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Abstract. In this paper we present a general framework for applications of
the twisted equivariant degree (with one free parameter) to an autonomous
Γ-symmetric system of functional differential equations in order to detect and
classify (according to their symmetric properties) its periodic solutions. As an

example we establish the existence of multiple non-constant periodic solutions
of delay Lotka-Volterra equations with Γ-symmetries. We also include some
computational examples for several finite groups Γ.

1. Introduction. Many natural phenomena exhibit certain symmetric properties
which are reflected in group symmetries of the corresponding mathematical models
and expressed as equivariant dynamical systems. The investigation of the impact of
symmetries in dynamical systems on symmetric properties of the actual dynamics
is a difficult problem. There is a large variety of effective topological methods
and techniques widely used to study symmetric variational problems (see [3] and
references therein). However, in the case of symmetric non-variational differential
equations, there are only a few topological methods that are traditionally used in
order to find periodic solutions (for example, see [8]).

During the last 15 years, the Equivariant Degree Theory was developed and
took a firm position among the main topological tools in equivariant nonlinear
analysis (cf. [2, 6, 7, 13]). This method, in contrast to the traditional ones, can
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be computerized and applied in a standard way to different kinds of nonlinear
problems admitting symmetry groups of arbitrarily large size. The equivariant
degree method also proved its effectiveness even in non-symmetric problems (cf. [4,
5, 2]); the classical Leray-Schauder degree is ineffective to detect periodic solutions of
autonomous dynamical systems due to their S1-equivariant nature. The information
produced by this method provides a topological classification of solutions according
to their symmetry properties (cf. [2]).

The important feature of the equivariant degree is that it can be used system-
atically in a setting where the Leray-Schauder degree is typically applied. The
only difference is that it includes an additional parameter, which is related to the
unknown period of periodic solutions. In this paper, we follow the original idea
by Hirano and Rybicki (cf. [5]), who applied the S1-equivariant degree to a non-
symmetric system of Lotka-Volterra equations with delay.

The Lotka-Volterra equations with delay play an important role in population
dynamics. They can be traced to a model of a single population—the so-called
Verhulst logistic equation (cf. [12, 11])

v̇ = αv
(
1− v

K

)
, (1)

describing an exponentially growing population at low densities and saturating to-
wards the carrying capacity K (of resources) at high densities, and to the system{

ẋ = x(α− βy),

ẏ = −y(γ − δx),
(2)

describing the predator-prey model—the so-called Lotka-Voltera equations. In this
system, which was proposed independently by Alfred J. Lotka (1925) and Vito
Volterra (1926), x = x(t) stands for the prey density, y = y(t) is the predator
density, α is the intristic growth of prey, γ is the diminishing rate of predator, and
β and δ reflect predation impacts. However, the system (2) is unrealistic since in
absence of predators, the prey population grows exponentially. These equations
can be easily adjusted by including the competition within the prey species (i.e. by
assuming logistic growth of prey: ẋ = x(α−ηx)). One can also assume competition
within the predators. The modified equation becomes{

ẋ = x(α− ηx− βy),

ẏ = y(−γ + δx− µy).
(3)

Suppose there are n species v1, v2, . . . , vn interacting with each other (e.g. preda-
tion, competition, symbiosis, cooperation, etc.). The Lotka-Volterra Model for this
multi-species ecosystem is described by the system

v̇1 = v1(r1 − a11v1 − a12v2 − · · · − a1nvn),

v̇2 = v2(r2 − a21v1 − a22v2 − · · · − a2nvn),
...

...

v̇n = vn(rn − an1v1 − an2v2 − · · · − annvn).

(4)
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If we use the coordinate-wise vector-multiplication x · y = (x1y1, . . . , xnyn)
T , for

x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T , then (4) can be written as

v̇(t) = v(t) · (r −Av(t)), r := (r1, . . . , rn)
T , (5)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (6)

is called the community matrix. Here, ajj describes the self-inhibiting nature of
the j-th species, and aij < 0 (resp. aij > 0) is the competing (resp. cooperating)
coefficient between species i and j. In what follows, we will assume that aij = aji.

By taking into account a delayed response to the remaining resources, George E.
Hutchinson derived from (1) the following model for a single species

v̇(t) = αv(t)

(
1− v(t− τ)

K

)
, (7)

where τ > 0 is a presumed delay constant. Therefore, for n interacting species
v1, v2, . . . , vn, by introducing to (5) a delay τ > 0, one obtains the following
Lotka-Volterra model with delay for a multi-species ecosystem

v̇1(t) = v1(t)(r1 − a11v1(t− τ)− · · · − a1nvn(t− τ)),

v̇2(t) = v2(t)(r2 − a21v1(t− τ)− · · · − a2nvn(t− τ)),
...

...

v̇n(t) = vn(t)(rn − an1v1(t− τ)− · · · − annvn(t− τ)).

(8)

This system can be written as

v̇(t) = v(t) · (r −Av(t− τ)), r := (r1, . . . , rn)
T . (9)

Following Richard Levins (cf. [14]), one can associate to (9) the loop diagram shown
on Figure 1, representing the interacting species in this ecosystem. Notice that if
the interacting communities are identical, then the system (9) is symmetric. Such

an1
a1n

v1

a21a12

v2

a32

a23v3

vn−1 an−1,n

an,n−1

vn

vj

an−1,n−1 ann

a11ajj

a22a33

Figure 1. System with dihedral symmetries.
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a community ecosystem can be described by the following equations,

v̇(t) = αAv(t) ·
(
1̄− v(t− τ)

K

)
, (10)

where v(t) ∈ Rn and 1̄ = (1, 1, . . . , 1)T . By applying the standard transformation

v(t) = K(1 + u(t)), (11)

to the system (10), one obtains an equivalent system

u̇(t) = −α Au(t− τ) ·
(
1̄ + u(t)

)
, (12)

where u(t) = v(t)
K − 1 represents a population saturation index with respect to the

available resources. This model is our main example, for which we establish the
existence of multiple symmetric periodic solutions.

The equation (12) is certainly complex and its analysis is very difficult in gen-
eral. Establishing the existence of multiple periodic solutions exhibiting various
symmetric properties in such a system, can be helpful in providing some explana-
tions for complexity of its dynamics. This information can also be used to clarify
the appearance of patterns in synchronized fluctuations of populations. It is hard to
observe anything that is exactly symmetric in population ecology, although, when
dealing with models of limited accuracy, one can assume that the considered pop-
ulations are approximatively identical. This simplification allows us to exploit the
symmetries, in order to better understand the dynamics of such systems.

2. Twisted G-Equivariant Degree. In this section we provide a short explana-
tion of the twisted equivariant degree and its properties, which are used in this paper
to establish existence and multiplicity results for non-constant periodic solutions of
Γ-symmetric Lotka-Volterra equation. For more details, including the theoretical
foundations of the equivariant degree, we refer to [2].

Notation. Consider the group G := Γ × S1 with Γ being a finite group and S1 :=
{z ∈ C : |z| = 1}. Assume that H stands for a Hilbert G-representation. For an
element x ∈ H, we denote by Gx = {g ∈ G : gx = x} the isotropy group of x and
by G(x) := {gx : g ∈ G} the orbit of x. For a subgroup H of G, we denote by (H)
the conjugacy class of H. Since for two elements x′ and x′′ in the same orbit G(x),
their isotropy groups Gx′ and Gx′′ are conjugate, the conjugacy class (Gx) is called
the orbit type of x. The set of all conjugacy classes (H) in G admits a partial order:
(H1) ≤ (H2) if and only if H1 ⊂ gH2g

−1 for some g ∈ G.

Twisted Subgroups of Γ× S1. Let K ⊂ Γ be a subgroup, l ∈ N, and φ : K → S1 a
homomorphism. The subgroup Kφ,l ⊂ Γ× S1, given by

Kφ,l := {(γ, z) ∈ K × S1 : φ(γ) = zl},

is called a twisted (by φ) l-folded (or simply twisted) subgroup of Γ×S1. For l = 1,
we put Kφ := Kφ,1.

