUmin × ΓPmin × S1-Degt ( f,Ω ∩ (R ×Umin))) ∗ ΓUmin × ΓPmin-Deg(g,Ω′ ∩ Pmin)

= ΓUmin × S1-Degt ( f,Ω ∩ (R ×Umin))) ⋆ ΓPmin-Deg(g,Ω′ ∩ Pmin)

= bUmin ⋆ cPmin .

Assume that aU′×P′ = bU′ ⋆ cP′ for all U′,P′ such that U′ ×P′ < U × P. Then,
we have

aU×P =
∑

U′≤U

bU′ ⋆
∑

P′≤P

cP′ −
∑

U′×P′<U×P

HU′×P′,U×P(aU′×P′)

=
∑

U′≤U

bU′ ⋆
∑

P′≤P

cP′ −
∑

U′×P′<U×P

HU′×P′,U×P(bU′ ⋆ cP′)

=
∑

U′≤U

bU′ ⋆
∑

P′≤P

cP′ −
∑

U′×P′<U×P

HU′,U(bU′) ⋆ HP′,P(cP′),

= bU ⋆ cP,

where the second last equality is based on Proposition 4.1.11. �

4.2.3 Extension to Infinite-dimensional Vector Spaces

In this subsection, we extend the lattice equivariant degree to infinite-
dimensional lattice representations for compact lattice equivariant vector
fields. The desired approximation of compact maps by finite-dimensional
maps is based on an equivariant version of the Schauder projection.

In what follows, W is an infinite-dimensional real Banach space. Recall
that for a bounded subset X ⊂ R×W, a continuous map F : X→ W is called

compact, if F(X) is compact in W; and F is called finite dimensional, if F(X) is
contained in a finite dimensional subspace of W. Let π : R×W → W be the
projection on W and F : X → W be a compact map, then π − F is called a
compact vector field.
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Definition 4.2.6. Let G be a compact Lie group and W be a Banach repre-
sentation of G. Let N = {c1, c2, . . . , cn} ⊂ W be a finite set. For any fixed
ε > 0, let

U(N, ε) =
n⋃

i=1

⋃

g∈G

gB(ci, ε), (4.15)

where the symbol gA means the union of all elements gx for x ∈ A and
B(ci, ε) stands for the open ε-disk around ci in W. For x, y ∈ W, define
ρε(x, y) = max {0, ε − ‖x − y‖}. We call the map pN,ε : U(N, ε) → W defined
by

pN,ε(x) =

n∑

i=1

∫

G
ρε(g−1x, ci)gci dµ(g)

n∑

i=1

∫

G
ρε(g−1x, ci) dµ(g)

, (4.16)

for µ being the Haar measure of G, the equivariant Schauder projection.

Note that the denominator of pN,ε is never zero. For every x ∈ U(N, ε),
there exists i ∈ {1, 2, . . . , n}, g ∈ G such that x = gy for some y ∈ B(ci, ε). That
is, x ∈ U(N, ε) if and only if ‖g−1x−ci‖ < ε, which implies thatρε(g−1x, ci) > 0.

The equivariant Schauder projection has the following properties.

Lemma 4.2.7. Let G be a compact Lie group and W be an isometric Banach
representation of G. Let N = {c1, c2, . . . , cn} ⊂ W be a finite set and ε > 0. Let
U(N, ε) be given by (4.15) and pN,ε be given by (4.16). Then,

(i) pN,ε is G-equivariant;

(ii) pN,ε is a finite-dimensional map;

(iii) ‖x − pN,ε(x)‖ < ε, for all x ∈ U(N, ε).

Proof. (i) Let a(x) be the numerator of pN,ε(x) and b(x) be the denominator of
pN,ε(x). We show that the map a is G-equivariant and b is G-invariant. Let
go ∈ G. Then,

a(g−1
o x) =

n∑

i=1

∫

G

ρε(g−1g−1
o x, ci)gci dµ(g) =

n∑

i=1

∫

G

ρε((go g)−1x, ci)g−1
o gogci dµ(g)

= g−1
o

n∑

i=1

∫

G

ρε((gog)−1x, ci)(gog)ci dµ(g) = g−1
o a(x),

and

b(g−1
o x) =

n∑

i=1

∫

G

ρε(g−1g−1
o x, ci) dµ(g) =

n∑

i=1

∫

G

ρε((gog)−1x, ci) dµ(g) = b(x).
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Thus, pN,ε is G-equivariant. (ii) Note that the G-orbit of ci is a finite-
dimensional smooth manifold of W, thus is contained in a subspace Wi ⊂W
with dim Wi < ∞, for i = 1, 2, . . . , n. It follows that

∫

G
ρε(g−1x, ci)gci dµ(g) ∈

Wi and pN,ε(x) ∈ span{W1,W2, . . . ,Wn} for all x ∈W.
(iii) Let x ∈ U(N, ε). Assume that ρε(g−1x, ci) , 0. Then, ‖g−1x − ci‖ < ε.
Thus, ‖x − gci‖ < ε, since G acts isometrically on W. Therefore,

‖x − pN,ε(x)‖ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

n∑

i=1

∫

G
ρε(g−1x, ci)(x − gci) dµ(g)

n∑

i=1

∫

G
ρε(g−1x, ci) dµ(g)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤

n∑

i=1

∫

G
ρε(g−1x, ci) ‖x − gci‖ dµ(g)

n∑

i=1

∫

G
ρε(g−1x, ci) dµ(g)

< ε.

�

We have the following approximation theorem.

Proposition 4.2.8. Let W be an infinite-dimensional real Banach space and T
be representation lattice with structure {Y,GY, hY,Y′} in W. Let X ⊂ R × W
be a bounded T -invariant subset and F : X → W be a T -equivariant compact
map. Then, for every ε > 0, there exists a T -equivariant finite-dimensional map
Fε : X→W such that

‖F(x) − Fε(x)‖ < ε, for all x ∈ X.

Proof. For convenience, we numerate the elements of T as Y1,Y2, . . . ,Ym

such that
Yi ⊂ Y j =⇒ i ≤ j.

Based on Lemma 4.2.7, we define Fε inductively on Y = Yi using the equiv-
ariant Schauder projection. Set ε = ε1.

For Y = Y1, since F is a compact map, F(X ∩ (R × Y1)) is a compact set
in W. Thus, there exists a finite set N1 = {c1, c2, . . . , cn1

} ⊂ Y1 such that the

set U(N1, ε1) defined by (4.15) covers F(X ∩ (R × Y1)). Let pN1,ε1
be given by

(4.16) and define

Fε1
(x) = pN1,ε1

(F(x)), ∀ x ∈ X ∩ (R × Y1).

For Y = Y2, choose ε2 > 0 such that ε2 < ε1 and

{y ∈ Y2 : dist (y, F(X ∩ (R × Y1)) < ε2} ⊂ U(N1, ε1).

Since F(X ∩ (R × Y2)) is compact, there exists a finite set

N2 = {cn1+1, cn1+2, . . . , cn1+n2 } ⊂ Y2 \U(N1, ε1)

such that U(N2, ε2) defined by (4.15) covers F(X ∩ (R × Y2))\U(N1, ε1). Note
that by the choice of ε2, we have

dist (cn1+ j, F(X ∩ (R × Y1)) ≥ ε2, ∀ j = 1, 2, . . . , n2. (4.17)
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Define pN2,ε2 : U(N1, ε1) ∪U(N2, ε2)→W by

pN2,ε2(x) =

n1∑

i=1

∫

GY1

ρε1
(g−1x, ci)gci dµ(g) +

n2∑

j=1

∫

GY2

ρε2(g−1x, cn1+ j)gcn1+ j dµ(g)

n1∑

i=1

∫

GY1

ρε1
(g−1x, ci) dµ(g) +

n2∑

j=1

∫

GY2

ρε2(g−1x, cn1+ j) dµ(g)

.

It can be verified that pN2,ε2 is GY2
-equivariant in Y2 (noting the compat-

ibility condition (ii) of Definition 4.1.2), finite-dimensional and satisfies
‖x − pN2,ε2(x)‖ < ε1 = ε. Let

Fε2(x) = pN2,ε2(F(x)), ∀ x ∈ X ∩ (R × Y2).

It should be noted that by (4.17), Fε2 coincides with Fε1
on X ∩ (R × Y1).

Thus, Fε2 is a finite dimensional ε-approximation of F such that Fε2 is lattice-
equivariant with respect to the representation sublattice {Y1,Y2} of T .

By iterating the above procedure until Y = Ym, we obtain the desired
map Fε given by Fεm .

�

Let T be a representation lattice in W. Let O ⊂ R ×W be a T -invariant

open bounded subset and F : O→ W be a T -equivariant compact map. By
Proposition 4.2.8, for given ε > 0, F has a T -equivariant finite-dimensional

approximation Fε : O→W such that ‖Fε(x)−F1(x)‖ < ε, for x ∈ O. Suppose

that Fε(O) ⊂W∗ for a finite-dimensional subspace W∗ ⊂W. Set

T∗ := {Y ∩W∗ : Y ∈ T }.

We define the lattice equivariant degree of π − F in O by

T -Degt(π − F,O) := T∗-Degt(π − Fε|O∩(R×W∗),O ∩ (R ×W∗)), (4.18)

where the function T∗-Degt on the right hand side is defined by (4.10).
By a standard argument, one shows that the definition is independent

of the choice of approximation Fε and W∗. Moreover, the defined lattice
equivariant degree by (4.18) satisfies similar properties as listed in Theorem
4.2.3 with f replaced by compact vector fields.

4.3 Bifurcations in Coupled Cell Systems

In the same way how equivariant degrees can be used for equivariant bi-
furcations, lattice equivariant degrees are suitable for studying synchrony-
related bifurcations in coupled dynamical systems.

Homogeneous coupled cell networks are coupled cell networks whose
cells are all input-equivalent. They provide basic models for studying fully
synchronized states in networks and their breaking through bifurcations.
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Recall that a homogeneous coupled cell system is of form

ẋ1 = fo(λ; x1; xi1 , . . . , xis)

ẋ2 = fo(λ; x2; x j1 , . . . , x js),

· · · (4.19)

ẋn = fo(λ; xn; xk1
, . . . , xks

),

where λ ∈ R is a bifurcation parameter, xi ∈ R
k are cell variables of internal

dimension k and fo : R × Rk × (Rk)s → Rk is some function of class C1

determining the internal cell dynamics.
It is convenient to write (4.19) in a more compact form. Let

x =





x1

x2

· · ·
xn





∈ (Rk)n, f (λ, x) =





fo(λ; x1; xi1 , . . . , xis )
fo(λ; x2; x j1 , . . . , x js)

· · ·
fo(λ; xn; xk1

, . . . , xks
)





Then, (4.19) is equivalent to

ẋ = f (λ, x). (4.20)

Assume that x = xo ∈ (Rk)n is an equilibrium of (4.20). We are interested
in studying the Hopf bifurcations of xo as λ varies. The basic assumptions
are (E1), (B1), (B2) from Section 3.2 which assume an isolated bifurcation
center (λo, xo) that cannot bifurcate to steady states.

As shown in Subsection 2.1.2, depending on how the cells x1, x2, . . . , xn

are coupled together, (4.20) may admit various flow-invariant subspaces
given by equalities of cell coordinates, i.e. the synchrony subspaces. For
example, a homogeneous coupled cell system always has

∆0 = {x : x1 = x2 = · · · = xn}

as a synchrony subspace, which is composed of states of full synchrony.
In general, the set of all synchrony subspaces admitted by a coupled cell

system forms a lattice under set inclusion. We assume

(L1) (4.20) admits a lattice L of synchrony subspaces as flow-invariant
subspaces, for all λ ∈ R;

(L2) L has a structure {∆, Γ∆, h∆,∆′} of representation lattice for finite groups
Γ∆ such that f is L-equivariant.

Here, the group Γ∆ is reserved to express the quotient symmetry of (4.20)
when restricted to the synchrony subspace ∆. In case there is no quotient
symmetry on ∆, we set Γ∆ = Z1.

We also assume that
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(E2) xo = 0 ∈ ∆0.

We are interested in studying the synchrony-breaking Hopf bifurcations
of xo, where the fully synchronized equilibrium xo losses its stability and
breaks into oscillating states of multiple number of synchronized clusters.

Definition 4.3.1. Let x ∈ (Rk)n and L be a lattice of synchrony subspaces
of (4.20). If x ∈ ∆ for some ∆ ∈ L, then we say that x is of synchrony type
∆. If moreover, ∆ is the smallest element in L that contains x, then we say
that x is of proper synchrony type ∆. Similarly, a function x : R→ (Rk)n is of
(proper) synchrony type ∆, if x(t) is of (proper) synchrony type∆, for all t ∈ R.
3

4.3.1 Degree Approach

Following the same lines of Subsection 3.2.1, a bifurcation invariant can be
defined for (λo, xo) using lattice equivariant degrees. The functional refor-
mulation follows from (3.15)–(3.20), which leads to a fixed-point problem
in functional spaces. The bifurcation invariant can be defined as the degree
of the map Fζ in (3.23) on the admissible domain O in (3.21).

Additional care is needed only for the representation lattice structure.

Let W := H1(S1; (Rk)n) be the first Sobolev space of (Rk)n-valued func-
tions defined on S1. The latticeL induces a representation lattice T in W as
follows. Let

∆̆ := H1(S1;∆), (4.21)

be the first Sobolev space of∆-valued functions defined on S1, for∆ ∈ L. Let
Γ∆ be the group of action on∆ (cf. (L2)). Define an (isometric) Γ∆×S1-action
on ∆̆ by

((γ, eiθ)u)(t) := γu(t + θ), γ ∈ Γ∆, eiθ ∈ S1.

Let

T = {∆̆ : ∆ ∈ L}, (4.22)

where ∆̆ is defined by (4.21). Then, with respect to the structure

{∆̆, Γ∆ × S1, h∆,∆′ × IdS1},

T is a representation lattice, which will be called the induced lattice from L.

It can be verified that Fζ is a T -equivariant compact vector field and
(Fζ,O) is an admissible pair. The lattice equivariant degree of Fζ in O

ω(λo, βo, xo) := T -Degt(Fζ,O)

is well-defined, which we call the bifurcation invariant around (λo, xo).
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4.3.2 Classification Result

Using bifurcation invariants defined by lattice equivariant degree, finer
classification results are possible for the bifurcating branches of solutions.
Here, the structure of representation lattices enables us to track down both
the synchrony type and the isotropy type of the bifurcating states.

Recall that dominating and secondary dominating orbit types are de-
fined in Definition 3.2.1.

Theorem 4.3.2. LetL be a representation lattice of synchrony subspaces of (4.20)
satisfying (L1)–(L2). Consider an equilibrium xo ∈ (Rk)n of (4.20) satisfying (E1)–
(E2) and a bifurcation center (λo, xo) satisfying (B1)–(B2). Let T be the induced
lattice from L given by (4.22) and O, Fζ be defined by (3.21) and (3.23). Assume
that

T -Degt(Fζ,O) =
∑

(∆̆, a∆̆), for some a∆̆ , 0,

and

a∆̆ =
∑

(H)∈Φ1(Γ∆×S1)

nH · (H), for some nH , 0.

Then,

• (Existence) There exists a branch of non-constant periodic solutions of
synchrony type ∆ and having isotropy subgroup at least H that bifurcates
from xo.

• (Multiplicity) Write (H) = (Kφ,l). There exist at least |Γ∆/K| distinct
bifurcating branches of non-constant periodic solutions of proper synchrony
type ∆ and having precise isotropy subgroup γHγ−1 for γ ∈ Γ∆/K, if one of
the following is satisfied:

(i) iβo < σ(J(λo)|∆′) ∀∆
′ < ∆ and (H) is dominating;

(ii) iβo < σ(J(λo)|∆′) ∀∆
′ < ∆ and (H) is secondary dominating satisfying

Proposition 3.2.2(ii) for a flow-invariant subspace S ⊂ ∆;

(iii) (H) is dominating and for every ∆′ < ∆ with iβo ∈ σ(J(λo)|∆′), ∆
′ does

not contain states of isotropy H;

(iv) (H) is secondary dominating satisfying Proposition 3.2.2(ii) for a flow-
invariant subspace S ⊂ ∆ and for every ∆′ < ∆ with iβo ∈ σ(J(λo)|∆′),
∆′ does not contain states of isotropy H.

Proof. The existence follows from Theorem 4.2.3(i), combined with a stan-
dard argument using parametrized auxiliary functions (cf. [16]).

The multiplicity is based on Proposition 3.2.2. It suffices to show that ∆
is a proper synchrony type under any of the conditions (i)–(iv). Let ∆′ ∈ L
be such that ∆′ < ∆.
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In case of (i) or (ii), iβo is not an eigenvalue of J(λo)|∆′ , then

Id −DuF1(λo, βo, ·) : ∆̆′ → ∆̆′

is an isomorphism. By the implicit function theorem, uo is the unique zero
of Fζ in O ∩ (R2 × ∆̆′). Thus, the bifurcating solutions cannot belong to ∆̆′.

In case of (iii) or (iv), if iβo is an eigenvalue of J(λo)|∆′ , then the predicted
branch could have synchrony type ∆′. However, since ∆′ is assumed not to
contain any states of isotropy H, the branch cannot belong to ∆̆′.

Therefore, in either of the cases (i)–(iv), the synchrony type ∆ is proper
and the isotropy subgroup H is precise.

�

4.3.3 An Example

Consider the regular 5-cell network (b) in Example 2.1.2. The network is of
configuration Figure 4.4. The adjacency matrix is

Figure 4.4: The running example of the 5-cell networkN in Figure 2.3(b).

A =





0 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0





, (4.23)

whose (i, j)-th element is equal to the number of arrows from the j-th cell to
the i-th cell. The matrix A has the following spectrum

σ(A) =
{

µ1 = 2, µ2 = 1, µ3 = µ4 = µ5 = −1
}

.

We discuss the synchrony-breaking Hopf bifurcations related to −1.

Define fo : R ×R2 × (R2)2 → R2 by

fo(λ, x, y, z) := α(λ)x + βy + βz + xyz, (4.24)
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where “xyz” stands for the entry-wise multiplication of x, y, z and

α(λ) =

(

1 + λ −2
2 1 + λ

)

, β =

(

1 −1
1 1

)

. (4.25)

Consider the coupled cell system onN given by





ẋ1 = fo(λ, x1, x2, x4)

ẋ2 = fo(λ, x2, x1, x4)

ẋ3 = fo(λ, x3, x1, x5)

ẋ4 = fo(λ, x4, x1, x2)

ẋ5 = fo(λ, x5, x1, x3),

(4.26)

where xi ∈ R
2, λ ∈ R and fo is defined by (4.24). Then, x = 0 is an

equilibrium.

The spectrum of Jacobian

Let f : R × (R2)5 → (R2)5 be the right hand side of (4.26). It was shown in
[32] that the linearisation J(λ) = D fx(λ, 0) of f at (λ, 0) has the form

J(λ) = α(λ) ⊗ I5 + β ⊗ A,

where I5 : R5 → R5 is the identity matrix. Also, the eigenvalues of J(λ)
are the union of the eigenvalues of the 2 × 2-matrices Mµ := α(λ) + µβ, for
all µ ∈ σ(A). Moreover, if v ∈ C5 is an eigenvector of A and u ∈ C2 is an
eigenvector of Mµ, then u ⊗ v is an eigenvector of J(λ) (cf. [32]). More
precisely, J(λ) has the following eigenvalues and eigenvectors

M2, σ1,2 = 3 + λ ± 4i,

(

−i
1

)

⊗ v1,

(

i
1

)

⊗ v1

M1, σ3,4 = 2 + λ ± 3i,

(

1
0

)

⊗ v2,

(

0
1

)

⊗ v2 (4.27)

M−1, σ5,6,7,8,9,10 = λ ± i,

(

−i
1

)

⊗ v j,

(

i
1

)

⊗ v j,

where v1, v2, v j for 3 ≤ j ≤ 5 are eigenvectors of A corresponding to 2, 1,−1.
Consequently, (4.26) has three isolated bifurcation centers (−3, 0), (−2, 0)
and (0, 0). We describe the synchrony-breaking bifurcation around (0, 0),
i.e.

(λo, βo, xo) = (0, 1, 0).
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The synchrony subspaces

The lattice of all synchrony subspaces is given by Figure 2.6 for our choice
of phase space a, b, c, d, e ∈ R2. Denote by

Ŭ := H1(S1; U),

the first Sobolev space of 2π-periodic functions valued in U, for U ∈ L. Let

T := {Ŭ : U ∈ L}.

Then, T is a representation lattice with structure {Ŭ, ΓU × S1, hU,U′′ × Id},
where Id : S1 → S1 is the identity homomorphism.

The representation lattice

Let L̃ be the lattice given by Figure 2.6. For every U ∈ L̃, there is a
corresponding quotient network whose network structure is given by A|U.
The symmetry of the quotient network is called a quotient symmetry, which
we denote by ΓU. It can be verified that (4.26) has the following (non-trivial)
quotient symmetries:

Γ∆4
= Γ∆1

= S3 ≃ D3, Γ∆2
= Γ∆00

= Γ∆01
= Γ∆02

= Γ∆03
= Z2,

where D3 acts as permutations on symbols a, b, c;Z2 = 〈κ〉 acts on∆00,∆02,∆03

by κ : (a, b, c, d, e) 7→ (a, b, e, d, c) and acts on ∆01 by κ : (a, b, c, d, e) 7→
(a, d, c, b, e).

However, {U, ΓU, hU,U′}U∈L̃ does not give a valid structure of representa-

tion lattice to L̃. Indeed, a necessary condition for L̃ to be a representation
lattice is that U is ΓU′-invariant subspace of U′, for all U ⊂ U′ (cf. Defi-
nition 4.1.2 (ii)). But we have that ∆43,∆41,∆13 are not D3-invariant in ∆4;
∆13,∆12,∆11 are not D3-invariant in ∆1; and ∆5,∆6 are not Z2-invariant in
∆01. In fact, in each of these cases, the non-invariant subspaces belong to
one orbit under the group action.

Let L = L̃ \ {∆43,∆41,∆13,∆12,∆11,∆5,∆6} and ΓU be the quotient sym-
metry related to U, for U ∈ L (cf. Figure 4.5). The arrows in Figure 4.5
stand for homomorphisms, where h∗,∗ : Z1 → Γx are given by the inclusion,
h∗,∗ : Γx → Z1 are given by the projection and h∗,∗ : Z2 → Z2 are the identity
homomorphism. As shown in Example 4.1.3, L is a real representation
lattice in V = R2 ⊗R5, with respect to this structure.

The bifurcation invariant

It can be verified that the assumptions (E1)-(E2), (B1)-(B2), (L1)-(L2) are
satisfied by (4.26) with fo given by (4.24) and xo = 0. Thus, the bifurcation
invariant

ω(λo, βo, xo) = T -Degt(Fζ,O)
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(∆,Z1)
a, a, a, a, a

(∆21,Z1)
a, a, b, a, b

(∆4,D3)
a, b, c, c, b

(∆2,Z2)
a, a, b, a, c

(∆3,Z1)
a, b, c, b, c (∆1,D3)

a, b, b, c, c

(∆00,Z2)
a, b, c, b, d

(∆02,Z2)
a, a, b, c, d

(∆03,Z2)
a, b, c, a, d

(∆01,Z2)
a, b, c, d, c

(V,Z1)
a, b, c, d, e

Figure 4.5: A representation lattice L in R2 ⊗R5.

is well-defined.
It can be verified that the dominating orbit types in ∆̆ ∈ T are

∆̆1 : (Zt
3), (D1), (Dz

1); ∆̆2 : (Z−2 ); ∆̆3 : (Z1); ∆̆4 : (Zt
3), (D1), (Dz

1)

∆̆00 : (Z−2 ); ∆̆01 : (Z−2 ); ∆̆02 : (Z−2 ); ∆̆03 : (Z−2 ); W : (Z1),

whereZ−
2

:= {(1, 1), (−1,−1)} ⊂ Z2 × S1 and Zt
3
,D1,D

z
1

are defined in Exam-
ple 2.3.7.

The value of the bifurcation invariant can be computed systematically
(cf. Appendix 5.3.3 for details), which is equal to

T -Degt(Fζ,O) =
(

∆̆1,−2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1)
)

+
(

∆̆2,−(Z−2 )
)

+
(

∆̆3,−(Z1)
)

+
(

∆̆4,−2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1)
)

+
(

∆̆00,−(Z−2 )
)

+
(

∆̆01,−2(Z−2 ) + (Z2)
)

+
(

∆̆02,−(Z−2 )
)

+
(

∆̆03,−(Z−2 )
)

+ (W, 11(Z1)). (4.28)

We explain the meaning and implications of (4.28).
Consider the first entry in (4.28). Let ∆ = ∆1 ≃ R

3. Then, Γ∆ = D3 and

a∆̆1
= −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1),

where (Zt
3
), (D1), (Dz

1
) are dominating orbit types. Applying Theorem 4.3.2(i)

to∆ = ∆1 and (H) = (Zt
3
), we obtain at least |D3/Z3| = 2 different branches of

non-constant periodic solutions of (4.26), whose isotropy types are given by
Zt

3
and κZt

3
κ−1, respectively. More precisely, the branch with the isotropy

typeZt
3

has the form (cf. Example 2.3.7)

u(t) = (x(t), x(t +
T

3
), x(t +

2T

3
)),
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and the branch with the isotropy type κZt
3
κ−1 is of form

v(t) = (x(t), x(t +
2T

3
), x(t +

T

3
)).

These branches of solutions are of proper synchrony type ∆1. Similarly,
one can apply Theorem 4.3.2(i) to (H) = (D1). Then, there exist at least
|D3/D1| = 3 branches of non-constant periodic solutions of (4.26), whose
isotropy types are D1, ξD1ξ

−1, ξ2D1ξ
−2, respectively, and they have a proper

synchrony type ∆1. Also, the nontrivial (Dz
1
)-term indicates the existence

of |D3/D1| = 3 branches of non-constant periodic solutions of (4.26), whose
isotropy types are Dz

1
, ξDz

1
ξ−1, ξ2Dz

1
ξ−2, respectively (cf. Table 4.1), and they

are of a proper synchrony type ∆1.
An analogous analysis can be applied to∆2,∆3,∆4 and their dominating

orbit types. An additional branch can be obtained in ∆01 for the dominating
orbit type (Z−

2
), since they satisfy the condition of Theorem 4.3.2(iii).

A summary of these bifurcating solutions can be found in Table 4.1. In
brief, we predict 8 branches of non-constant periodic solutions of proper
synchrony type ∆1; 1 branch of non-constant periodic solutions of proper
synchrony type ∆2; 1 branch of non-constant periodic solutions of proper
synchrony type∆3; 8 branches of non-constant periodic solutions of proper
synchrony type∆4 (one of which coincides with one from ∆1); and 1 branch
of non-constant periodic solutions of proper synchrony type ∆01.