In the case H := H1(S1;V ) , where V is an orthogonal Γ-representation V (see
Subsection 3.3), the isotropy group Gx of a non-constant 2π-periodic function x ∈ H
is a twisted l-folded subgroup of Γ× S1.
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Values of Twisted Degree. Put Φ1(G) := {(H) : H is a twisted subgroup of G}
and let A1(G) := Z[Φ1(G)] be a free Z-module generated by the symbols in Φ1(G).
Suppose that f : R ⊕ H → H is a G-equivariant completely continuous field and
Ω ⊂ R⊕H an open bounded G-invariant set such that f is Ω-admissible, i.e. f(x) ̸= 0
for x ∈ ∂Ω. Then, it is possible to assign to the pair (f,Ω) an element G-Deg (f,Ω) ∈
A1(G), called twisted G-equivariant degree.

The twisted G-equivariant degree satisfies all the standard properties expected
from a reasonable degree theory. More precisely, we have the following (cf. [2]):

Theorem 2.1. There exists a (non-trivial) function G-Deg , associating to each
pair (f,Ω), where f : R⊕H → H is an Ω-admissible completely continuous field, an
element G-Deg (f,Ω) ∈ A1(G) of the form

G-Deg (f,Ω) = n1(H1) + n2(H2) + · · ·+ nk(Hk),

and satisfying the following properties:

• Existence: If G-Deg (f,Ω) ̸= 0, i.e. ni ̸= 0 for some i ∈ {1, 2, . . . , k}, then
there exists x ∈ Ω such that f(x) = 0 and Gx ⊃ Hi.

• Additivity: Let Ω1 and Ω2 be two disjoint open bounded G-invariant subsets
of Ω such that f−1(0) ∩ Ω ⊂ Ω1 ∪ Ω2. Then

G-Deg (f,Ω) = G-Deg (f,Ω1) +G-Deg (f,Ω2).

• Homotopy: Let h : [0, 1] × H → H be an Ω-admissible homotopy (i.e.
h(t, x) ̸= 0 for x ∈ ∂Ω, t ∈ [0, 1]) of G-equivariant completely continuous
fields. Then

G-Deg (ht,Ω) = constant,

where ht := h(·, x).

Remark 1. (cf. [2])

(a) Suppose that V is an orthogonal Γ-representation, O ⊂ V an open bounded
Γ-invariant set, and g : V → V a continuous O-admissible and Γ-equivariant
map. Then it is also possible to define the Γ-equivariant degree (with no
free parameter) of g in Ω, denoted by Γ-Deg(g,O), which takes the values in
A(Γ) = Z[Φ(Γ)], Φ(Γ) = {(H) : H is a subgroup of Γ}. This Γ-equivariant
degree also satisfies similar existence, additivity and homotopy properties,
as the twisted degree, including the so-called multiplicativity property. More
precisely, the Z-module A(Γ) has a natural structure of a ring, which is called
the Burnside ring of Γ, and the Γ-degree of a product of two maps is the
product of their Γ-degrees in the Burnside ring A(Γ).

(b) The Z-module A1(G) has a natural structure of an A(Γ)-module.
(c) It is possible to provide a full list of axioms for the twisted G-equivariant

degree, which uniquely defines the function G-Deg and its properties.

In addition, we also have the following important property (cf. [2]):

Theorem 2.2. Let Ω ⊂ R⊕H be an open bounded G-invariant set, f : R⊕H → H
an Ω-admissible and G-equivariant completely continuous field. Assume also that
V is an orthogonal Γ-representation, O ⊂ V an open bounded and Γ-invariant set,
and g : V → V a continuous O-admissible and Γ-equivariant map. Then we have
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• (Multiplicativity Property) The map f × g : R ⊕ H ⊕ V → H ⊕ V ,
defined by f×g(λ, x, y) = (f(λ, x), g(y)), is an Ω×O-admissible G-equivariant
completely continuous field and

G-Deg (f× g,Ω×O) = Γ-Deg(g,O) ·G-Deg (f,Ω),

where the multiplication is taken in the A(Γ)-module A1(G).

In this paper we use the conventions and notations that were introduced in the
monograph [2]. In particular, we refer to [2] for the notion of the so-called basic
degrees and symbols used to denote the conjugacy classes of subgroups in G = Γ×S1

for various finite groups Γ. The effective computations of the twisted G-equivariant
degree can be done using a special MapleTM package that is available online (see
[15]).

3. Framework for Delayed Differential Equations.

3.1. Statement of the Problem. Assume that Γ is a compact Lie group and
let V be an orthogonal Γ-representation. For a given constant τ > 0, denote by
CV,τ the Banach space of continuous functions from [−τ, 0] to V equipped with
the suppremum norm ∥ϕ∥∞ := sup{|ϕ(θ))| : −τ ≤ θ ≤ 0}, ϕ ∈ CV,τ . Given a
continuous function x : R → V and t ∈ R, define xt ∈ CV,τ by xt(θ) := x(t + θ),
θ ∈ [−τ, 0]. Notice that CV,τ is a natural isometric Banach representation of Γ.

Assume that:

(A1) A : CV,τ → V is a bounded Γ-equivariant linear operator with B := A |V :
V → V being an isomorphism;

(A2) R : CV,τ → V is a continuously differentiable Γ-equivariant map, such that
R(0) = 0 and DR(0) = 0.

We are interested in the following problem:

Problem: Find a continuously differentiable function u : R → V satisfying the
following autonomous functional differential equation{

u̇(t) = A (ut) + R(ut),

u0 = up,
(13)

where p > 0 is the unknown period of u(t).

3.2. Normalization of Period. By normalization of the period in (13) we under-
stand the following change of variable x(t) = u(λt), where λ = p

2π is considered to
be a new parameter. We obtain the following equation, which is equivalent to (13){

ẋ(t) = λ [A (xt,λ) + R(xt,λ)] ,

x0 = x2π,
(14)

where x : R → V , xt,λ ∈ CV,τ is defined by xt,λ(θ) := x
(
t+ θ

λ

)
, θ ∈ [−τ, 0].
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3.3. Choice of Functional Space. By using the standard identification of R/2πZ
with S1, we consider the first Sobolev space of 2π-periodic V -valued functions

H := H1(S1;V ). (15)

The space H is equipped with the following inner product and norm

⟨u, v⟩H1 :=

∫ 2π

0

u̇(t) • v̇(t)dt+
∫ 2π

0

u(t) • v(t)dt, ∥u∥H1 :=
√
⟨u, u⟩H1 , u, v ∈ H.

Define a Γ× S1-action on H by

((γ, eis)u)(t) := γu(t+ s), γ ∈ Γ, eis ∈ S1 u ∈ H.

Then, H becomes a Hilbert isometric G-representation for G := Γ× S1.

3.4. Setting in Functional Spaces. Under the assumptions (A1) and (A2), the
existence result for the equation (13) can be obtained by means of the G-equivariant
twisted degree with one free parameter using the standard homotopy argument and
a priori bounds for the equations{

ẋ(t) = αλ[A (xt,λ) + R(xt,λ)],

x0 = x2π,
(14α)

and {
ẋ(t) = αλ[A (xt,λ) + ρR(xt,λ)],

x0 = x2π,
(14αρ)

where ρ ∈ [0, 1], α ∈ (0, 1] and λ ∈ [λ1, λ2], λ2 > λ1 > 0.

More precisely, we rewrite the equation (14αρ) in functional spaces as

Lx = αλ[NA (λ, j(x)) + ρNR(λ, j(x))], (16)

where

L : H → L2(S1;V ), Lx = ẋ, (17)

j : H → C(S1;V ), j(u) = u, (18)

NA : R+ × C(S1;V ) → L2(S1;V ), NA (λ, x)(t) = A (xt,λ), (19)

NR : R+ × C(S1;V ) → L2(S1;V ), NR(λ, x)(t) = R(xt,λ). (20)

Put

K : H → L2(S1;V ), Kx =
1

2π

∫ 2π

0

x(t)dt.

Since L+K is an isomorphism, (14αρ) is equivalent to

x− αλ(L+K)−1[NA (λ, j(x)) + ρNR(λ, j(x)) +Kx] = 0, x ∈ H.
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3.5. Establishing A Priori Bounds. In order to establish a priori bounds on
solutions, one has to use specific properties of the system (14αρ), which may not be
satisfied on the whole space H but only on an open convex G-invariant set C ⊂ H.
We assume that 0 ∈ C and for every solution x ∈ C to (14α)∫ 2π

0

x(t)dt = 0.