Note that we do not exclude the possibility of additional periodic so-
lutions bifurcating from xo = 0, besides those listed in Table 4.1, since as a
topological invariant, the lattice degree gives only a lower estimate of the
number of solutions. In other words, other non-constant periodic solutions
may also bifurcate from xo = 0. These additional branches of solutions
indeed amount to a homotopy-zero class.
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Synchrony Symmetry Form of Periodic Solutions (for some period T)

∆1
(a,b,b,c,c)

Zt
3

(

x(t), x(t + T
3 ), x(t + T

3 ), x(t + 2T
3 ), x(t + 2T

3 )
)

κZt
3
κ−1

(

x(t), x(t + 2T
3 ), x(t + 2T

3 ), x(t + T
3 ), x(t + T

3 )
)

D1

(

x(t), y(t), y(t), x(t), x(t)
)

∈ ∆12

ξD1ξ
−1

(

x(t), x(t), x(t), y(t), y(t)
)

∈ ∆11

ξ2D1ξ
−2

(

x(t), y(t), y(t), y(t), y(t)
)

∈ ∆13

Dz
1

(

x(t), y(t), y(t), x(t + T
2 ), x(t + T

2 )
)

, for y(t) = y(t + T
2 )

ξDz
1
ξ−1

(

x(t), x(t + T
2 ), x(t + T

2 ), y(t), y(t)
)

, for y(t) = y(t + T
2 )

ξ2Dz
1
ξ−2

(

x(t), y(t), y(t), y(t + T
2 ), y(t + T

2 )
)

, for x(t) = x(t + T
2 )

∆2
(a,a,b,a,c)

Z−
2

(

x(t), x(t), y(t), x(t), y(t + T
2 )

)

∆3
(a,b,c,b,c)

Z1

(

x(t), y(t), z(t), y(t), z(t)
)

∆4
(a,b,c,c,b)

Zt
3

(

x(t), x(t + T
3 ), x(t + 2T

3 ), x(t + 2T
3 ), x(t + T

3 )
)

κZt
3
κ−1

(

x(t), x(t + 2T
3 ), x(t + T

3 ), x(t + T
3 ), x(t + 2T

3 )
)

D1

(

x(t), y(t), x(t), x(t), y(t)
)

∈ ∆43

ξD1ξ
−1

(

x(t), x(t), y(t), y(t), x(t)
)

∈ ∆41

ξ2D1ξ
−2

(

x(t), y(t), y(t), y(t), y(t)
)

∈ ∆13

Dz
1

(

x(t), y(t), x(t + T
2 ), x(t + T

2 ), y(t)
)

, for y(t) = y(t + T
2 )

ξDz
1
ξ−1

(

x(t), x(t + T
2 ), y(t), y(t), x(t + T

2 )
)

, for y(t) = y(t + T
2 )

ξ2Dz
1
ξ−2

(

x(t), y(t), y(t + T
2 ), y(t + T

2 ), y(t)
)

, for x(t) = x(t + T
2 )

∆01
(a,b,c,d,c)

Z−
2

(

x(t), y(t), z(t), y(t + T
2 ), z(t)

)

Table 4.1: The summary of synchrony type and symmetric properties of
bifurcating branches of solutions from xo = 0 of system (4.26) (Part I), using
quotient symmetries.



Chapter 5

Interior Symmetry and
Equivariant Degree

Interior symmetry is a symmetry of networks that concerns subsets of cells
and their inputs. It is a permutational symmetry on a subset of cells while
fixing every cell outside the subset, so that the input structure of the subset
is preserved.

If the subset is the total set of cells, then interior symmetry coincides with
the usual (global) symmetry and the coupled cell systems admissible to the
network structure are simply equivariant systems. Otherwise the systems
are only equivariant in some cell coordinates and theory of equivariant
bifurcations cannot be applied directly.

However, essential ideas from equivariant bifurcation theory can be
transfered to extend the key statements. In [34], both the equivariant
branching lemma and the equivariant Hopf theorem were extended for
networks with interior symmetry, based on an adapted Lyapunov-Schmidt
reduction. This was later followed up and complemented by [5] which
presents a complete parallel of the equivariant Hopf theorem.

In this chapter, we extend the equivariant degree theory and introduce
a degree theory that is suitable for studying maps that are equivariant for
an interior symmetry. The resulting degree, called the interior equivariant
degree is used to study interior-symmetry breaking bifurcations in coupled
cell networks. A somehow surprising outcome is the homotopy equiva-
lence between the bifurcation invariant associated to the interior-symmetry
breaking bifurcation problem and the bifurcation invariant associated to a
related equivariant bifurcation problem (cf. Theorem 5.3.1).

The main step in defining an adequate degree for interior symmetry is
to establish a similar approximation scheme using regular normal maps (cf.
Theorem 5.2.9), which is of somewhat technical nature. The approximation
scheme in case of equivariant degree can be found in detail in [16].

81
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5.1 Coupled Cell Systems with Interior Symmetry

We review important properties of coupled cell systems with interior sym-
metry. More details can be found in [5, 34].

5.1.1 Phase Space Decomposition

LetG = (C,E,∼C,∼E) be a coupled cell network that has an interior symme-
try on a subset S ⊂ C. Denote by Σ the group of all interior symmetries on
S. We also writeN = C \ S.

Let P be the total phase space of coupled cell systems admissible to G.
There is a natural decomposition

P = PS ⊕ PN (5.1)

of the phase space induced by C = S ⊔ N . Note that PS and PN may not
not flow-invariant in general.

Example 5.1.1. Consider the coupled cell network in Figure 5.1(Left). It

Figure 5.1: (Left) A coupled cell network with interior symmetry Σ = D3.
(Right) The preserved input structure of the subset S = {1, 2, 3}.

admits an interior symmetry Σ = S3 ≃ D3 on S = {1, 2, 3} ⊂ {1, 2, 3, 4}, since
the input edges of cells of S are preserved under the permutations of 1, 2, 3
(cf. Figure 5.1(Right)).

Coupled cell systems admissible to the network are of form





ẋ1 = f (x1, x2, x3, x4)

ẋ2 = f (x2, x1, x3, x4)

ẋ3 = f (x3, x1, x2, x4)

ẋ4 = g(x4, x1, x2, x3)

, for x1, x2, x3 ∈ P1, x4 ∈ P2, (5.2)

where P1,P2 are some phase spaces of choice. Consider the decomposition
(5.1). Then, we have

PS = {(x1, x2, x3, 0) : x1, x2, x3 ∈ P1}, PN = {(0, 0, 0, x4) : x4 ∈ P2}.
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For general form of f, g, the space PS is not flow-invariant, since an initial
condition xo with xo

4
= 0 does not guarantee x4(t) = 0 for all positive t > 0.

Similarly, PN is not flow-invariant, since an initial condition xo with xo
1
=

xo
2
= xo

3
= 0 does not guarantee x1(t) = x2(t) = x3(t) = 0 for all positive t > 0.

3

There is, however, a phase space decomposition that respects flows,
which is induced by the interior symmetry group Σ. Recall that in case of
symmetry and equivariant systems, fixed point subspaces of any (closed)
subgroups of the symmetry are flow-invariant for the equivariant systems.
This turns out to be true also for interior symmetry.

Proposition 5.1.2. (cf. [34]) Let G be a network admitting a non-trivial interior
symmetry group ΣS and fix a phase space P. Let K be any subgroup of ΣS. Then,
the equivalence relation ⊲⊳K defined by

x ⊲⊳K y⇔ ∃σ ∈ K : y = σ(x)

is a balanced relation on G. In particular, the fixed-point subspace

Fix P(K) = ∆⊲⊳K = {x ∈ P : xc = xσ(c) ∀σ ∈ K}

is a flow invariant subspace for all G-admissible vector fields.

Let Σ be the interior symmetry group of G on S. Then,

Fix P(Σ) = {x = (xS, xN ) ∈ P : xS ∈ Fix S(Σ)}, (5.3)

where xS is of full synchrony, xN is a free coordinate. By Proposition 5.1.2,
Fix P(Σ) is flow-invariant for all admissible vector fields. Let

U = Fix P(Σ) (5.4)

and define a complement W of U so that

P =W ⊕U (5.5)

in the following way. First write S as a disjoint union of Σ-orbits

S = S1 ⊔ S2 ⊔ · · · ⊔ Sl.

Then, define

W = {x = (xS, xN ) ∈ P : xN = 0 ∧
∑

s∈Si

xs = 0∀ i ∈ {1, . . . , l}}, (5.6)

which is a Σ-invariant subspace and W ∩U = {0}. Thus, (5.5) holds.
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Consider the system (5.2) in Example 5.1.1 again. Then, the decomposi-
tion holds for

W = {(w1,w2,−w1 − w2, 0) : w1,w2 ∈ P1}

U = {(u1, u1, u1, u2) : u1, u2 ∈ P2}.

The relation between the decompositions (5.1) and (5.5) is

P =W ⊕U =W ⊕U1
︸  ︷︷  ︸

PS

⊕ PN , (5.7)

where U1 = U ∩ PS. That is, the Σ-fixed point subspace U is composed of
the phase space PN of the cells outside S (where Σ acts trivially) and the
fixed point subspace for cells inside S.

As we will see in Subsection 5.1.2, the advantage of using decomposition
(5.1) is that it indicates the “equivariant” part of admissible vector fields (cf.
(5.8)), while the decomposition (5.5) is based on a flow-invariant subspace
U, which leads to a triangular form of the linearization of admissible vector
fields (cf. (5.9)).

5.1.2 Admissible Vector Fields

Let f be a vector field on P such that it is admissible toG. Write f = ( fS, fN ),
where fS : P → PS and fN : P → PN are projections of f onto PS and PN ,
respectively. The interior symmetry of G implies that f must satisfy





σ fS(xS, xN ) = fS(σxS, σxN ) = fS(σxS, xN ),

σ fN (xS, xN ) = fN (xS, xN ),
∀σ ∈ Σ, (5.8)

where x = (xS, xN ) is expressed with respect to (5.1) and we used the fact
that Σ acts trivially onN .

Consider the decomposition (5.5) and write f = ( fW, fU) for the projec-
tions fW : P→ W and fU : P→ U. Since U is flow-invariant, we have

f (U) ⊆ U ⇒ f (0, u) ∈ U, ∀u ∈ U ⇒ fW(0, u) = 0, ∀u ∈ U.

It follows that every linear admissible vector field must have the form

L =
(

A 0
C B

)

(5.9)

with respect to the decomposition (5.5). As a special case, linearization of an
admissible vector field at an equilibrium is of form (5.9). The equivariance
(5.8) of f is translated to





σ fW(w, u) = fW(σw, u),

σ fU1
(w, u) = fU1

(w, u),

σ fN (xS, xN ) = fN (xS, xN ),

∀σ ∈ Σ,

where fU1
: P→ U1 is the projection of f onto U1.
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Example 5.1.3. Consider the coupled cell network in Example 5.1.1 again.
Then, the basis transformation between the decompositions (5.1) and (5.5)
is given by Figure 5.2. Using the basis change, we obtain directly

W ⊕U

x1 = w1 + u1

x2 = w2 + u1

x3 = −w1 − w2 + u1

x4 = u2

PS ⊕ PN

W ⊕U

w1 = x1 −
x1+x2+x3

3

w2 = x2 −
x1+x2+x3

3

u1 =
x1+x2+x3

3

u2 = x4

PS ⊕ PN
( fS, fN )

( fW, fU)

Figure 5.2: Basis transformation for system (5.2).

fW =

(
1
3 (2 f (w1 + u1,w2 + u1,w3 + u1, u2) − f (w2 + u1,w1 + u1,w3 + u1, u2) − f (w3 + u1,w1 + u1,w2 + u1, u2))
1
3 (2 f (w2 + u1,w1 + u1,w3 + u1, u2) − f (w1 + u1,w2 + u1,w3 + u1, u2) − f (w3 + u1,w1 + u1,w2 + u1, u2))

)

fU =

(
1
3 ( f (w1 + u1,w2 + u1,w3 + u1, u2) + f (w2 + u1,w1 + u1,w3 + u1, u2) + f (w3 + u1,w1 + u1,w2 + u1, u2))

g(u2,w1 + u1,w2 + u1,w3 + u1)

)

where w3 = −w1 − w2.
The action of S3 = 〈(1 2 3), (1 2)〉 is given by

(1 2 3)(w1,w2, u1, u2) = (w2,−w1 − w2, u1, u2)

(1 2)(w1,w2, u1, u2) = (w2,w1, u1, u2). (5.10)

That is, S3 acts by permuting w1,w2,w3 (with w3 = −w1 − w2) while fixing
u1, u2. The fixed-point subspaces of subgroups K ⊂ S3 satisfy

Fix P(K) = Fix W(K) ⊕U,

for

Fix W(S3) = Fix W(Z3) = {0}

Fix W(D1) = {(w1,w2) : w1 = w2}

Fix W(D′1) = {(w1,w2) : w2 = −w1 − w2}

Fix W(D′′1 ) = {(w1,w2) : w1 = −w1 − w2}

Fix W(Z1) =W,

where Z3 = 〈(1 2 3)〉, D1 = 〈(1 2)〉, D′
1
= 〈(2 3)〉, D′′

1
= 〈(1 3)〉 and Z1 = 〈(1)〉

(cf. Figure 5.3) It can be verified directly that ( fW , fU1
) is S3-equivariant and

all fixed-point subspaces Fix P(K) are flow-invariant for admissible vector
fields of (5.2).

3

In what follows, we mainly work with the decomposition (5.5).
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Fix W(D1)

Fix W(D′
1
)

Fix W(D′′
1

)

w1

w2

Figure 5.3: Fixed-point subspaces of S3-action (5.10) in W, where D1 =

{(1), (1 2)}, D′
1
= {(1), (2 3)}, D′′

1
= {(1), (1 3)} are conjugate subgroups in

S3 and they give isomorphic fixed-point subspaces Fix W(D1), Fix W(D′
1
),

Fix W(D′′
1

). The points connected by dashed lines form an orbit under S3-
action.

5.2 Interior Equivariant Degree

Motivated by coupled cell systems with interior symmetry, we introduce a
notion of interior equivariant maps and their related homotopies. We prove
a regular normal approximation scheme for these maps, based on which
we define an interior equivariant degree for interior equivariant maps.

5.2.1 Interior Equivariant Maps

Let P be a finite-dimensional Euclidean space over reals. Let W,U ⊂ P be
two subspaces such that the decomposition (5.5) holds.

Let Σ be a finite group that acts on W orthogonally‡ and on U trivially.

Definition 5.2.1. A map f : P → P is called Σ-interior equivariant on W, if
f = ( fW, g) for a Σ-equivariant map fW : P → W and a continuous map
g : P → U. Similarly, a homotopy h : [0, 1] × P → P is called Σ-interior
equivariant on W, if h(t, ·) : P → P is a Σ-interior equivariant map on W, for
all t ∈ [0, 1]. 3

Remark 5.2.2. An important property of Σ-interior equivariant maps f is

f ( Fix (K)) ⊆ Fix (K), ∀K ⊂ Σ, (5.11)

‡Recall that every representation of a compact Lie group is equivalent to an orthogonal
representation using the Haar measure.