Clearly, if such x is non-zero, then it is a non-constant periodic function. In addition,
we fix two appropriate values λ2 > λ1 > 0.

The specific properties, needed to establish the a priori bounds in our example,
are:

(P1) there exists αo ∈ (0, 1) such that for all 0 ≤ α ≤ αo, ρ ∈ [0, 1] and λ ∈ [λ1, λ2]
the system (14α) has no non-zero solution in C.

and

(P2) there exist an open bounded G-invariant set Ũ ⊂ C, ε > 0 and U := {x ∈ E :

dist(x, Ũ) < ε}, such that

0 ∈ Ũ ⊂ U ⊂ C,
and every non-zero solution in C to (14αρ), with α ∈ (0, 1] and λ ∈ [λ1, λ2],

belongs to Ũ .

At the moment we do not specify exactly what is the set Ũ . However, we expect

that Ũ has “good” properties, for example it is a star-shaped open set around the
origin in H.

In order to control the solutions near the origin, we assume that:

(P3) There exists m1 > 0 such that for α = 1 and ρ ∈ [0, 1], equation (14αρ) has

no non-zero solution in B := {x ∈ H : ∥x∥H1 ≤ m1} ⊂ Ũ .

Finally, we also need the following:

(P4) For α = 1 and ρ = 0, the linearized system (14αρ) does not have non-zero
solutions in H;

(P5) For λ = λi, i = 1, 2, the system (14αρ) has no non-zero solution in U .

Define
Ωλ1,λ2 := {(λ, x) : λ1 < λ < λ2, x ∈ U \B}.

3.6. Control Function β. Choose α1 with 0 < α1 < αo, to be sufficiently small
and take a continuous function ξ : [0,∞) → [α1, 1] such that (see Figure 2)

ξ(t) =


1, if t = 0,

strictly decreasing if 0 ≤ t ≤ ε,

α1, if t > ε,

(21)
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ε

1

α1

t

ξ(t)

Figure 2. The bump function ξ : [0,+∞) → [αo, 1]

and define β : H → R+ by

β(x) = ξ(dist (x, Ũ)). (22)

Next replace α in (14αρ) by β(x), i.e. consider the equation{
ẋ(t) = β(x)λ[A (xt,λ) + ρR(xt,λ)]

x(0) = x(2π).
(14βρ)

Notice that for ρ = 1, (14βρ) has exactly the same solution set in Ωλ1,λ2 as (14).

3.7. Admissible Homotopy. Define

Fρ(λ, x) := x− β(x)λ(L+K)−1[NA (λ, j(x)) + ρNR(λ, j(x)) +Kx], (23)

where ρ ∈ [0, 1], λ ∈ [λ1, λ2], x ∈ H. Let us observe that:

• If x ∈ ∂U then β(x) = α1 < αo. Consequently, by (P1), Fρ(λ, x) ̸= 0.

• If x ∈ ∂B then, by (P3) and (P4), Fρ(λ, x) ̸= 0.
• If x ∈ U and ρ ∈ [0, 1] then, by (P5), Fρ(λi, x) ̸= 0 for i = 1, 2.

Therefore, Fρ, ρ ∈ [0, 1], is Ωλ1,λ2 -admissible homotopy.

3.8. Existence Result. Under the assumptions (P1)–(P5), theG-equivariant twisted
degree G-Deg (Fρ,Ωλ1,λ2) is well defined and does not depend on ρ ∈ [0, 1].

Definition 3.1. We introduce the following notation

回回回 := G-Deg (F0,Ωλ1,λ2),

we will call 回回回 the G-equivariant topological invariant∗ for the system (14).

We have the following result

Theorem 3.2. Under the assumptions (P1)–(P5), if the G-equivariant topological
invariant

回回回 =
∑
(H)

nH(H)

is non-zero, i.e. there is a coefficient nHo ̸= 0 with Ho = Kφ,l
o , then there exists

(λ, x) ∈ Ωλ1,λ2 such that F1(λ, x) = 0 with Gx ⊃ Ho. In other words, there exists a
non-constant 2π-periodic solution to (14) for some λ ∈ [λ1, λ2], and consequently,
there is a p-periodic solution to (13) with p = 2πλ. In addition, if H = Kφ,l is

∗ We use here the Chinese symbol 回回回 (húı), which means ‘return’, i.e. it returns the topological

information about the solution set.
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a dominating type† in H, then there exists a non-constant periodic solution x(t) to
(13) with the isotropy group Kφ.

3.9. Computations of the Equivariant Topological Invariant. To compute
回回回 = G-Deg (F0,Ωλ1,λ2), we consider the “linearized” map

F0(λ, x) := x− β(x)λ(L+K)−1 [NA (λ, j(x)) +Kx] ,

where (λ, x) ∈ Ωλ1,λ2 .

Isotypical Decomposition and Related Transformations. Consider the S1-isotypical
decomposition of the space H

H = V ⊕
∞⊕
l=1

Hl =: V ⊕H∗, V = HS1

, (24)

where each of the S1-isotypical components Hl, l > 0, can be identified with (cf.
[2])

Hl := {eiltz : z ∈ V c}.
Put

F0(λ, ·) := F0(λ, ·)|V , and F∗
0(λ, ·) := F0(λ, ·)|H∗ .

The map F0(λ, ·) is the product F∗
0(λ, ·)× F0(λ, ·). Since λ > 0, by the homotopy

and multiplicativity properties of the twisted equivariant degree, we can replace
F0(λ, ·) with −B : V → V (cf. (A1)). Thus,

G-Deg (F0,Ωλ1,λ2) = Γ-Deg(−B,B) ·G-Deg (F∗
0,Ω

∗
λ1,λ2

),

where Ω∗
λ1,λ2

= Ωλ1,λ2 ∩ (λ1, λ2)×H∗ and B denotes the unit ball in V .

Consider the negative spectrum σ−(−B) of the operator −B and let

V := V0 ⊕ V1 ⊕ · · · ⊕ Vr,

be the Γ-isotypical decomposition of V , with Vj modelled on the irreducible Γ-
representation Vj . For an eigenvalue µ ∈ σ−(−B), denote by E(µ) ⊂ V the as-
sociated with µ eigenspace. Then, m̂j(µ) := dim (E(µ) ∩ Vj)/dimVj is called the
Vj-multiplicity of µ. By the multiplicativity property of the Γ-equivariant degree
(cf. [2]), one can show that

Γ-Deg(−B,B) =
∏

µ∈σ−(−B)

r∏
j=0

(
degVj

)m̂j(µ)

,

where degVj
denotes the basic degree for the representation Vj (cf. [2]).

In order to compute G-Deg (F∗
0,Ω

∗
λ1,λ2

), by the homotopy and excision properties
of the twisted equivariant degree, we conveniently deform the involved maps and
the admissible sets. In particular, we can assume that the set Ω∗

λ1,λ2
is exactly

∗† An orbit type (Kφ,l) in H is called an dominating orbit type, if it is a maximal element

among all the twisted l-folded orbit types.
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(λ1, λ2) × (B∗
2 \ B∗

1
2

), where B∗
r := {x∗ ∈ H∗ : ∥x∥H1 < r}, and the function β is

given by

β(x) =


1 if ∥x∥H1 ≤ 1,

2− α1 − (1− α1)∥x∥H1 if 1 < ∥x∥H1 < 2,

α1 if ∥x∥H1 ≥ 2.

By equivariance of F∗
0(λ, ·), we have F∗

0(λ, ·)(Hl) ⊂ Hl. A function x ∈ Hl can be
represented as x(t) = eitlz for some z ∈ V c. This implies that Hl can be identified
with V c. We define the maps Al(λ) : Hl → Hl by

Al(λ)(e
iltz) = eiltz − β(z)λL−1[A (eil(t+

θ
λ ))]

= eilt
[
z − β(z)

il
A (e

ilθ
λ z)

]
.

By the Splitting Lemma (cf. Lemma 4.21 in [2]), we have

G-Deg (F∗
0,Ω

∗
λ1,λ2

) =
∑
l>0

G-Deg (Al,Ω
∗
λ1,λ2

∩Hl).

Consider the linear operators Al(λ) : V
c → V c defined by

Al(λ)z := A (e
ilθ
λ z), z ∈ V c.

In order to simplify the computations, assume:

(B1) For every eigenvalue µl,r ∈ σ(Al(λ)), l = 1, 2, 3, . . . , the eigenspace Ẽl,r :=

Ẽl(µr(λ)) doesn’t depend on λ ∈ [λ1, λ2], and Hl =
⊕

r Ẽl,r.

Using the G-invariant decomposition Hl ≃
⊕

r Ẽl,r, we can write

Al(λ)z =
∑
r

µl,r(λ)zr, where z =
∑
r

zr, zr ∈ Ẽl,r.

Put

Ãl,r(λ, zr) := zr −
β(zr)

il
µl,r(λ)zr, zr ∈ Ẽl,r,

and define the sets

Ul,r := {z ∈ Ẽl,r :
1

2
< ∥z∥ < 2}, Ωl,r := (λ1, λ2)× Ul,r.

By the Splitting Lemma and standard properties of the twisted equivariant de-
gree, we obtain

G-Deg (F∗
0,Ω

∗
λ1,λ2

) =
∑
l>0

k∑
r=1

G-Deg (Ãl,Ωl,r).

Define φl,r : (λ1, λ2)× R+ → C by

φl,r(λ, t) := 1− (1− α1)
γ − t

il
µl,r(λ), γ :=

2− α1

1− α1
.

Then

Ãl,r(λ, z) = φl,r(λ, ∥z∥)z, z ∈ Ẽl,r.
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Reduction to Basic Maps. By the homotopy property of the twisted equivariant de-
gree, we may assume that the functions φl,r : (λ1, λ2)×

(
1
2 , 2

)
→ C are continuously

differentiable and the sets φ−1
l,r (0) are composed of a finite number of regular points.

Lemma 3.3. Let U ⊂ R× R+ be an open bounded set satisfying the conditions

(a) if (λ, t) ∈ U then t > 0;
(b) φ : R2 → C is a continuously differentiable and U -admissible map;
(c) the set Λ := φ−1(0) ∩ U is composed of regular points of φ.

Put

T := max{|t| : ∃λ (λ, t) ∈ Λ}+ 1, τ :=
1

2
max{|t| : ∃λ (λ, t) ∈ Λ}.

Consider an irreducible G-representation Vj,l, l > 0, and define the set

Ω := {(λ, v) ∈ R⊕ Vj,l : (λ, |v|) ∈ U, τ < |v| < T},

and the G-equivariant map Ã : R⊕ Vj,l → Vj,l by

Ã(λ, v) = φ(λ, |v|) · v.

Then Ã is Ω-admissible G-equivariant map and

G-Deg (Ã,Ω) =
∑

(λ,t)∈Λ

sign detDφ(λ, t) degj,l .

Proof: For every point (λo, to) ∈ Λ we define a small neighborhood Ωo of the
zero set {(λo, v) : |v| = to} in the space R⊕ Vj,l by

Ωo := {(λ, v) : |λ− λo| < εi, 0 < to − δ < |v| < to + δ},

where δ is chosen to be sufficiently small. Then

G-Deg (F,Ω) =
∑

(λo,to)∈Λ

G-Deg (F,Ωo).

Since for every (λo, to) the map Ã can be approximated on Ωo by (λ, v) 7→ Dφ(λo, to)(λ−
λo, |v| − to)

T · z, which is clearly homotopic to

(λ, v) 7→ Ji,±(λ− λo, |v| − to)
T · v,

where

Ji,+ =

[
0 −1
1 0

]
, if sign detDφ(λi, ti) = 1,

Ji,− =

[
0 −1
−1 0

]
, if sign detDφ(λi, ti) = −1,

so the result follows. �

In this way we obtain the following computational formula for 回回回.

Theorem 3.4. Under the above assumptions we have

回回回 =
∏

µ∈σ−(−B)

r∏
j=0

(
degVj

)m̂j(µ)

·
∑
l>0

k∑
r=1

s∑
j=0

∑
(λ,t)∈Λl,r

mj(µl,r(λ))sd(λ, t) · degVj,l
,

(25)
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where sd(λ, t) := sign detDφ(λ, t), V c = U0 ⊕ · · · ⊕ Us is the Γ-isotypical (com-

plex) decomposition of V c with Uj modelled on Uj, and mj(µl,r(λ)) = dim (Ẽl,r ∩
Uj)/dimUj is the Uj-multiplicity of µl,r(λ).

4. Symmetric Lotka-Volterra Systems. Let Γ be a finite group and assume
that V := Rn is an orthogonal Γ-representation such that Γ acts on V by permuting
the coordinates of vectors x = (x1, x2, . . . , xn)

T ∈ V .

Consider the following Γ-symmetric Lotka-Volterra type system

u̇(t) = u(t) ·
(
r −Au(t− τ)

)
, (26)

where u : R → V , τ > 0 and

u =


u1

u2

...
un

 , r =


r1
r2
...
rn

 ∈ V, A =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

 ,

and ‘·’ stands for the component-wise vector multiplication.

By an appropriate transformation (see (11)), the problem (26) is equivalent to

u̇(t) = −Au(t− τ) ·
(
b+ u(t)

)
, (27)

where b = A−1r. Let p be the unknown period of a solution u to (27). By a change
of variable, letting λ = p

2π , x(t) = u(λt), we have that x is a 2π-periodic solution
to the problem

ẋ(t) = −λAx(t− τ

λ
) ·

(
b+ x(t)

)
. (28)

In what follows we assume that the following conditions hold:

(H0) A and b have positive entries, i.e. ai,j , bi > 0, for 1 ≤ i, j ≤ n.
(H1) A is symmetric, positive definite (i.e. A = AT and ⟨Ax, x⟩ > 0 for all x ∈

Rn \{0}) and A is Γ-equivariant. In particular, the matrix B := diag(b)A (i.e.
Bx = Ax · b), where diag(b) denotes the diagonal matrix [dij ] with djj = bj ,
j = 1, . . . , n, has only real positive eigenvalues µ1, · · · , µn (not necessarily
distinct).

(H2) The vector b = [b1, . . . , bn]
T ∈ V is Γ-invariant, i.e. γb = b for all γ ∈ Γ.

We make also the following assumption

(H3) For every µ ∈ σ(B)

µτ ̸= 2nπ +
π

2
, for all n ∈ Z. (29)

Under the assumptions (H0)–(H2) the equation (26) is Γ-symmetric.

We are interested in finding non-constant periodic solutions to (26). This problem
is equivalent to finding non-constant 2π-periodic solutions to (28) for some λ > 0.

Define A , R : CV,τ → V by

A (u) := −Au(−τ) · b, R(u) := −Au(−τ) · u(0),
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where u ∈ CV,τ . Notice that A and R satisfy the assumptions (A1)–(A3).

Reformulation in Functional Spaces. We use the functional setting that was pre-
sented in Subsection 3.3, i.e. H is given by (15) and the operators L, j, NA and
NR are given by (17)–(20).

Following the framework presented in Section 3, we consider the following pa-
rameterized problems {

ẋ(t) = −λAx(t− τ
λ ) ·

(
b+ ρx(t)

)
,

x0 = x2π,
(28ρ)

and {
ẋ(t) = −αλAx(t− τ

λ ) ·
(
b+ ρx(t)

)
,

x0 = x2π,
(28αρ)

where α ∈ (0, 1] and ρ ∈ [0, 1].

Define the map N : [0, 1]× R+ ×H → L2(S1;V ) by

N (ρ, λ, x)(t) = Aj(x(t− τ

λ
)) · (b+ ρj(x(t))).

Then, (28ρ) is equivalent to

Lx = λ[NA (λ, j(x)) + ρNR(λ, j(x))] = −λN (ρ, λ, x),

which can be written as

x− λ(L+K)−1N (ρ, λ, x) = 0.

4.1. A Priori Bounds. Define a partial order in V = Rn by

x ≻ y ⇐⇒ xi > yi, for all 1 ≤ i ≤ n,

where x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T are two vectors from Rn. Introduce
the following set

C = {x ∈ H : −b ≺ x(t) for all t ∈ [0, 2π]}.