5.2. INTERIOR EQUIVARIANT DEGREE 87

which is an extension of the same property of equivariant maps. To see
(5.11), let x ∈ Fix (K), σ ∈ K, then we have

σ f (x) = (σ fW(x), σg(x)) = ( fW(σx), g(x)) = ( fW(x), g(x)) = f (x).

This key property plays an important role in constructing a degree for
interior equivariant maps. 3

We review the definition of a regular normal map for equivariant maps
and then extend it to the case of interior symmetry. Let X be a Σ-manifold.
For K ⊂ Σ, recall the notations X(K), XK and XK from (2.12), (2.13) and (2.8),
where X(K), XK are submanifolds of X and XK is a closed subspace of X
containing XK (cf. Theorem 2.2.11).

Definition 5.2.3. (cf. [16]) Let V be an orthogonal representation of Σ and
let Ω ⊂ V be an open bounded invariant subset§. A Σ-equivariant map
f : V → V is called normal in Ω, if

∀K ⊂ Σ, ∀ x ∈ f−1(0) ∩ΩK, ∃ δx > 0 s.t. ∀ v ∈ νx(Ω(K)) with ‖v‖ < δx :

f (x + v) = f (x) + v = v, (5.12)

where ν(Ω(K)) denotes the normal bundle of the submainfold Ω(K) in Ω.

A normal map is called regular normal, if it is additionally of class C1 and
zero is a regular value of map f |ΩK

: ΩK → VK for every K ⊂ Σ. 3

Example 5.2.4. Consider the S3-action (5.10) in Example 5.1.3 again. Then,
an invariant subset Ω ⊂ W is a disjoint union of different ΩK’s (cf. Figure
5.4(a)). The normality condition (5.12) is as illustrated in Figure 5.4(b). 3

We adopt the same definition for interior equivariant maps.

Definition 5.2.5. Let V be an orthogonal representation of Σ and letΩ ⊂ V
be an open bounded invariant subset. A continuous map f : V → V
satisfying (5.11) is called normal in Ω, if (5.12) holds for every K ⊂ Σ. A
normal map is called regular normal, if it is additionally of class C1 and zero
is a regular value of map f |ΩK

: ΩK → VK for every K ⊂ Σ.

3

Since interior equivariant maps always satisfy (5.11) by Remark 5.2.2,
Definition 5.2.5 also defines regular normal maps for interior equivariant
maps, thus is an extension of Definition 5.2.3.

§In particular, Ω is a Σ-manifold.
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ΩS3

Ω
D 1Ω

D ′
1

Ω
D
′′1

ΩZ1

(a) (b)

Figure 5.4: (a) Decomposition of Ω into disjoint proper fixed-point sets:
ΩS3

,ΩD1
,ΩD′

1
,ΩD′′

1
,ΩZ1

for the S3-action (5.10) in W. (b) Zeros of a normal
S3-equivariant map on Ω, where the short red lines indicate the normal
direction toΩ(K) (cf. Definition 5.2.3).

5.2.2 Regular Normal Approximations

Let Φ(Σ) be the set of all conjugacy classes of subgroups of Σ. Define a
partial order “≤” on Φ(Σ) by

(K1) ≤ (K2) ⇔ ∃ σ ∈ Σ s.t. σK1σ
−1 ⊆ K2. (5.13)

One can extend this partial order to a complete order so that all ≤-related
pairs are preserved. The proof presented below is based on induction of
orbit types in Ω from bigger to smaller orbit types.

Proposition 5.2.6. (Normal Approximation) Let f = ( fW , g) : W⊕U→W⊕U
be a Σ-interior equivariant map on W for a Σ-equivariant map fW : W ⊕U→ W
and a continuous map g : W ⊕ U → U. Let Ω ⊂ W ⊕ U be open, bounded and
Σ-invariant. For every ε > 0, there exists a normal Σ-interior equivariant map f̃
on W such that ‖ f̃ − f ‖ < ε inΩ.

Proof. Without loss of generality, we can assume that fW is a normal map,
based on the normal approximation theorem for equivariant maps (cf. [16],
Theorem 3.17).

Then, the normality condition (5.12) implies that

f (x + v) =
(

fW(x + v)
g(x + v)

)
(∗)
=

(
fW(x) + v

g(x)

)

= f (x) + v, (5.14)

where (*) follows from the fact thatΩ(K) = (Ω∩W)(K) × (Ω∩U), thus v ∈W
whenever v ⊥ Ω(K).
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The equality (*) of (5.14) leads to the condition

g(x + v) = g(x) (5.15)

near zeros of f so that f is normal. It is thus sufficient to define f̃ = ( fW, g̃)
for a map g̃ that fulfills (5.15).

Let ≤ be the partial order defined by (5.13). Starting from the maximal
orbit type (K) = (Σ), we use local Urysohn functions to define g̃.

Consider the set Z := g−1(0)∩Ω(K) for K = Σ. Since g−1(0)∩∂Ω = ∅, there
exists a compact neighborhood N of Z in Ω such that Z ⊂ N ⊂ Ω. Also, we
choose an “intermediate” neighborhood A so that Z ⊂ A ⊂ N to define a
Urysohn function around Z (cf. Figure 5.5 (a)). Moreover, we assume that

Ω

Ω(K)Z

A

N

γ

1

A

N

(a) (b)

Figure 5.5: (a) Compact neighborhoods A,N around the zero set Z of orbit
type (K) for Z ⊂ A ⊂ N; (b) A Urysohn function γ locally around the zero
set such that γ ≡ 1 in A and γ ≡ 0 outside N.

N is so small that for every x ∈ N we can write

x = y + v, y ∈ N ∩Ω(K), v ∈ νy(Ω(K))

Let γ : W ⊕U→ [0, 1] be a smooth Σ-invariant Urysohn such that

γ(x) =





1 for x ∈ A

0 for x < N
(5.16)

(cf. Figure 5.5 (b)). Define g̃ : W ⊕U→ U by

g̃(x) =





γ(x)g(y) + (1 − γ(x))g(x) for x = y + v ∈ N

g(x) for x < N
. (5.17)

Note that g̃ ≡ g on A and outside of N. Thus, by appropriate choice of N,
we can make g̃ and g as close as possible. Also, note that the new zeros
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of g̃ will have smaller orbit types, thus one can repeat this procedure by
following the existing orbit types in decreasing order.

In this way, we obtain a map g̃ : W ⊕ U → U such that g̃(x + v) = g̃(x)
for all x ∈ g̃−1(0)∩Ω(K) and v ∈ νxΩ(K) with sufficiently small ‖v‖. It follows
that the map f̃ = ( fW , g̃) fulfills the normality condition and is as desired. �

Recall the following important result of the Sard-Brown Theorem.

Theorem 5.2.7. Let Ω ⊂ Rn be an open set, f : Ω → Rk be a smooth map and
K ⊂ Ω be a compact set. For any y ∈ Rk and ε > 0, there exists a smooth map
g : Ω→ Rk such that y is a regular value of g and sup{| f (x) − g(x)| : x ∈ K} < ε.

Lemma 5.2.8. Let Ω ⊂ Rn be an open bounded set and f : Ω → Rk be a smooth
map such that f−1(0)∩ ∂Ω = ∅. For any compact neighborhood¶ C ⊂ Ω of f−1(0)
and ε > 0, there exists a smooth map g : Ω→ Rk such that 0 is a regular value of
g, sup{| f (x) − g(x)| : x ∈ C} < ε and f (x) = g(x) for all x ∈ Ω \ C.

Proof. Let C ⊂ Ω be a compact neighborhood of f−1(0) and ε > 0. Choose
another compact neighborhood C1 of f−1(0) such that C1 ⊂ int(C) (cf. Figure
5.6). Clearly, the value of f outside C1 is bounded away from zero. Thus,

C1

C
Ω

f −1
(0)

Figure 5.6: Compact neighborhoods of zeros of f (cf. Proof of Lemma 5.2.8).

we can set ρ := min{| f (x)| : x < C1}} > 0 and assume that ρ < ε. Applying
Theorem 5.2.7 to f for C and

ρ
2 , we obtain a smooth map g1 : Ω→ Rk such

that 0 is a regular value of g1 and sup{| f (x) − g1(x)| : x ∈ C} <
ρ
2 .

Consider now a Urysohn function γ : Rn → [0, 1] such that

γ(x) =





1 ∀ x ∈ C1

0 ∀ x < C
.

Define g : Ω→ Rk by

g(x) = γ(x)g1(x) + (1 − γ(x)) f (x).

¶A set N is a compact neighborhood of a set S, if S ⊂ int(N).
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Then, f (x) = g(x) for all x < C. For x ∈ C, we have

| f (x) − g(x)| = |γ(x)( f (x) − g1(x))| ≤ | f (x) − g1(x)| <
ρ

2
< ε.

We show that 0 is also a regular value of g. Note that f = g outside C and f
has no zeros outside C, thus g−1(0) ⊂ C. Further, for x ∈ C \ C1, we have

|g(x)| = | f (x) + γ(x)(g1(x) − f (x))| ≥ | f (x)| − |g1(x) − f (x)| ≥ ρ −
ρ

2
> 0.

Thus, g−1(0) ⊂ C1. But g = g1 on C1. It follows that 0 is a regular value of g.
�

Proposition 5.2.9. (Regular Normal Approximation) Let f = ( fW , g) : W ⊕
U → W ⊕ U be a Σ-interior equivariant map on W for a Σ-equivariant map
fW : W ⊕ U → W and a continuous map g : W ⊕ U → U. Let Ω ⊂ W ⊕ U be
open, bounded and Σ-invariant. For every ε > 0, there exists a regular normal
(Σ,W)-equivariant map f̃ such that ‖ f̃ − f ‖ < ε inΩ.

Proof. The idea of the proof follows that of Proposition 5.2.6, where at every
K-fixed point subspace we “correct” g by a regular map using Lemma 5.2.8.

Again, we can assume that fW is a regular normal Σ-equivariant map in
Ω, by the regular normal approximation theorem for equivariant maps (cf.
Theorem 3.23 in [16]). Also, by Weierstrass Theorem, we can assume that g
is a smooth map.

Let ≤ be the partial order defined by (5.13).
Consider the maximal orbit type (K) = (Σ) and Z = g−1(0)∩Ω(K). Choose

two compact neighborhoods A,N of Z in Ω, just as shown in Figure 5.5 (a).
Applying Lemma 5.2.8 to g and N, we obtain a smooth map ĝ : Ω → U
such that

(i) sup{|g(x) − ĝ(x)| : x ∈ N} < ε2 ;

(ii) g(x) = ĝ(x) for all x < N; and

(iii) 0 is a regular value of ĝ.

Continue as in the proof of Proposition 5.2.6 by a Urysohn function γ
satisfying (5.16) and define, in the spirit of (5.17),

g1(x) =





γ(x)ĝ(y) + (1 − γ(x))ĝ(x) for x = y + v ∈ N

g(x) for x < N
.

Then, f1 = ( fW, g1) satisfies that f (x) = f1(x) for all x < N and

‖ f − f1‖ = sup{| f (x) − f1(x)| : x ∈ Ω} = sup{|g(x) − g1(x)| : x ∈ N}

≤ sup{|ĝ(x) − ĝ(y)| + |g(x) − ĝ(x)| : x = y + v ∈ N}

(i)
≤ sup{|ĝ(x) − ĝ(y)| : x = y + v ∈ N} +

ε

2
.
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Now, we can choose N so small that the first summand in the last line is less
than ε2 and consequently, ‖ f − f1‖ < ε. Also, for any K′ ∈ (K), 0 is a regular
value of g1|ΩK′

: ΩK′ → U. In fact, since g1 = g for x < N and g has no zeros
outside N, we have g−1

1
(0) ⊂ N, which implies that (g1|ΩK′

)−1(0) ⊂ N ∩ΩK′ .
But g1|N∩ΩK′

= ĝ by definition of g1. It follows that zero is a regular value
of g1|ΩK′

. Therefore, f1|ΩK′
= ( fW |ΩK′

, g1|ΩK′
) has zero as a regular value, for

any K′ ∈ (K).
Clearly, by definition of γ and g1, f1 is normal for orbit type (K), i.e.

f1(x + v) = f1(x) + v = v for all x ∈ f−1
1

(0) ∩ Ω(K) and v ⊥ x with (x, v) ∈ A.
Thus, zeros of f1 of orbit type (K) are separated (by neighborhoods) away
from zeros of other orbit types. Moreover, zeros (x, v) ∈ N of f1 for v , 0 will
have smaller orbit types as (K), since Iso ((x, v)) = Iso (x) ∩ Iso (v). Thus,
one can repeat this procedure to smaller orbit types by deceasing order and
obtain a map of desired properties. �

Similarly, one can show the regular normal approximation for homo-
topies.

Proposition 5.2.10. Let h = (hW , g) : [0, 1] ×W ⊕U → W ⊕ U be a Σ-interior
equivariant homotopy on W for aΣ-equivariant homotopy hW : [0, 1]×W⊕U→ W
and a continuous homotopy g : [0, 1] ×W ⊕ U → U. Let Ω ⊂ [0, 1] ×W ⊕ U
be open, bounded and Σ-invariant. For every ε > 0, there exists a regular normal
Σ-interior equivariant homotopy h̃ such that ‖h̃ − h‖ < ε in Ω.

5.2.3 Definition and Properties

Let Σ be a finite group that acts on W orthogonally and on U trivially.
Consider the set of admissible pairs ( f,Ω) forΣ-interior equivariant maps on
W and open, bounded, Σ-invariant domains Ω ⊂W ⊕U, i.e.

P = {( f,Ω) : f : W ⊕U→ W ⊕U isΣ − interior equivariant on W,

Ω ⊂W ⊕U is open, bounded, Σ-invariant, f−1(0) ∩ ∂Ω = ∅}.

In the following, we define a map associating to every such pair ( f,Ω) ∈
P an algebraic count of zeros of f inΩ according to their isotropy subgroups.
The count should remain the same against interior equivariant homotopies.