We begin with the following important observation

Proposition 1. Consider λ, α > 0 and τ ≥ 0. Then for every periodic solution
x ∈ C of

ẋ(t) = −αλAx(t− τ/λ) ·
(
b+ x(t)

)
, (28α)

we have ∫ 2π

0

x(t)dt = 0. (30)

In particular, the equation (28α) does not have any non-zero constant solution.

Proof: Let x ∈ C be a solution to (28α), x(t) = [x1(t), . . . , xn(t)]
T . Then for

k = 1, 2, . . . , n

ẋk(t) = −αλ
∑
j

akjxj(t− τ/λ) · (bk + xk(t)), (31)
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which leads to
ẋk(t)

bk + xk(t)
= −αλ

∑
j

akjxj(t− τ/λ). (32)

By integrating (32) from 0 to 2π, we obtain (by periodicity of x(t)) that∑
j

akj

∫ 2π

0

xj(t− τ/λ)dt =
∑
j

akj

∫ 2π

0

xj(t)dt = 0, k = 1, 2, . . . , n.

Since the matrix A is invertible, one can easily deduce (30). �

We also need the following lemmas:

Lemma 4.1. (i) For λ1, λ2 ∈ R+ with λ1 < λ2, there exist a positive number R,
and positive Γ-invariant vectors d1, d2 ≻ 0 such that for each λ ∈ [λ1, λ2],
α ∈ (0, 1], τ ≥ 1, all solutions x ∈ C of the problem (28α) satisfy ∥x∥H1 < R
and

−b ≺ −d1 ≺ x(t) ≺ d2, t ∈ [0, 2π].

In addition, there exists mo > 0 such that ∥ẋ∥∞ < m0 and ∥ẍ∥∞ < m0, where
∥x∥∞ := sup{|x(t)| : t ∈ R}.

(ii) There exists αo ∈ (0, 1) such that there is no non-zero solution in C to (28α)
for α ∈ (0, αo] and λ ∈ [λ1, λ2].

Proof: (i) Let x ∈ C be a solution to (28α), x(t) = (x1(t), . . . , xn(t))
T . Then for

k = 1, 2, . . . , n we have the relations (31) and (32) which lead to

ln(bk + xk(t))− ln(bk + xk(s)) = −αλ

∫ t

s

∑
j

akjxj(w − τ/λ)dw,

where we assume s ≤ t. Consequently, if s is such that xk(s) = 0 then

bk + xk(t) = bk exp

−αλ2

∫ t

s

∑
j

akjxj(w − τ/λ)dw

 , for all t ∈ R.

By the assumptions (H0) and (H1),

xk(t) < dk2 := bk exp

2παλ2

∑
j

akjbj

− bk for all t ∈ R, (33)

and by (H2), the vector d2 := (d12, . . . , d
n
2 )

T is Γ-invariant. On the other hand,

−bk < −dk1 := bk exp

−2παλ1

∑
j

akjd
j
2

− bk < xk(t), for all t ∈ R,

and agian by (H2), the vector d1 := (d11, . . . , d
n
1 )

T is Γ-invariant. By differentiating
(28α) we obtain

ẍ(t) = −αλ
(
Aẋ(t− τ/λ) ·

(
b+ x(t)

)
+Ax(t− τ/λ) · ẋ(t)

)
. (34)

The above obtained upper and lower bounds of xk(t), combined with (31) and (34),
imply that there exists mo > 0 such that

|ẋk(t)| < mo and |ẍk(t)| < mo,
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for all k = 1, . . . , n and t ∈ R. Consequently,
∥ẋ∥∞ < mo and ∥ẍ∥∞ < mo.

Therefore,

∥x∥2H1 =

∫ 2π

0

ẋ(t) • ẋ(t)dt+
∫ 2π

0

x(t) • x(t)dt ≤ 2π∥ẋ∥2∞ + 2π
n∑

k=1

dk2 =: R2.

(ii) Suppose for contradiction that there exist sequences {αn} ⊂ (0, αo] and
{xm} ∈ C such that xm is a non-zero solution to (28α) for α = αm, λ = λm ∈ [λ1, λ2]
and limm→∞ αm = 0. Then (33) holds for xk(t) = xm

k (k) with m = 1, 2, . . . , and
therefore,

lim
m→∞

∥xm∥∞ = 0.

Since
ẋm(t) = −αmλAxm(t− τ/λm) ·

(
b+ xm(t)

)
, (35)

we have
∥ẋm∥∞ ≤ αmλ2|A|∥xm∥∞(|b|∞ + |d2|∞), (36)

where |A| =
∑

ij aij and |y|∞ = max{|yj | : j = 1, . . . , n} for y ∈ Rn. Define um(t)
by

um
k (t) =

xm
k (t)

∥xm∥∞
, t ∈ R.

Clearly, um ∈ H and by (36),

∥u̇m∥∞ ≤ αmλ2|A|(|b|∞ + |d2|∞),

which implies that limm→∞ ∥u̇m∥∞ = 0. Since

∥um∥∞ ≤ 2π∥u̇m∥∞,

it follows that limm→∞ ∥um∥∞ = 0, which is a contradiction with ∥um∥∞ = 1. �

Lemma 4.2. Assume that for fixed values of λ ∈ R+ and α ∈ (0, 1], the linearized
equation

ẋ(t) = −αλAx(t− τ/λ) · b (37)

has a non-zero solution in H. Then

(i) there exist k, n ∈ Z, n ≥ 0, k > 0 such that{
λ = kτ

2πn+π/2 =: λk,n,

α = k
λµ ,

(38)

where µ is an eigenvalue of the matrix B := diag(b)A.
(ii) In particular, for α = 1 the equation (37) has no non-zero solution in H.

Proof: The equation (37) can be written as

ẋ(t) = −αλBx(t− τ/λ). (39)

Clearly, (39) allows a non-zero solution u in H if and only if, there is k ∈ N such
that x = eikt · z, for some z ∈ V c, is a solution to (39), which leads to the equation

ik + αλµe−il τλ = 0,

for some µ ∈ σ(B). One can easily verify that such a case is possible if and only if,
the relations in (38) are satisfied for some n ∈ Z. On the other hand, if α = 1 then
(38) implies that µτ = 2πn+ π/2, which contradicts the assumption (H3). �
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Lemma 4.3. Assume that λ ∈ R+, ρ ∈ [0, 1] and α ∈ (0, 1] are fixed.

(i) If zero is not an isolated solution in H to the equation (28αρ), then there exist
integers k > 0 and n ≥ 0 such that λ and α satisfy the relations in (38) for
an eigenvalue µ of the matrix B := diag(b)A.

(ii) If λ1, λ2 ∈ R+ with λ1 < λ2, then there exists m1 > 0 such that for all
λ ∈ [λ1, λ2], the equation (28ρ) has no non-zero solution x ∈ H such that
∥x∥H1 ≤ m1.

Proof: Define Fα : [λ1, λ2]×H → H by

Fα(ρ, λ, x) := x− αλ(L+K)−1N (ρ, λ, x), x ∈ H.

By the implicit function theorem, if (λ, 0) is not an isolated solution to (28αρ) for
some ρ ∈ [0, 1], then DxFα(ρ, λ, 0) : H → H is not an isomorphism, which implies
that the equation (37) has a non-zero solution. Consequently, by Lemma 4.2, α and
λ satisfy the relations in (38). Therefore, if α = 1, again by Lemma 4.2 and the
implicit function theorem, there exists m1 > 0 such that the equation (28ρ) has no
non-zero solution x for λ ∈ [λ1, λ2] and ρ ∈ [0, 1]. �

The following fact is well-known, but for the sake of completeness we include its
elementary proof.

Lemma 4.4. For any ρ ∈ [0, 1] and λ > 0, the following equation{
ẋ(t) = −λAx(t) ·

(
b+ ρx(t)

)
,

x0 = x2π.
(40)

has no non-zero solution.

Proof: Assume first that ρ ∈ (0, 1]. Suppose that x is a non-zero 2π-periodic
solution to (40). By integrating (40) from 0 to 2π, we obtain∫ 2π

0

Ax(t)·x(t)dt = 0 ⇐⇒
n∑

j=1

akj

∫ 2π

0

xj(t)xk(t)dt = 0, k = 1, 2, . . . , n. (41)

On the other hand, A is positively definite, i.e. Ax(t) • x(t) > 0 for x(t) ̸= 0, which
implies that ∫ 2π

0

Ax(t) • x(t)dt > 0.

But this is a contradiction, because by summing up the equations in (41), we obtain∫ 2π

0

Ax(t) • x(t)dt =
n∑

k=1

n∑
j=1

akj

∫ 2π

0

xj(t)xk(t)dt = 0.

Suppose now that ρ = 0, then the equation (40) becomes ẋ(t) = −λBx(t). Con-
sequently, if x is a 2π-periodic solution to (40) for ρ = 0, then it also satisfies the
equation

d

dt
(x(t) · x(t)) = 2ẋ(t) · x(t) = −2λBx(t) · x(t),

which leads to ∫ 2π

0

Bx(t) · x(t)dt = 0.

Be a similar argument as above, we obtain again that x(t) = 0. �
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4.2. Sets and Deformations. Fix λ1, λ2 ∈ R+ with λ1 < λ2 and assume d2 ≻
b1+d1

2 . We define the following Γ× S1-invariant sets

D :=

{
x ∈ H : −b+ d1

2
≺ x(t) ≺ 2d2, t ∈ [0, 2π]

}
,

D̃ := {x ∈ H : −d1 ≺ x(t) ≺ d2, t ∈ [0, 2π]},
B := {x ∈ H : ∥x∥H1 ≤ m1},

BR := {x ∈ H : ∥x∥H1 < R},

where R, d1 and d2 are specified in Lemma 4.1 and m1 in Lemma 4.3. We can
choose m1 > 0 to be sufficiently small so that

B ( D̃ ( D ( C.

and define

Ũ := D̃ ∩BR.

Choose ε > 0 to be sufficiently small such that the set

U := {x ∈ H : dist(x, Ũ) < ε},

satisfies

U ⊂ D.

Next, we choose λ1 and λ2 to be

λ1 :=
τ

2j1π
, λ2 :=

τ

2j2π
, j1 > j2, j1, j2 ∈ N, (42)

and put

Ωλ1,λ2
:= (λ1, λ2)× (U \B) ⊂ R+ ×H.

Control Function β. Take the function ξ : [0,∞) → [α1, 1] given by (21), where we
assume that α1 > 0 was chosen to be sufficiently small such that

α1λ2µmax ∈ (0, 1), α1 < αo, where µmax := max{µ : µ ∈ σ(B)},

and β : H → R+ given by

β(x) = ξ(dist(x, Ũ)),
(cf. (22), see Figure 3). Then replace the parameter α in the equation (28αρ) with
β(x), i.e. consider the following equation:{

ẋ(t) = −β(x)λAx(t− τ
λ ) ·

(
b+ ρx(t)

)
,

x0 = x2π,
(28βρ)

where ρ ∈ [0, 1].

Admissible Homotopies. We consider the compact field Fρ : R+ × H → H by (23)
and the set

S := {(ρ, λ, x) ∈ [0, 1]× R+ ×D : Fρ(λ, x) = 0},
which is the solution set of (28βρ) in D.
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β(x) = α1 β(x) = 1

∂U

∂B

α1 < β(x) < 1

H \ C
C

Figure 3. The sets U \B, ∂U and ∂B.

Lemma 4.5. Under the above assumptions, for fixed λ1, λ2 ∈ R+ with λ1 < λ2, we
have

S ∩
(
[0, 1]× (λ1, λ2)× ∂(U \B)

)
= ∅,

S ∩
(
[0, 1]× {λ1} × (U \B)

)
= ∅,

S ∩
(
[0, 1]× {λ2} × (U \B)

)
= ∅.

Proof: Let (ρ, λ, x) ∈ S, i.e. x is a solution to (28βρ). Assume first that ρ ∈ (0, 1].
Suppose that (λ, x) ∈ ∂U . By multiplying (28βρ) with ρ and using the substitution
u(t) := ρx(t), we obtain

u̇(t) = −λβ(x)Au(t− τ/λ) ·
(
b+ u(t)

)
,

which means u is a solution to (28α) with α = β(x). If (λ, x) ∈ ∂U , then by
definition of the function β, we have β(x) = α1 ≤ αo. However, by Lemma 4.1(ii),
this implies that u = 0, which is the contradiction.

In the case ρ = 0, we are dealing with the linear system

ẋ(t) = −β(x)λAx(t− τ/λ) · b, λ ∈ [λ1, λ2]. (43)

If (λ, x) ∈ [λ1, λ2] × D is a solution to (43) such that (λ, x) ∈ ∂U then β(x) = α1,
which means x is a non-zero solution to (37) with α = λα1 and λ ≤ λ2. However,
by Lemma 4.2(i) (see (38)) there exist positive integers k and µ ∈ σ(B) such that
λα1µ = k, which is impossible because λα1µ < α1λ1µmax < 1 ≤ k for all k ∈ N. In
this way we obtain that S ∩

(
[0, 1]× (λ1, λ2)× ∂(U \B)

)
= ∅.

Consider now λo = λ1 or λ2, where λ1 = τ
2j1π

< λ2 = τ
2j2π

, for some j1, j2 ∈ N,
and assume that x ∈ ∂B is a solution to the equation (28βρ) for ρ ∈ [0, 1]. Since
β(x) = 1, the equation (28βρ) becomes (40) and by Lemma 4.4, x = 0, which is
again a contradiction. This completes the proof. �

4.3. Computation of the Equivariant Topological Invariant. By Lemma 4.5,
we obtain that Fρ for ρ ∈ [0, 1], is an Ωλ1,λ2 -admissible homotopy. Consequently,
we have the G-equivariant topological invariant

回回回 := G-Deg (F1,Ωλ1,λ2) = G-Deg (F0,Ωλ1,λ2).
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By using the decomposition (24) of the space H and making small adjustments
related to the function β(x), we can represent the map F0 : R+ × H → H in the
following form

F0(λ, x) =
(
λβ(x̄)Bx̄, x∗ + λβ(x∗)L−1N (0, λ, j(x∗))

)
, (44)

where x = x̄+ x∗ ∈ V ⊕H∗. Our goal is to compute G-Deg (F0,Ωλ1,λ2).

For convenience, define F0 : R+ × V → V and F∗
0 : R+ ×H∗ → H∗ by

F0(λ, x̄) := λβ(x̄)Bx̄, x̄ ∈ V

F∗
0(λ, x

∗) := x∗ + λβ(x∗)L−1N (0, λ, x∗),

and define

Ω∗
λ1,λ2

:= Ωλ1,λ2 ∩H∗, B := {x̄ ∈ V : ∥x∥ < 1}.

Then, since F0 is a G-homotopic to the product map F∗
0×F0, by the multiplicativity

property (cf. Theorem 2.2), we have

回回回 = G-Deg (F0,Ωλ1,λ2) = Γ-Deg(F0,B) ·G-Deg (F∗
0,Ω

∗
λ1,λ2

).

Since β(x) > 0, the map F0 is G-homotopic to the map given by x̄ 7→ Bx̄. However,
B := diag(b)A has all the eigenvalues positive, therefore it can be deformed Γ-
equivariantly, using for example a path in GLΓ(V ) to Id . Thus,

Γ-Deg(F0,B) = Γ-Deg(Id ,B) = (Γ),

and consequently

回回回 = G-Deg (F2,Ω
∗
λ1,λ2

).

In order to compute G-Deg (F∗
0,Ω

∗
λ1,λ2

), consider the S1-isotypical decomposition

(24) of the space H∗ and the restrictions Al := F∗
0|Hl

= F0|Hl
, l = 1, 2, . . . . By a

homotopy argument, we can assume that

Al(λ, e
iltz) = eitl

[
z +

β(z)

il
e−

ilτ
λ Bz

]
, z ∈ V,

i.e., the map Al can be represented as

Al(λ, z) := z − iβ(z)

l
e−

ilτ
λ Bz, z ∈ V.

Therefore, by the additivity property of the twisted equivariant degree (cf. Theorem
2.1) we have

G-Deg (F0,Ωλ1,λ2) =
∑
l>0

G-Deg (Al,Ω
∗
λ1,λ2

∩Hl),

where the above sum contains only finitely many non-zero terms.