Given ( f,Ω) ∈ P, define the (Σ,W)-interior equivariant degree of f inΩ by
assigning to every isotropy type K an integer, i.e.

deg(Σ,W) ( f,Ω) =
∑

K⊂Σ

nK · K, for nK ∈ Z, (5.18)

where nK ∈ Z is to be determined by f .
If f is regular normal in Ω, then zero orbits of different orbit types are

isolated and 0 is a regular value of f |ΩK
for every K ⊂ Σ. Thus, we can

define
nK = deg ( f |ΩK

,ΩK) (5.19)
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by the Brouwer degree “ deg ” of f |ΩK
in ΩK.

Otherwise, if f is not regular normal, then apply Proposition 5.2.9 to
f , Ω and ρ := min{| f (x)| : x ∈ ∂Ω} > 0 to obtain a regular normal (Σ,W)-
equivariant map f̃ in Ω such that ‖ f̃ − f ‖ <

ρ
2 , and define

deg(Σ,W) ( f,Ω) = deg(Σ,W) ( f̃ ,Ω). (5.20)

Remark 5.2.11. It is interesting to note that the interior equivariant degree
(5.18) associates an integer to every isotropy subgroup in the domain, while
the equivariant degree (3.5) associates an integer to every orbit type in the
domain.

Recall that an orbit type is a set of conjugate isotropy subgroups (cf. (2.7))
and zeros of an equivariant map form group orbits of conjugate isotropies
(cf. Remark 3.1.2). Thus, it is sufficient to use one integer nK for all isotropy
subgroups K′ that are conjugate to K, i.e. in (3.5), we have

nK = ngKg−1 , ∀ g ∈ G. (5.21)

However, zeros of an interior equivariant map do not form group orbits
and (5.21) may not hold (for G = Σ). Thus, it is important to associate an
integer for every isotropy subgroup.

3

Example 5.2.12. Let P = W ⊕U = R ⊕R be a Z2-representation, where Z2

acts on W as the antipodal map and on U trivially. Consider the map

f : W ⊕U→ W ⊕U

(x, y) 7→ ((y − 1) sin(x), (x − π)2 + (y − 1))

on the domain Ω = (−4, 4) × (0, 2) (cf. Figure 5.7). It can be verified that f

π

1

2

0−4 4 W

U

Ω
Z

2

ΩZ1

Figure 5.7: The zero (marked by the red dot) of an interior equivariant map
in Ω = (−4, 4) × (0, 2), which does not form an orbit underZ2-action.

is aZ2-interior equivariant map on W and f−1(0) ∩Ω = {(π, 1)} which does
not include the whole group orbit {(±π, 1)} of (π, 1). 3
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Lemma 5.2.13. The definition of deg(Σ,W) ( f,Ω) by (5.18)–(5.20) does not depend
on the choice of regular normal approximation maps f̃ .

Proof. Assume that f̃1, f̃2 are two different regular normal approximations of
f inΩ such that ‖ f− f̃i‖ <

ρ
2 for i = 1, 2, whereρ := {| f (x)| : x ∈ ∂Ω} > 0. Then,

‖ f̃1 − f̃2‖ < ρ and the straight-line homotopy function h(t, x) = (1 − t) f̃1 + t f̃2
gives a Ω-admissible homotopy from f̃1 to f̃2, since for x ∈ ∂Ω,

|h(t, x)| = | f̃1(x) + t( f̃2(x) − f̃1(x))| ≥ | f̃1(x)| − | f̃2(x) − f̃1(x)| > ρ − ρ = 0.

Consequently, for every K ⊂ Σ, f̃1|ΩK
is homotopic to f̃2|ΩK

. It follows from
the homotopy invariance of the Brouwer degree that

deg ( f̃1|ΩK
,ΩK) = deg ( f̃2|ΩK

,ΩK).

Thus, they lead to the same definition of nK. �

We show that the function deg(Σ,W) defined as above satisfies the usual
properties of a degree theory.

Theorem 5.2.14. Let deg(Σ,W) be a function defined by (5.18)–(5.20) for ( f,Ω) ∈
P. Then,

(i) (Existence) If deg(Σ,W) ( f,Ω) =
∑

nK · K with nK , 0, then

f−1(0) ∩ΩK
, ∅.

(ii) (Homotopy Invariance) If h : [0, 1] × Ω → W ⊕ U is an Ω-admissible
Σ-equivariant homotopy on W, then

deg(Σ,W) (h(t, ·),Ω) = constant, ∀t ∈ [0, 1].

(iii) (Additivity) If Ω1,Ω2 ⊂ Ω are disjoint open bounded Σ-invariant subsets
such that f−1(0) ∩Ω ⊂ Ω1 ∪Ω2 and f is Ωi-admissible for i = 1, 2, then

deg(Σ,W) ( f,Ω) = deg(Σ,W) ( f,Ω1) + deg(Σ,W) ( f,Ω2).

(iv) (Suspension) Let W′ be another orthogonal representation of Σ and Ω′ ⊂
W′ be an open bounded Σ-invariant neighborhood of 0. Then,

deg(Σ,W) ( f × Id,Ω ×Ω′) = deg(Σ,W) ( f,Ω).

Proof. (i) Assume that deg(Σ,W) ( f,Ω) =
∑

nK · K and nK , 0 for some K ⊂ Σ.
Then, nK = deg ( f̃ |ΩK

,ΩK) , 0, for a regular normal approximation f̃ of
f in Ω. It follows from the existence property of the Brouwer degree that
f̃−1(0) ∩ ΩK , ∅. Let x ∈ f̃−1(0) ∩ ΩK. By the construction of f̃ , we have
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x = y + v for some y ∈ f−1(0) ∩ΩK′ and v ⊥ y with K′ ⊃ K (cf. Proposition
5.2.9). Thus,ΩK′ ⊂ Ω

K which implies that y ∈ f−1(0) ∩ΩK.

(ii) Let h : [0, 1]×Ω→ W ⊕U be anΩ-admissible Σ-interior equivariant
homotopy on W. Without loss of generality, we assume h to be regular
normal. Consider an open cover of open intervals for [0, 1] constructed as
follows: for every to ∈ [0, 1] and ρ = min{|h(to, x)| : x ∈ ∂Ω} > 0, choose an
open interval i(to) of to in [0, 1] such that

‖h(to, ·) − h(t, ·)‖ <
ρ

2
, ∀ t ∈ i(to).

In particular, h(t, ·) can be regarded as a regular normal approximation of
h(to, ·) and

deg(Σ,W) (h(t, ·),Ω) = deg(Σ,W) (h(to, ·),Ω), ∀ t ∈ i(to). (5.22)

Define now

O = {i(to) : to ∈ [0, 1]}

which is an open cover of [0, 1]. Since [0, 1] is compact, it contains a fi-
nite subcover composed of intervals, say, i(t1), . . . i(tN). By (5.22), the value
of deg(Σ,W) (h(t, ·),Ω) remains constant, on each of these intervals. Conse-
quently, it remains constant on the whole interval [0, 1].

(iii) Set ρi = min{| f (x)| : x ∈ ∂Ωi} for i = 1, 2. By applying Proposition
5.2.9 to f |Ωi

and ρi inΩi, we obtain a regular normal approximation fi such
that ‖ f |Ωi

− fi‖ <
ρ
4 . It follows that

deg(Σ,W) ( f |Ωi
,Ωi) = deg(Σ,W) ( fi,Ωi), i = 1, 2.

Next, we construct out of f1, f2 a regular normal approximation of f in Ω
using Urysohn functions. Without loss of generality, we can assume that

Ω1 ∩Ω2 = ∅, since f−1(0) is composed of two disjoint compact sets

f−1(0) ∩Ωi = f−1(0) ∩Ωi, for i = 1, 2.

Thus, there exist two disjoint open sets N1,N2 such that Ni ⊃ Ωi, for i = 1, 2
(cf. Figure 5.8). Let γi : W ⊕U→ [0, 1] be a Urysohn function such that

γi(x) =





1, x ∈ Ωi

0, x < Ni

.

Then, we can define a continuous extension of fi to the wholeΩ by “gluing”
together fi and f . That is,

f̃i(x) = γ(x) fi(x) + (1 − γ(x)) f (x), for x ∈ Ω, i = {1, 2}.
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Ω1 Ω2N1 N2

Figure 5.8: Disjoint subsets for zeros of f (cf. Proof of Theorem 5.2.14.

Note that for x < Ni, we have f̃i(x) = f (x). Thus, we can define

f̃ (x) =





f̃1(x), x ∈ N1

f̃2(x), x ∈ N2,

f (x), x < N1 ∪N2

,

which is a well-defined continuous map. Moreover, f̃ is regular normal in
Ω, since

f̃−1(0) ∩Ω = ( f−1
1 (0) ∩Ω1) ∪ ( f−1

2 (0) ∩Ω2). (5.23)

More detailedly, by definition of f̃ , we have f̃−1(0)∩Ω ⊂ N1 ∪N2. Also, for
x ∈ Ni \Ωi, we have f̃ (x) = f̃i(x) and

| f̃i(x)| = | f (x) + γi(x)( fi(x) − f (x))| ≥ | f (x)| − | fi(x) − f (x)|.

If δ = min{| f (x)| : x ∈ Ni \Ωi} > 0, then | f̃i(x)| > δ −
ρ
4 . Now, we can choose

ρ such that ρ < 4δ. Thus, (5.23) holds and f̃ is regular normal inΩ. Finally,

‖ f − f̃ ‖ ≤ ‖ f − f̃1‖N1
+ ‖ f − f̃2‖N2

≤ ‖ f |Ωi
− f1‖ + ‖ f |Ωi

− f2‖

<
ρ

4
+
ρ

4
=
ρ

2
.

Therefore,

deg(Σ,W) ( f,Ω) = deg(Σ,W) ( f̃ ,Ω) = deg(Σ,W) ( f̃ ,Ω1 ∪Ω2)

= deg(Σ,W) ( f1,Ω1) + deg(Σ,W) ( f2,Ω2)

= deg(Σ,W) ( f,Ω1) + deg(Σ,W) ( f,Ω2)
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(iv) Let W′ be another orthogonal representation ofΣ andΩ′ ⊂W′ be an
open boundedΣ-invariant neighborhood of 0. Then, f × Id is a (Σ,W⊕W′)-
equivariant map, since it can be written as f ×Id = ( fW×Id, g), where fW×Id
is Σ-equvariant. Moreover, if f = ( fW , g) is regular normal inΩ, then f × Id
is regular normal in Ω ×Ω′. Indeed, if (w, u, s) ∈ ( f × Id)−1(0), then s = 0.
Also, since Iso (0) = Σ, we have

(w, u, 0) ∈ ( f × Id)−1(0) ∩ (Ω ×Ω′)K ⇔ (w, u) ∈ f−1(0) ∩ΩK. (5.24)

Further, for v ⊥ (Ω×Ω′)(K) at (w, u, 0) in W⊕U⊕W′, we can write v = v1+v2

for v1 ∈W ⊕U and v2 ∈W′. Then, v1 ⊥ Ω(K) at (w, u). Since f is normal, for
any (w, u) ∈ f−1(0) ∩ΩK, there exists a δ(w,u) > 0 such that

f ((w, u) + v1) = f ((w, u)) + v1 = v1

is satisfied for all v1 ⊥ Ω(K) at x and ‖v1‖ < δ(w,u). Now, for (w, u, 0) ∈
( f ×Id)−1(0)∩(Ω×Ω′)K, we can take the same δ(w,u). Thus, for v ⊥ (Ω×Ω′)(K)

at (w, u, 0) with ‖v‖ < δ(w,u), we have

( f × Id)((w, u, 0) + v) = f ((w, u) + v1) + v2 = f ((w, u)) + v1 + v2 = v1 + v2 = v.

That is, f ×Id is normal inΩ×Ω′. The regularity of ( f ×Id)|(Ω×Ω′)K
around its

zeros follows from (5.24), the regularity of f |ΩK
and the fact that D( f × Id) =

D f × Id, for the differentiation “D”.
Finally, for every K ⊂ Σ, we have

deg ( f |ΩK
,ΩK) =

∑

{sign det D f |ΩK
(xo) : xo ∈ f−1(0) ∩ΩK}

=
∑

{sign det D f |ΩK
(xo) : (xo, 0) ∈ ( f × Id)−1(0) ∩ (Ω ×Ω′)K},

=
∑

{sign det D( f × Id)|(Ω×Ω′)K
(xo) : (xo, 0) ∈ ( f × Id)−1(0) ∩ (Ω ×Ω′)K}

= deg (( f × Id)|(Ω×Ω′)K
, (Ω ×Ω′)K)

which concludes the desired equality.
�

Like in the case of equivariant degrees, interior equivariant degrees can
be calculated by a recurrence formula, based on its geometric meaning. Recall
that the coefficient nK in (5.18) stands for an (algebraic) count of zeros of
f that have isotropy subgroup K. Since the K-fixed point subspace ΩK is
composed of elements ofΩ that have isotropies at least K, the total count of
zeros of f in ΩK is given by the sum of nK̃ for all K̃ ≥ K. It follows that

nK = deg ( f |ΩK ,ΩK) −
∑

K̃>K

nK̃, (5.25)

where “ deg ” stands for the Brouwer degree.
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5.2.4 Relation to Equivariant Degree

We show that the interior equivariant degree defined by (5.18)–(5.20) is a
natural extension of the equivariant degree without parameters.

Proposition 5.2.15. The interior equivariant degree (5.18) coincides with equiv-
ariant degree (3.5) for equivariant maps. More precisely, let f be a Σ-equivariant
admissible map on an open bounded Σ-invariant subset Ω of a finite-dimensional
Σ-representation P. Write

Σ-Deg ( f,Ω) =
∑

(K)

nK · (K)

for integer coefficients nK defined by (3.4). The interior equivariant degree is also
well-defined for ( f,Ω) by taking P =W and write

deg(Σ,W) ( f,Ω) =
∑

K

mK · K,

for integer coefficients mK’s satisfying (5.25). Then,

mK = nK · |W(K)| (5.26)

for every K ⊂ Σ, where W(K) is the Weyl group of K.