Assume for simplicity that the matrix B is fully digonalizable and consider µ ∈
σ(B). Then for z ∈ Ẽl(µ) ⊂ Hl ≃ V c, where Ẽl(µ) := Ẽ(µ) denotes, with respect
to this identification, the Γ-invariant (complex) eigenspace of µ for B : V c → V c,
and

Al(λ, z) = z − iβ(z)µ

l
e−

ilτ
λ z, z ∈ Ẽ(µ).
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Therefore,

G-Deg (F0,Ωλ1,λ2) =
∑
l>0

∑
µ∈σ(B)

G-Deg (Al,Ω
∗
λ1,λ2

∩ Ẽ(µ)).

By applying the homotopy and excision properties of the twisted equivariant de-

gree to the set Ω∗
λ1,λ2

∩ Ẽ(µ) and the function β we can simplify further these

computations. More precisely, for each l = 1, 2, . . . and µ ∈ σ(B) we put

Ul,µ :=

{
z ∈ Ẽl(µ) :

1

2
< |z| < 2

}
,

Ωl,µ := (λ1, λ2)× Ul,µ,

and define the function β : Ẽl(µ) → [α1, 1] by

β(z) =


1 if |z| ≤ 1,

2− α1 − (1− α1)|z| if 1 < |z| < 2,

α1 if |z| ≥ 2.

Then,

G-Deg (F0,Ωλ1,λ2) =
∑
l>0

∑
µ∈σ(B)

G-Deg (Al,Ωl,µ).

Suppose that Al(λ, z) = 0 for some 0 ̸= z ∈ Ẽ(µ), µ ∈ σ(B). Then by (38),{
β(z) = l

λµ < 1,

λ := λl,m = lτ
2πm+π/2 , for some m ∈ N.

Denote by n(µ) a positive integer such that

π

2
+ 2n(µ)π < µτ <

π

2
+ 2(n(µ) + 1)π. (45)

Denote

Λl,µ := {m : lj2 ≤ m < lj1, n(µ) ≥ m}. (46)

Then, one can easily verify that we have the following set of zeros of Al in Ωl,µ

Zl,µ := {(λl,m, z) : m ∈ Λl,µ, β(z) =
1

λl,mµ
} = {(λl,m, z) : λl,m ∈ Λl,µ, |z| = tl,m,µ},

where

tl,m,µ :=
(2− α1)λl,mµ− 1

λl,mµ(1− α1)
.

In particular, for z ∈ Ẽ(µ), λ ∈ [λ1, λ2], on a small neighborhood Ul,m,µ of
{(λl,m, z) : |z| = tl,m,µ} in Ωl,µ we have

Al(λ, z) =(1− iµλβ(z)

l
e−i lτ

λ )z

= (1− µλβ(z)

l
sin

kτ

λ
− i

µλβ(z)

l
cos

lτ

λ
)Id .

For a small neighbourhood of λ = λl,m = lτ
2mπ+π

2
, (i.e. lτ

λ = 2mπ + π
2 ) the above

map is homotopic to

(λ, z) 7→ (1− µλl,mβ(z)

l
− i

µλl,mβ(z)

l
(λl,m − λ))z =: φ(λ, |z|)z,
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where

φ(λ, t) = 1− µλl,mξ(t)

l
+ i

µλl,mξ(t)

l
(λ− λl,m), ξ(t) = 2− α1 − (1− α1)t.

It is easy to compute

Dφ(tl,m,µ) =

[
0

µλl,m

l (1− α1)
µλl,m

l ξ(tl,m,µ) 0

]
,

and since detDφ(tl,m,µ) < 0, we immediately obtain (cf. [2])

G-Deg (Al,Ul,m,µ) = −
s∑

j=0

mj(µ) degVj,l
,

where V c := U0 ⊕ · · · ⊕ Us is a (complex) Γ-isotypical decomposition of V c, with

Uj modelled on Uj , mj(µ) = dim (Ẽ(µ) ∩ Uj)/dimUj being the Uj-multiplicity of
µ, and degVj,l

standing for the basic degree for the representation Vj,l (see [2] for

more information and the precise description of the convention used here).

In this way, the following result provides us with a computational formula for回回回.

Proposition 2. Under the above assumptions we have

回回回 = −
∑
l>0

∑
µ∈σ(B)

∑
m∈Λ(l,µ)

s∑
j=0

mj(µ) degVj,l
.

On the other hand, by Theorem 3.2, we have

Theorem 4.6. Under the assumptions (H0)–(H3), if the G-equivariant topological
invariant

回回回 =
∑
(H)

nH(H)

is nonzero, i.e. there exist a coefficient nH ̸= 0 with H = Kφ,l. Moreover, there ex-
ists (λ, x) ∈ Ωλ1,λ2 such that F1(λ, x) = 0 with Gx ⊃ H. In other words, there exists
a nonconstant 2π-periodic solution to (28) for some λ ∈ [λ1, λ2], and consequently,
there is a p-periodic solution to (26) with p = 2πλ. In addition, if H = Kφ,l is
a dominating type in H, then there exists a non-constant periodic solution x(t) to
(26) with the isotropy group Kφ.

Therefore, as an immediate consequence, we obtain the following generalization
of the result obtained in [5] (without assumption of simplicity on the eigenvalues of
the matrix B):

Corollary 1. Suppose that Γ = {e}. Under the assumptions (H0)–(H3), if there
exist an eigenvalue µ ∈ σ(B) and n ∈ N ∪ {0} such that

π

2
+ 2nπ < µτ <

π

2
+ 2(n+ 1)π,

then the G-equivariant topological invariant

回回回 =
∑
(H)

nH(H)
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is nonzero, and consequently, there exists a p-periodic solution to (26).

5. Examples. In the following examples we consider the system (27), symmetric
with respect to the group Γ being Q8, D8 and S4. We assume that b = [1, 1, . . . , 1]T

and consider the matrix A with concrete numerical values of its entries. We also
specify the numerical value of the delay τ > 0. The spectrum of A is denoted by

{µi : 1 ≤ i ≤ r} and the eigenspace Ẽ(µi) corresponding to µi, as it turns out, is

of a single Γ-isotypical type such that Ẽ(µi) ≡ Vj(i), i.e. the Vj-multiplicity m̂j(µ)
of the eigenvalue of µ is one. Similarly, for the matrix A : V c → V c we denote
by E(µi) the (complex) eigenspace, which in our cases is E(µi) = mj(i)(µi) · Uj(n),
where mj(i)(µi) is the Uj(i)-multiplicity of µi. The number mj(i)(µi) is always one,
except for the case Γ = Q8, where the considered real eigenspace is of quaternionic
type, so this number is equal to 2. We choose the values of j1 = 2 and j2 = 1, and
put (cf. (46))

ml,j(i) := mj(i)(µi)|Λl,µi |,

where E(µi) = mj(i)(µi) · Uj(i) and |X| denotes the number of elements in the set
X. Then, using this notation, our computational formula for the G-equivariant
topological invariant can be written as

回回回 = −
∑
l>0

∑
µ∈σ(B)

∑
m∈Λ(l,µ)

s∑
j=0

mj(µ) degVj,l
= −

∑
l>0

s∑
j=1

mj,l degVj,l
. (47)

For the computation of the numbers n(µi) specified by (45) we will use Table 1.

n 1 2 3 4 5 6 7 8 9 10
π
2 + 2nπ 7.9 14.1 20.4 26.7 33.0 39.27 45.6 51.8 58.1 64.4

Table 1. Values of π
2 + 2nπ.

The final results are formulated using the so-called basic degrees degVj,l
. We

will only list the basic degrees degVj,1
. The degrees degVj,l

can be determined

by taking the l-folding homomorphism of degVj,1
, i.e. degVj,l

= Ψl

(
degVj,1

)
, for

Ψl : A
t
1(G) → At

1(G) defined (on generators) by (Hφ,k) 7→ (Hφ,kl) (cf. [2]).

For each non-zero coefficient in G-Deg (F0,Ωλ1,λ2) of (Hφ,l), where (Hφ) is a
dominating orbit type, there exist at least |Γ/H| different non-constant p-periodic
solutions with the least symmetry (Hφ,k) for some integer k ≥ 1. However, the
k-folding in the isotropy group (Hφ,k) of x ∈ H∗ means that x is a p/k-periodic
solution with exact symmetry (Hφ). In this way we are able to predict the exact
symmetries of certain periodic solutions.