Proof. Recall the equality (3.2) satisfied by nK’s. Then, we have

nK · |W(K)| = deg ( f |ΩK ,ΩK) −
∑

K̃>K

nK̃ · |W(K̃)|.

Thus, mK = nK · |W(K)| by induction.
Another way of proving (5.26) is to use the geometric meaning of nK’s

and mK’s. Recall that the subsetΩK of elements of isotropy K is a W(K)-free
submanifold of Ω (cf. Theorem 2.2.11). Thus, corresponding to nK number
of zero orbits of f having isotropy K, there are nK · |W(K)| number of zeros
of f having isotropy K. Therefore, (5.26) follows.

�

Example 5.2.16. Continuing from Example 3.1.5, consider the negative iden-
tity on the unit disk B of the D3-representation C as an interior equivariant
map. The D3-equivariant degree is calculated in Example 3.1.5, which is

Σ-Deg (−Id,B) = (D3) − 2(D1) + (Z1). (5.27)

The isotropy subgroups in B are D3, D1, D′
1

:= ξD1ξ
−1, D′′

1
:= ξ2D1ξ

−2 and
Z1 (cf. Figure 3.1). Thus, we have

deg(Σ,W) (−Id,B) = mD3 ·D3 +mD1
·D1 +mD′

1
·D′1 +mD′′

1
·D′′1 +mZ1

·Z1,
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for integer coefficients m∗’s. The Weyl groups are (cf. (3.7))

W(D3) = Z1, W(D1) =W(D′1) =W(D′′1 ) = Z1, W(Z1) = D3.

Based on the recurrence formula (5.25) and (3.6), we have

mD3 = 1,

mD1
= −1 − 1 = −2 = mD′

1
= mD′′

1

mZ1
= 1 − 1 − (−2) − (−2) − (−2) = 6.

Thus,
deg(Σ,W) (−Id,B) = D3 − 2 ·D1 − 2 ·D′1 − 2 ·D′′1 + 6 ·Z1.

Compared with (5.27), the relation (5.26) is fulfilled. 3

5.2.5 Interior Equivariant Maps with One Parameter

Similarly, one can define an interior equivariant degree for interior equiv-
ariant maps with one parameter. In this case, consider P = W ⊕ U for a
Σ×S1-orthogonal representation W and an S1-orthogonal representation U.
LetR be a parameter space on which Σ × S1 acts trivially.

Definition 5.2.17. A one-parameter map F : R×P→ P is calledΣ×S1-interior
equivariant on W, if F = (FW, FU) for aΣ×S1-equivariant map FW : R×P→W
and an S1-equivariant map FU : R × P→ U. That is,





(σ, z)FW(λ,w, u) = FW(λ, (σ, z)w, u),

(σ, z)FU(λ,w, u) = FU(λ, zw, u),
∀ (σ, z) ∈ Σ × S1

3

Based on the same regular normal approximation scheme, one can de-
fine an interior equivariant degree with one parameter for all admissible pairs
(F,O) such that F is a Σ × S1-interior equivariant map with one parameter
and O ⊂ R × P is an open bounded Σ × S1-invariant subset. The neces-
sary regular normal approximations can be similarly proved based on the
equivariant regular normal approximations for one-parameter maps. We
omit the details of the proof here.

Formally, given such an admissible pair (F,O), define the (Σ × S1,W)-
interior equivariant degree of F in O by assigning to every twisted isotropy
H ⊂ Σ × S1 an integer, i.e.

deg(Σ×S1,W) (F,O) =
∑

H⊂Σ×S1

nH ·H, for nH ∈ Z, (5.28)

where H ⊂ Σ × S1 are twisted subgroups of Σ × S1 (cf. Definition 2.3.6).
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The coefficients nH’s can be calculated using the following recurrence
formula (cf. (3.11) for comparison):

nH =
∑

i

sH
i −

∑

H̃>H

nH̃, (5.29)

where sH
i

is the (Zi)-coefficient in S1-Deg (F|OH ,OH) (cf. (3.9)).
The interior equivariant degree (5.28)–(5.29) is a natural extension of the

equivariant degree with one parameter.

Proposition 5.2.18. The interior equivariant degree (5.28) coincides with equiv-
ariant degree (3.12) for equivariant maps. More precisely, let F be a Σ × S1-
equivariant admissible map on an open bounded Σ × S1-invariant subset O of a
finite-dimensional Σ × S1-representation R × P. Write

Σ × S1-Deg (F,O) =
∑

(H)

nH · (H)

for integer coefficients nH defined by (3.11). The interior equivariant degree is also
well-defined for (F,O) by taking P =W and write

deg(Σ×S1,W) (F,O) =
∑

H

mH ·H,

for integer coefficients mH’s satisfying (5.29). Then,

mH = nH · |W(H)/S1| (5.30)

for every twisted subgroup H ⊂ Σ × S1, where W(H) is the Weyl group of H.

Proof. It can be proved in the same way as Proposition 5.2.15. �

Remark 5.2.19. The interior equivariant degree with one parameter defined
by (5.28) can be extended in a standard way to infinite-dimensional Σ× S1-
representations for compact Σ× S1-interior equivariant vector fields, based
on the equivariant Schauder projection (cf. Lemma 4.2.7). 3

5.3 Bifurcations in Coupled Cell Systems

We outline the major steps how to apply the interior equivariant degree
theory to interior equivariant bifurcations in coupled cell networks. To
compare, we refer to Section 3.2 for equivariant bifurcations and Section 4.3
for synchrony-breaking bifurcations with or without quotient symmetries.

Consider a coupled cell system given by

ẋ = f (λ, x), (5.31)
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where λ ∈ R is a bifurcation parameter, x ∈ P is the total state variable of all
cells and f : R × P→ P is continuously differentiable.

Assume that x = 0 is an equilibrium of (5.31). We are interested in
studying the Hopf bifurcations of 0 as λ varies. The basic assumptions are
(E1), (B1), (B2) from Section 3.2. Moreover, we assume

(I) There is a phase space decomposition

P =W ⊕U (5.32)

of P such that f is Σ-interior equivariant on W. More precisely, f can
be written as f = ( fW , g) for a Σ-equivariant map fW : R×P→ W and
a C1 map g : R × P→ U

Let (λo, 0) be the isolated bifurcation center given by (B1). By interior
symmetry, the linearization of f at (λo, 0) is of form (cf. (5.9))

Dx f (λo, 0) =
(

A 0
C B

)

, (5.33)

where A = Dw fW(λo, 0), B = Dug(λo, 0) and C = Dwg(λo, 0).

5.3.1 Degree Approach

Following the same lines of Subsection 3.2.1, we define a bifurcation invari-
ant for (λo, 0) using the interior equivariant degree with one parameter. The
phase space decomposition (5.32) carries over to the functional spaces.

Let p > 0 be the unknown period of the bifurcating solution x of (5.31).
Let β = 2π

p and y(t) = x(1
β t). Then,





ẏ = 1
β f (λ, y)

y(0) = y(2π)
.

Using the phase decomposition (5.32) and the usual operators L, j and N f

(cf. (3.16)–(3.18)), the above can be reformulated as

ẏ =
1

β
f (λ, y) ⇔





ẇ = 1
β fW(λ, y)

u̇ = 1
β g(λ, y)

⇔





Lw = 1
βN fW (λ, j(y))

Lu = 1
βNg(λ, j(y))

,

where L : H1(S1,P) → L2(S1,P) is the differentiation operator given by
(3.16), j : H1(S1,P) → C(S1,P) is the compact embedding given by (3.17)
and N f : R×C(S1,X)→ L2(S1,X) is the Nemyskii operator defined by (3.18)

for X ∈ {W,U}. Let K : H1(S1,P) → L2(S1,P) be the integration operator.
Then,





w = (L + K)−1(1
βN fW (λ, j(y)) + Kw) := FW(λ, β, y)

u = (L + K)−1(1
βNg(λ, j(y)) + Ku) := FU(λ, β, y)

,



102CHAPTER 5. INTERIOR SYMMETRY AND EQUIVARIANT DEGREE

where FW is Σ × S1-equivariant and FU is S1-equivariant. That is, we have
reformulated the bifurcation problem as a fixed point problem of a compact
map in an interior equivariant setting.

By (B1), (λo, 0) is an isolated bifurcation center. Assume that iβo ∈
σ(Dx f (λo, 0)) for some βo > 0. Let O be defined by

O :={(λ, β, y) :

√

(λ − λo)2 + (β − βo)2 < ε, ‖y‖ < r} (5.34)

⊂ R2 ×H1(S1,P),

for appropriate ε, r > 0 and ζ : O→ R be an auxiliary function given by

ζ(λ, β, y) =

√

(λ − λo)2 + (β − βo)2(‖y‖ − r) + ‖y‖ −
r

2
, (5.35)

(cf. Figure 3.2). Define

Fζ : O→ R ×H1(S1,W) ×H1(S1,U)

(λ, β, y) 7→ (ζ(λ, β, y),w − FW(λ, β, y), u − FU(λ, β, y)), (5.36)

which is a Σ × S1-interior equivariant in H1(S1,W)). Using the interior
equivariant degree (5.28) with one parameter, we define

ω(λo, 0) := deg(Σ̃,W̃) (Fζ,O),

for W̃ := H1(S1,W) and call it the bifurcation invariant around (λo, 0).

5.3.2 Homotopy to An Equivariant Bifurcation Problem

We show that Fζ defined by (5.36) isΣ×S1-interior equivariant homotopic to
an equivariant map that is associated to an equivariant bifurcation problem.
This results in accessible computations of ω(λo, 0) using the existing EDML
command showdegree explained in Subsection 3.2.3.

Consider another bifurcation problem in P =W ⊕U




ẇ = fW(λ,w, 0)

u̇ = g(λ, 0, u)
(5.37)

near the same equilibrium 0 ∈ P.
The bifurcation center (λo, 0) of (5.31) is also an (isolated) bifurcation

center for (5.37), which fulfills (B2) as well, since the linearization of (5.37)
has the same spectrum as that of (5.31) at (λo, 0).

Moreover, due to the special form of the vector field of (5.37) and the
interior equivariance assumption (I) on (5.31), (5.37) is in fact, an equivariant
bifurcation problem. Thus, (5.37) also satisfies (I) in particular.

The relation between the bifurcation problems (5.31) and (5.37) around
(λo, 0) can be described as follows.
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Theorem 5.3.1. The bifurcating branches of (5.31) under the assumptions (E),
(B1), (B2), (I) are Σ× S1-interior equivariant homotopic to those of (5.37) near the
equilibrium (λo, 0).

Proof. For convenience, let aW(λ,w) = fW(λ,w, 0) and b(λ, u) = g(λ, 0, u).
Then, following the same procedure in Subsection 5.3.1, the bifurcation
problem of (5.37) can be reformulated as finding zeros of

Gζ : O→ R ×H1(S1,W) ×H1(S1,U)

(λ, β, y) 7→ (ζ(λ, β, y),w − GW(λ, β, y), u − GU(λ, β, y)), (5.38)

where O, ζ are given by (5.34)–(5.35) and





Gw(λ, β, y) = (L + K)−1(1
βNaW (λ, j(w)) + Kw)

Gu(λ, β, y) = (L + K)−1(1
βNb(λ, j(u)) + Ku)

.

We show that Fζ and Gζ are Σ×S1-interior equivariant homotopic on O.
Step 1. (A modified auxiliary function) Let

ζ̃(λ, β, y) =

√

(λ − λo)2 + (β − βo)2(‖y‖ − r) + ‖y‖ + ε
r

2
,

where ε, r > 0 are measurement of O. Compared with ζ, the function ζ̃ is
still always positive for ‖y‖ = r, but not always negative for ‖y‖ = 0. Define
Fζ̃ and Gζ̃ just like how Fζ and Gζ are defined, by replacing ζ with ζ̃. Since
Fζ and Fζ̃ do not point to the opposite directions on the boundary of O,
one can use a straight-line homotopy to connect them. Thus, Fζ and Fζ̃ are

homotopic on O. The homotopy is also Σ × S1-interior equivariant, since it
only involves auxiliary functions which are always Σ × S1-equivariant. In
the same way, Gζ and Gζ̃ are Σ × S1-interior equivariant homotopic on O.
That is,

(Fζ,O) ∼ (Fζ̃,O), (Gζ,O) ∼ (Gζ̃,O)

Step 2. (A modified domain) If (λ, β) is close enough to (λo, βo), then ζ̃ is

always positive. Indeed, for
√

(λ − λo)2 + (β − βo)2 ≤ ε4 and ‖y‖ ≤ r, we have

ζ̃(λ, β, y) ≥

√

(λ − λo)2 + (β − βo)2 · (−r) + ε
r

2
≥
ε

4
· (−r) + ε

r

2
> 0. (5.39)

Let O1 ⊂ R
2 ×H1(S1,P) be defined by

O1 ={(λ, β, y) :
ε

4
<

√

(λ − λo)2 + (β − βo)2 < ε, ‖y‖ < r}

Then, Fζ̃ and Gζ̃ are homotopic on O if and only if they are homotopic on
O1, since Fζ̃ and Gζ̃ are always homotopic on O \O1 due to (5.39). That is,

(Fζ̃,O) ∼ (Gζ̃,O) ⇔ (Fζ̃,O1) ∼ (Gζ̃,O1)
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Step 3. (Linearization) Denote by F := (FW, FU) and G := (GW,GU). Then,

DyF(λ, β, 0) =
(

DwFW(λ, β, 0) DuFW(λ, β, 0)
DwFU(λ, β, 0) DuFU(λ, β, 0)

)

=





(L + K)−1(1
βDw fW(λ, 0) + K) 0

(L + K)−1(1
βDwg(λ, 0)) (L + K)−1(1

βDug(λ, 0) + K)





Since aW(λ,w) = fW(λ,w, 0), we have Dw fW(λ, 0) = DwaW(λ, 0). Similarly,
Dug(λ, 0) = Dub(λ, 0). Thus,

DyF(λ, β, 0) =





(L + K)−1(1
βDwaW(λ, 0) + K) 0

(L + K)−1(1
βDwg(λ, 0)) (L + K)−1(1

βDub(λ, 0) + K)





On the other hand, we have

DyG(λ, β, 0) =





(L + K)−1(1
βDwaW(λ, 0) + K) 0

0 (L + K)−1(1
βDub(λ, 0) + K)





The above two linear operators have the same spectrum, thus are homotopic
on O1. The homotopy is also Σ × S1-interior equivariant, since it involves
only a map with image in H1(S1,U). Define

Aζ̃ : O→ R ×H1(S1,P)

(λ, β, y) 7→ (ζ̃(λ, β, y), y −DyF(λ, β, 0)y),

and

Bζ̃ : O→ R ×H1(S1,P)

(λ, β, y) 7→ (ζ̃(λ, β, y), y −DyG(λ, β, 0)y).

Thus, by linearization, we have

(Fζ̃,O1) ∼ (Aζ̃,O1) ∼ (Bζ̃,O1) ∼ (Gζ̃,O1).

Consequently, Fζ and Gζ areΣ×S1-interior equivariant homotopic maps
on O, thus have zeros which are Σ × S1-interior equivariant homotopic to
each other. The statement follows.

�

Corollary 5.3.2. Let ω,ωe be the bifurcation invariants associated to (5.31) and
(5.37) respectively. That is,

ω = deg(Σ̃,W̃) (Fζ,O),

and
ωe = Σ × S1-Deg (Gζ,O),
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where O, Fζ, Gζ are defined by (5.34), (5.36), (5.38) and Σ × S1-Deg stands for
equivaraint degree (cf. Subsection 3.2.1). Then,

ω = ωe

using the identification (5.30) in Proposition 5.2.18.

Proof. It follows from Theorem 5.3.1 and the homotopy invariance of the
interior equivariant degree. �

5.3.3 An Example

We use the example from Subsection 4.3.3 to show how to obtain bifurcating
branches based on Corollary 5.3.2.

Consider the coupled cell system (4.26) admissible to the network of
Figure 4.4. As indicated by Example 2.1.12, the regular network has an
interior symmetry of D3 on the subset S = {1, 2, 4}. The adjacency matrix
A has eigenvalues 2, 1,−1, where the multiplicity of −1 is partly related to
this interior symmetry.

We are interested in finding out whether there are additional bifurcating
branches related to the interior symmetry than those predicted in Subsection
4.3.3 using quotient symmetries, around the bifurcation center

(λo, βo, 0) = (0, 1, 0).

Interior Symmetry By Theorem 5.3.1, bifurcating branches of (4.26) are
D3 × S1-interior equivariant homotopic to those of the following system





ẋ1 = fo(λ, x1, x2, x4)

ẋ2 = fo(λ, x2, x1, x4)

ẋ4 = fo(λ, x4, x1, x2)

ẋ3 = fo(λ, x3, 0, x5)

ẋ5 = fo(λ, x5, 0, x3),

(5.40)

which is D3-equivariant and admissible to the network in Figure 5.9.

Using the D3-equivariance of (5.40), one can define a bifurcation invari-
ant ωe for every Hopf bifurcation center, following the procedure outlined
in Subsection 3.2.1. The value of ωe can be obtained by

showdegree[D3](n0, n1, n2,m0,m1,m2), for ni,m j ∈ Z,

(cf. Subsection 3.2.3). We explain in detail.



106CHAPTER 5. INTERIOR SYMMETRY AND EQUIVARIANT DEGREE

Figure 5.9: The network structure of the system (5.40).

For (λo, βo, 0) = (0, 1, 0), the entries ni’s and m j’s can be determined based
on the spectrum of the Jacobian. The adjacency matrix in this case is

Ae =





0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0





=

(
A1 0
0 A2

)

(5.41)

which has the same spectrum as that of A in (4.23):

σ(Ae) = σ(A1) ∪ σ(A2) = {2,−1,−1} ∪ {1,−1}.

Consequently, the spectrum of the Jacobian of (5.40) at (λo, 0) given by

Je(λo) = α(λo) ⊗ I5 + β ⊗ Ae,

agrees with that of the Jacobian of (4.26), as listed in (4.27).

The Integers n0, n1, n2 Based on the symbols of irreducible representations
of D3 listed in Example 2.2.15, we have

(R2)5 =V0 ×V0 ×V0 ×V0 ×V0 ×V0 ×V2 ×V2,

whereV0 is 1-dimensional andV2 is 2-dimensional.
The eigenvalues of Je(λo) with positive real part are

σ1,2 = 3 ± 4i, σ3,4 = 2 ± 3i.

The pair σ1,2 is related to the valency 2 of the upper bi-direction ring in
Figure 5.9, and the pair σ3,4 is related to the valency 1 of the lower bi-
direction ring in Figure 5.9. Thus, their eigenspaces are composed of trivial
representationsV0 only. It follows that

n0 = 4, n1 = n2 = 0.
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The Integers m0,m1,m2 Using the irreducible complex representations of
D3 (cf. Example 2.2.15), we have

(C2)5 =U0 ×U0 ×U0 ×U0 ×U0 ×U0 ×U2 ×U2,

whereU0 is 1-dimensional andU2 is 2-dimensional.
The eigenspace Ec(iβo) is related to the eigenvalue −1 of Ae. Thus, we

have
Ec(iβo) =U0 ×U0 ×U2 ×U2,

where U0’s are related to the eigenvalue −1 of A2 and U2’s are related to
the eigenvalue −1 of A1 which is relevant to the symmetry D3. It follows
that

m0 = 1, ,m1 = 0, m2 = 2.

Therefore, we have

ωe = ±showdegree[D3](4, 0, 0, 1, 0, 2)

= ±
(

2(Zt
3) + (D3) + 2(Dz

1) + 2(D1) − 2(Z1)
)

(5.42)

The dominating orbit types are (D3), (Zt
3
), (Dz

1
) and we list the bifurcating

branches of solutions with their symmetry and form in Table 5.1.

Orbit Type Symmetry Form of Periodic Solutions (for some period T)

(D3) D3

(

x(t), x(t), y(t), x(t), z(t)
)

(Zt
3
)

Zt
3

(

x(t), x(t + T
3 ), y(t), x(t + 2T

3 ), z(t)
)

κZt
3
κ−1

(

x(t), x(t + 2T
3 ), y(t), x(t + T

3 ), z(t)
)

(Dz
1
)

Dz
1

(

x(t), y(t), z(t), x(t + T
2 ),w(t)

)

, for y(t) = y(t + T
2 )

ξDz
1
ξ−1

(

x(t), x(t + T
2 ), z(t), y(t),w(t)

)

, for y(t) = y(t + T
2 )

ξ2Dz
1
ξ−2

(

x(t), y(t), z(t), y(t + T
2 ),w(t)

)

, for x(t) = x(t + T
2 )

Table 5.1: The summary of symmetric properties of bifurcating branches of
solutions from xo = 0 of system (4.26) (Part II), using the interior symmetry
on {1, 2, 4}.

Unfortunately, none of the solutions listed in Table 5.1 are necessarily
new branches compared with those listed in Table 4.1. For example, the first
branch in Table 5.1 of form

(

x(t), x(t), y(t), x(t), z(t)
)



108CHAPTER 5. INTERIOR SYMMETRY AND EQUIVARIANT DEGREE

may coincide with the branch of synchrony type ∆2 in Table 4.1, if z(t) =
y(t + T

2 ). The same holds for the rest of the branches in Table 5.1, since
they may coincide with the branches of synchrony type ∆1 (with the same
symmetry) in Table 4.1.

Quotient Interior Symmetry The network has a quotient interior symme-
try D3, which is related to the quotient network induced by {{1}, {2}, {3, 5}, {4}}
(cf. Example 2.1.18). The quotient system is of form





ẋ1 = fo(λ, x1, x2, x4)

ẋ2 = fo(λ, x2, x1, x4)

ẋ3 = fo(λ, x3, x1, x3)

ẋ4 = fo(λ, x4, x1, x2)

(5.43)

obtained by restricting the flow onto ∆01 = {x3 = x5} in (4.26) (cf. Figure
2.6).

By Theorem 5.3.1, bifurcating branches of (5.43) are D3 × S1-interior
equivariant homotopic to those of the system





ẋ1 = fo(λ, x1, x2, x4)

ẋ2 = fo(λ, x2, x1, x4)

ẋ4 = fo(λ, x4, x1, x2)

ẋ3 = fo(λ, x3, 0, x3)

(5.44)

The adjacency matrix of (5.44) is

Aq =





0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 1





=

(
Q1 0
0 Q2

)

(5.45)

where σ(Q1) = {2,−1,−1} and σ(Q2) = {1}. Compare with (5.41), the lin-
earization has effectively lost an eigenvalue −1 through the quotient. The
eigenvalues −1 that are related to the D3-symmetry remain.

Following the same procedure as the previous subsection, we have

ωq = ±showdegree[D3](4, 0, 0, 0, 0, 2)

= ±
(

2(Zt
3) + 2(Dz

1) + 2(D1) − 2(Z1)
)

(5.46)

where ωq stands for the bifurcation invariant associated to the quotient
system (5.43).

Using the dominating orbit types (D3), (Zt
3
) and (Dz

1
), we list the bifur-

cating branches of solutions with their synchrony and symmetry in Table
5.2.

The last branch in Table 5.2 coincides with the branch predicted for ∆01

in Table 4.1, and the branch in ∆3 may coincide with the branch predicted
for ∆13 in Table 4.1. All other branches are new branches.
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Synchrony Symmetry Form of Periodic Solutions (for some period T)

∆01
(a,b,c,d,c)

Zt
3

(

x(t), x(t + T
3 ), y(t), x(t + 2T

3 ), y(t)
)

κZt
3
κ−1

(

x(t), x(t + 2T
3 ), y(t), x(t + T

3 ), y(t)
)

D1

(

x(t), y(t), z(t), x(t), z(t)
)

∈ ∆5

ξD1ξ
−1

(

x(t), x(t), z(t), y(t), z(t)
)

∈ ∆6

ξ2D1ξ
−2

(

x(t), y(t), z(t), y(t), z(t)
)

∈ ∆3

Dz
1

(

x(t), y(t), z(t), x(t + T
2 ), z(t)

)

, for y(t) = y(t + T
2 )

ξDz
1
ξ−1

(

x(t), x(t + T
2 ), z(t), y(t), z(t)

)

, for y(t) = y(t + T
2 )

ξ2Dz
1
ξ−2

(

x(t), y(t), z(t), y(t + T
2 ), z(t)

)

, for x(t) = x(t + T
2 )

Table 5.2: The summary of symmetric properties of bifurcating branches of
solutions from xo = 0 of system (4.26) (Part III), using the quotient interior
symmetry on ∆01 = {x3 = x5}.

Summary Using quotient symmetry and lattice equivariant degree, we
obtained in Subsection 4.3.3 18 distinct bifurcating branches for the system
(4.26), as listed in Table 4.1. Using quotient interior symmetry and interior
equivariant degree, we obtained additional 6 bifurcating branches (cf. Table
5.2). We summarize these branches by following through the synchrony
subspaces listed in Figure 2.6, from top to bottom and left to right. See
Table 5.3.
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Synchrony Form of Periodic Solutions (for some period T) Symmetry

∆43
(a,b,a,a,b)

(

x(t), y(t), x(t), x(t), y(t)
)

∆41
(a,a,b,b,a)

(

x(t), x(t), y(t), y(t), x(t)
)

∆13
(a,b,b,b,b)

(

x(t), y(t), y(t), y(t), y(t)
)

∆12
(a,b,b,a,a)

(

x(t), y(t), y(t), x(t), x(t)
)

∆11
(a,a,a,b,b)

(

x(t), x(t), x(t), y(t), y(t)
)

∆4
(a,b,c,c,b)

(

x(t), x(t + T
3 ), x(t + 2T

3 ), x(t + 2T
3 ), x(t + T

3 )
)

Zt
3

(

x(t), x(t + 2T
3 ), x(t + T

3 ), x(t + T
3 ), x(t + 2T

3 )
)

κZt
3
κ−1

(

x(t), y(t), x(t + T
2 ), x(t + T

2 ), y(t)
)

, for y(t) = y(t + T
2 ) Dz

1
(

x(t), x(t + T
2 ), y(t), y(t), x(t + T

2 )
)

, for y(t) = y(t + T
2 ) ξDz

1
ξ−1

(

x(t), y(t), y(t + T
2 ), y(t + T

2 ), y(t)
)

, for x(t) = x(t + T
2 ) ξ2Dz

1
ξ−2

∆2
(a,a,b,a,c)

(

x(t), x(t), y(t), x(t), y(t + T
2 )

)

Z−
2

∆6
(a,a,b,c,b)

(

x(t), x(t), y(t), z(t), y(t)
)

∆5
(a,b,c,a,c)

(

x(t), y(t), z(t), x(t), z(t)
)

∆3
(a,b,c,b,c)

(

x(t), y(t), z(t), y(t), z(t)
)

Z1

∆1
(a,b,b,c,c)

(

x(t), x(t + T
3 ), x(t + T

3 ), x(t + 2T
3 ), x(t + 2T

3 )
)

Zt
3

(

x(t), x(t + 2T
3 ), x(t + 2T

3 ), x(t + T
3 ), x(t + T

3 )
)

κZt
3
κ−1

(

x(t), y(t), y(t), x(t + T
2 ), x(t + T

2 )
)

, for y(t) = y(t + T
2 ) Dz

1
(

x(t), x(t + T
2 ), x(t + T

2 ), y(t), y(t)
)

, for y(t) = y(t + T
2 ) ξDz

1
ξ−1

(

x(t), y(t), y(t), y(t + T
2 ), y(t + T

2 )
)

, for x(t) = x(t + T
2 ) ξ2Dz

1
ξ−2

∆01
(a,b,c,d,c)

(

x(t), x(t + T
3 ), y(t), x(t + 2T

3 ), y(t)
)

Zt
3

(

x(t), x(t + 2T
3 ), y(t), x(t + T

3 ), y(t)
)

κZt
3
κ−1

(

x(t), y(t), z(t), x(t + T
2 ), z(t)

)

, for y(t) = y(t + T
2 ) Dz

1
(

x(t), x(t + T
2 ), z(t), y(t), z(t)

)

, for y(t) = y(t + T
2 ) ξDz

1
ξ−1

(

x(t), y(t), z(t), y(t + T
2 ), z(t)

)

, for x(t) = x(t + T
2 ) ξ2Dz

1
ξ−2

Table 5.3: The summary of distinct bifurcating branches of solutions from
xo = 0 of system (4.26), based on Table 4.1, Table 5.1 and Table 5.2.



Appendix: Computation of the
Bifurcation Invariant

We give the details of the computation of the bifurcation invariant

ω(λo, βo, xo) = T -Degt(Fζ,O),

associated with the bifurcation center (λo, βo, xo) = (0, 1, 0) of the system
(4.26).

Recall that by definition,

T -Degt(Fζ,O) =
∑

U∈L

(Ŭ, aŬ),

where

aŬ = ΓU × S1-Degt (Fζ|R2×Ŭ,O ∩ (R2 × Ŭ)) −
∑

U′<U

HU′,U(aŬ′ ).

Let Γ = ΓU, F = Fζ|R2×Ŭ andΩ = O ∩ (R2 × Ŭ) for some U ∈ L. The twisted
degree Γ × S1-Degt (F,Ω) can be computed from the following formula (cf.
[16])

Γ × S1-Degt (F,Ω) =
∏

µ∈σ+(J(λo))

∏

i

( degVi
)mi(µ) ·

∑

j,l

t j,l(λo, βo) degV j,l
,

where σ+(J(λo)) is the positive spectrum of J(λo), degVi
is the basic degree

of the i-th irreducible representation of Γ over reals, mi(µ) = dim (E(µ) ∩
Vi)/dimVi is the algebraic multiplicity of µ when restricted to the i-th
isotypical component of the eigenspace E(µ), degV j,l

is the basic degree of

the ( j, l)-th irreducible representation of Γ × S1 over complex numbers, and
t j,l(λo, βo) is the ( j, l)-th isotypical crossing number of (λo, βo).

In our example, since σ+(J(λo)) = ∅ and ilβo is only a critical eigenvalue
for l = 1, we have

Γ × S1-Degt (F,Ω) =
∑

j

t j,1(λo, βo) degV j,1
.

111
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Computation of a∆̆ In this case, Γ = Γ∆ = Z1. Consider ∆c = R2 ⊗C ≃ C2 as
a complex Z1-representation. Then, the Z1-isotypical decomposition of ∆c

is
∆c = U0 ⊕U0,

where U0 is the trivial (complex) Z1-representation. Thus,

Γ∆ × S1-Degt (Fζ|R2×∆̆,O ∩ (R2 × ∆̆)) = t0,1(λo, βo) degV0,1
.

Consider J(λ) as a complex linear map in ∆c. Then,

J(λ) = α(λ) + 2β, and σ(J(λ)) = {σ1,2}.

Since σ(J(λo)) ∩ iR = ∅, there are no eigenvalues crossing the purely imagi-
nary axis, as λ crosses λo. Thus, t0,1(λo, βo) = 0 and consequently,

a∆̆ = Γ∆ × S1-Degt (Fζ|R2×∆̆,O ∩ (R2 × ∆̆)) = 0.

Computation of a∆̆21
In this case, Γ = Γ∆21

= Z1. Similarly, we have

∆c
21 = U0 ⊕U0 ⊕U0 ⊕U0,

where U0 is the trivial (complex) Z1-representation. Thus,

Γ∆21
× S1-Degt (Fζ|R2×∆̆21

,O ∩ (R2 × ∆̆21)) = t0,1(λo, βo) degV0,1
.

Consider J(λ) as a complex linear map in ∆c
21

. Then,

J(λ) = α ⊗R2 + β ⊗
(

2 0
1 1

)

, and σ(J(λ)) = {σ1,2, σ3,4}.

Since σ(J(λo)) ∩ iR = ∅, we have t0,1(λo, βo) = 0. Thus,

a∆̆21
= Γ∆21

× S1-Degt (Fζ|R2×∆̆21
,O ∩ (R2 × ∆̆21)) − 0 = 0.

Computation of a∆̆2
In this case, Γ = Γ∆2

= Z2. Consider ∆c
2
= R6 ⊗ C ≃ C6

as a complex Z2-representation. Then, the Z2-isotypical decomposition of
∆c

2
is

∆c
2 = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U1 ⊕U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-
representation given by antipodal action. Thus,

Γ∆2
×S1-Degt (Fζ|R2×∆̆2

,O∩(R2×∆̆2)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
2
. Then,

J(λ) = α ⊗R2 + β ⊗





2 0 0
1 0 1
1 1 0




, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6}.
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Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −1. Therefore,

a∆̆2
= Γ∆2

× S1-Degt (Fζ|R2×∆̆2
,O ∩ (R2 × ∆̆2)) − 0 − 0 = −degV1,1

.

Here V1,1 ≃ U1 is a Z2 × S1-representation given by “complexifying” the
Z2-action on U1, that is (ξ, z)w := zξw, for ξ ∈ Z2, z ∈ S1, w ∈ C. The orbit
type of w , 0 is Z−

2
:= {(1, 1), (−1,−1)}. Thus, degV1,1

= (Z−
2

) and so

a∆̆2
= −degV1,1

= −(Z−2 ).

Computation of a∆̆4
In this case, Γ = Γ∆4

= D3. Consider ∆c
4
= R6 ⊗ C ≃ C6

as a complex D3-representation. Then, the D3-isotypical decomposition of
∆c

4
is

∆c
4 = U0 ⊕U0 ⊕U1 ⊕U1,

where U0 is the trivial D3-representation, U1 ≃ C ⊕ C is the complex D3-
representation given by ξ(z1, z2) = (ξz1, ξ

−1z2), κ(z1, z2) = (z2, z1), for z1, z2 ∈
C. Thus,

Γ∆4
×S1-Degt (Fζ|R2×∆̆4

,O∩(R2×∆̆4)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
4
. Then,

J(λ) = α ⊗R2 + β ⊗





0 1 1
1 0 1
1 1 0




, and σ(J(λ)) = {σ1,2, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

a∆̆4
= Γ∆4

× S1-Degt (Fζ|R2×∆̆4
,O ∩ (R2 × ∆̆4)) − 0 = −2 degV1,1

.

It was shown in [16] that (cf. Example 2.3.7 for the definition ofZt
3

and Dz
1
)

degV1,1
= (Zt

3) + (D1) + (Dz
1) − (Z1).

Thus,
a∆̆4
= −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1).

Computation of a∆̆1
In this case, Γ = Γ∆1

= D3. Consider ∆c
1
= R6 ⊗ C ≃ C6

as a complex D3-representation. Similar as the case for ∆4, the D3-isotypical
decomposition of ∆c

1
is

∆c
1 = U0 ⊕U0 ⊕U1 ⊕U1.

Thus,

Γ∆1
×S1-Degt (Fζ|R2×∆̆1

,O∩(R2×∆̆1)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.
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Consider J(λ) as a complex linear map in ∆c
1
. Then,

J(λ) = α ⊗R2 + β ⊗





0 1 1
1 0 1
1 1 0




, and σ(J(λ)) = {σ1,2, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

a∆̆1
= Γ∆1

× S1-Degt (Fζ|R2×∆̆1
,O ∩ (R2 × ∆̆1)) − 0 = −2 degV1,1

= −2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1).

Computation of a∆̆3
In this case, Γ = Γ∆3

= Z1. Consider ∆c
3
= R6 ⊗ C ≃ C6

as a complexZ1-representation. Then, , theZ1-isotypical decomposition of
∆c

3
is

∆c
1 = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0.

Thus,

Γ∆3
× S1-Degt (Fζ|R2×∆̆3

,O ∩ (R2 × ∆̆3)) = t0,1(λo, βo) degV0,1
.

Consider J(λ) as a complex linear map in ∆c
3
. Then,

J(λ) = α ⊗R2 + β ⊗





0 2 0
1 1 0
1 0 1




, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6}.

Thus, t0,1(λo, βo) = −1. Therefore,

a∆̆3
= Γ∆3

× S1-Degt (Fζ|R2×∆̆3
,O ∩ (R2 × ∆̆3)) − 0 = −degV0,1

= −(Z1).

Computation of a∆̆00
In this case, Γ = Γ∆00

= Z2. Consider∆c
00
= R8⊗C ≃ C8

as a complex Z2-representation. Then, the Z2-isotypical decomposition of
∆c

00
is

∆c
00 = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U1 ⊕U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-
representation given by antipodal action. Thus,

Γ∆00
×S1-Degt (Fζ|R2×∆̆00

,O∩(R2×∆̆00)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
00

. Then,

J(λ) = α ⊗R2 + β ⊗





0 2 0 0
1 1 0 0
1 0 0 1
1 0 1 0





, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6,7,8}.
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Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

Γ∆00
× S1-Degt (Fζ|R2×∆̆00

,O ∩ (R2 × ∆̆00)) = −2 degV1,1
= −2(Z−2 ).

On the other hand, H∆2,∆00
= Id, since h∆2,∆00

= Id. Consequently,

a∆̆00
= −2(Z−2 ) − H∆2,∆00

(

− (Z−2 )
)

= −2(Z−2 ) + (Z−2 ) = −(Z−2 ).

Computation of a∆̆02
This is a similar case as for ∆00. We have Γ = Γ∆02

= Z2

and the Z2-isotypical decomposition of ∆c
02

is

∆c
02 = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U1 ⊕U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-
representation given by antipodal action. Thus,

Γ∆02
×S1-Degt (Fζ|R2×∆̆02

,O∩(R2×∆̆02)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
02

. Then,

J(λ) = α ⊗R2 + β ⊗





1 0 1 0
1 0 0 1
2 0 0 0
1 1 0 0





, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

Γ∆02
× S1-Degt (Fζ|R2×∆̆02

,O ∩ (R2 × ∆̆02)) = −2 degV1,1
= −2(Z−2 ).

On the other hand, H∆2,∆02
= Id, since h∆2,∆02

= Id. Consequently,

a∆̆02
= −2(Z−2 ) − H∆2,∆02

(

− (Z−2 )
)

= −2(Z−2 ) + (Z−2 ) = −(Z−2 ).

Computation of a∆̆03
Similar to ∆00 and ∆02, we have

Γ∆03
×S1-Degt (Fζ|R2×∆̆03

,O∩(R2×∆̆03)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
03

. Then,

J(λ) = α ⊗R2 + β ⊗





1 1 0 0
2 0 0 0
1 0 0 1
1 0 1 0





, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

Γ∆03
× S1-Degt (Fζ|R2×∆̆03

,O ∩ (R2 × ∆̆03)) = −2 degV1,1
= −2(Z−2 ),
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and

a∆̆03
= −2(Z−2 ) − H∆2,∆03

(

− (Z−2 )
)

= −2(Z−2 ) + (Z−2 ) = −(Z−2 ).

Computation of a∆̆01
In this case, Γ = Γ∆01

= Z2. Similar to the case for
∆00,∆02,∆03, the Z2-isotypical decomposition of ∆c

01
is

∆c
01 = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U1 ⊕U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-
representation given by antipodal action. Thus,

Γ∆01
×S1-Degt (Fζ|R2×∆̆01

,O∩(R2×∆̆01)) = t0,1(λo, βo) degV0,1
+t1,1(λo, βo) degV1,1

.

Consider J(λ) as a complex linear map in ∆c
01

. Then,

J(λ) = α ⊗R2 + β ⊗





0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0





, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

Γ∆01
× S1-Degt (Fζ|R2×∆̆01

,O ∩ (R2 × ∆̆01)) = −2 degV1,1

= −2(Z−2 ).

Consequently,

a∆̆01
= −2(Z−2 ) − H∆3,∆01

(a∆̆3
) = −2(Z−2 ) + (Z2).

Computation of aW In this case, Γ = ΓV = Z1. Consider Vc = R10 ⊗C ≃ C10

as a complex Z1-representation. Then, the Z1-isotypical decomposition of
Vc is

Vc = U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0 ⊕U0,

where U0 ≃ C is the trivial Z1-representation. Thus,

ΓV × S1-Degt (Fζ|R2×W ,O ∩ (R2 ×W)) = t0,1(λo, βo) degV0,1
.

Consider J(λ) as a complex linear map in Vc. Then,

J(λ) = α ⊗R2 + β ⊗ A, and σ(J(λ)) = {σ1,2, σ3,4, σ5,6,7,8,9,10}.

Thus, t0,1(λo, βo) = −3. Therefore,

ΓV × S1-Degt (Fζ|R2×W ,O ∩ (R2 ×W)) = −3 degV0,1
= −3(Z1).
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Consequently,

aW = −3(Z1) − H∆1,V(a∆̆1
) − H∆2,V(a∆̆2

) − H∆3,V(a∆̆3
) − H∆4,V(a∆̆4

)

− H∆00,V(a∆̆00
) − H∆01,V(a∆̆01

) − H∆02,V(a∆̆02
) − H∆03,V(a∆̆03

)

= −3(Z1) − 2H∆1,V(a∆̆1
) − H∆3,V(a∆̆3

) − 4H∆2,V(a∆̆2
) − H∆01,V(a∆̆01

)

= (−3 − 2 · (−4) − (−1) − 4 · (−1) − (−2 + 1))(Z1) = 11(Z1),

where the last equality used the fact that if h : Z1 → G is the inclusion

homomorphism, then by definition of H, H
(

(K)
)

= χc(G/K) (Z1), for (K) ∈
Φ(G).

In summary, we have

T -Degt(Fζ,O) =
(

∆̆1,−2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1)
)

+
(

∆̆2,−(Z−2 )
)

+
(

∆̆3,−(Z1)
)

+
(

∆̆4,−2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1)
)

+
(

∆̆00,−(Z−2 )
)

+
(

∆̆01,−2(Z−2 ) + (Z2)
)

+
(

∆̆02,−(Z−2 )
)

+
(

∆̆03,−(Z−2 )
)

+ (W, 11(Z1)),
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