5.1. Quaternionic Group Q8. The quaternionic group Q8 can be described as a
subgroup of S8 generated by

i := (1324)(5867), j := (1526)(3748).
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We consider the space V := R8 on which Q8 acts by permuting the coordinates of
vectors x ∈ V . Consider the matrix

A :=



a c b b d d e e
c a b b d d e e
b b a c e e d d
b b c a e e d d
d d e e a c b b
d d e e c a b b
e e d d b b a c
e e d d b b c a


The matrix A commutes with the Q8-action on V . The matrix A has the following
eigenvalues and eigenspaces:

µ1 := a− 2e+ c− 2b+ 2d, Ẽ(µ1) ≃ V2

µ2 := a− 2e+ c+ 2b− 2d, Ẽ(µ2) ≃ V1,

µ3 := a− c, Ẽ(µ3) ≃ V4 (quaternionic type),

µ4 := a+ 2e+ c− 2b− 2d, Ẽ(µ4) ≃ V3,

µ5 := a+ 2e+ c+ 2b+ 2d, Ẽ(µ5) ≃ V0.

For definiteness, we choose the positive entries of A being a = 8, b = 1, c = 3,
d = 2, e = 1.5 and τ = 4, so

τµ1 = 40, τµ2 = 24, τµ3 = 20, τµ4 = 32, τµ5 = 80,

and we can easily determine the values n(µi) from Table 1, i.e.

n(µ1) = 6, n(µ2) = 3, n(µ3) = 2, n(µ4) = 4, n(µ5) = 12.

Then we have

m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 6,

m0,7 = 7, m0,8 = 5, m0,9 = 4, m0,10 = 3, m0,11 = 2, m0,12 = 1,

m1,1 = 1, m1,2 = 2, m1,3 = 1, m2,1 = 1, m2,2 = 2, m2,3 = 3,

m2,4 = 3, m2,5 = 2, m2,6 = 1, m3,1 = 1, m3,2 = 2, m3,3 = 2,

m3,4 = 1, m4,1 = 2, m4,1 = 2.

By applying formula (47) we obtain

回回回 = − degV0,1
−2 degV0,2

−3 degV0,3
−4 degV0,4

−5 degV0,5
−6 degV0,6

−7 degV0,7

− 5 degV0,8
−4 degV0,9

−3 degV0,10
−2 degV0,11

− degV0,12
− degV1,1

−2 degV1,2

− degV1,3
− degV2,1

−2 degV2,2
−3 degV2,3

−3 degV2,4
−2 degV2,5

− degV2,6

− degV3,1
−2 degV3,2

−2 degV3,3
− degV3,4

−2 degV4,1
−2 degV4,1

,

where

degV0,1
= (Q8), degVk,1

= (Qk−
8 ), k = 1, 2, 3

degV4,1
= (Z1+

4 ) + (Z2+
4 ) + (Z3+

4 )− (Z−
2 )

The dominating orbit types in H∗ are (Q8), (Q
k−
8 ) and (Zk+

4 ) for k = 1, 2, 3. Con-
sequently, we obtain

• there is at least 1 non-constant periodic solution with orbit type (Q8) ,
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• there is at least 1 non-constant periodic solution with orbit type (Q1−
8 ),

• there are at least 1 non-constant periodic solution with orbit type (Q2−
8 ),

• there are at least 1 non-constant periodic solution with orbit type (Q3−
8 ),

• there are at least 2 non-constant periodic solutions with orbit type (Z1+
4 ),

• there are at least 2 non-constant periodic solutions with orbit type (Z2+
4 ),

• there are at least 2 non-constant periodic solutions with orbit type (Z3+
4 ).

In summary, there exist at least 10 nonconstant periodic solutions of (26).

5.2. Dihedral Group Γ = D8. Consider the dihedral groupD8 = {1, γ, γ2, . . . , γ7, κ, κγ, γ2, . . . , κγ7} ⊂
O(2), where γ can be identified with e

πi
4 (i.e. γ is a complex linear operator

γ(z) = e
πi
4 z) and κ :=

[
1 0
0 −1

]
. We consider the space V := R8, where γ ∈ D8

acts on a vector (x1, x2, . . . , x8) by sending xk to xk+1 (mod n) and κ ∈ D8 acts by
reversing the order of the components of x. Consider the following D8-equivariant
matrix A

A :=



d c d 0 0 0 0 0
0 d c d 0 0 0 0
0 0 d c d 0 0 0
0 0 0 d c d 0 0
0 0 0 0 d c d 0
0 0 0 0 0 d c d
d 0 0 0 0 0 d c


. The matrix A has the following eigenvalues and the corresponding eigenspaces

µ1 := c+ 2d, Ẽ(µ1) ≃ V0

µ2 := c+
√
2d, Ẽ(µ2) ≃ V1,

µ3 := c, Ẽ(µ3) ≃ V2,

µ4 := c−
√
2d, Ẽ(µ4) ≃ V3,

µ5 := c− 2d, Ẽ(µ5) ≃ V5.

For definiteness, choose c = 9, d = 3 and τ = 4, so

τµ1 = 60, τµ2 ≈ 52.97, τµ3 = 36, τµ4 ≈ 19.03, τµ5 = 12.

To determine the numbers n(µi), for i = 0, 1, 2, 3, 5, we list the approximate values
of π

2 + 2nπ and use the Table 1. Thus, we have

n(µ1) = 9, n(µ2) = 8, n(µ3) = 5, n(µ4) = 2, n(µ5) = 1.

Let j1 = 2 and j2 = 1. Then,

m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 4,

m0,7 = 3, m0,8 = 2, m0,9 = 1, m1,1 = 1, m1,2 = 2, m1,3 = 3,

m1,3 = 4, m1,5 = 4, m1,6 = 3, m1,7 = 2, m1,8 = 1, m2,1 = 1,

m2,2 = 2, m2,3 = 3, m2,4 = 2, m2,5 = 1, m3,1 = 1, m3,2 = 2,

m3,3 = 1, m5,1 = 1.
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By applying formula (47) we obtain

回回回 = − degV0,1
−2 degV0,2

−3 degV0,3
−4 degV0,4

−5 degV0,5
−4 degV0,6

−3 degV0,7

− 2 degV0,8
− degV0,9

− degV1,1
−2 degV1,2

−3 degV1,3
−4 degV1,4

−4 degV1,5

− 3 degV1,6
−2 degV1,7

− degV1,8
− degV2,1

−2 degV2,2
−3 degV2,3

−2 degV2,4

− degV2,5
− degV3,1

−2 degV3,2
− degV3,3

− degV5,1
,

where

degV0,1
= (D8),

degV1,1
= (Zt1

8 ) + (D̃d
2) + (Dd

2)− (Z−
2 ),

degV2,1
= (D̃d

4) + (Dd
4) + (Zt2

8 )− (Zd
4),

degV3,1
= (Zt3

8 ) + (D̃d
2) + (Dd

2)− (Z−
2 ),

degV5,1
= (Dd

8).

The dominating orbit types in H∗ are (D8), (D
d
8), (Z

t1
8 ), (Zt2

8 ), (Zt3
8 ) and (D̃d

4).
Consequently, we obtain

• there is at least 1 non-constant periodic solution with orbit type (D8),
• there is at least 1 non-constant periodic solution with orbit type (Dd

8),

• there are at least 2 non-constant periodic solutions with orbit type (D̃d
4),

• there are at least 2 non-constant periodic solutions with orbit type (Zt1
8 ),

• there are at least 2 non-constant periodic solutions with orbit type at lest
(Zt2

8 ),
• there are at least 2 non-constant periodic solutions with orbit type at least
(Zt3

8 ).

In summary, there exist at least 10 nonconstant periodic solutions of (26).

5.3. Octahedral Group S4. Assume that the octahedral group S4 acts on V :=
R8 by permuting the coordinates in such a way that (1234) ∈ S4 corresponds to the
permutation (1234)(5678) ∈ S8 and (12) ∈ S4 corresponds to (17)(28)34)(56) ∈ S8

(i.e. S4 acts on V in the same way as it permutes the vertices of a regular cube).
Consider the matrix

A :=



a b c b b c d c
b a b c c b c d
c b a b d c b c
b c b a c d c b
b c d c a b c b
c b c d b a b c
d c b c c b a b
c d c b b c b a


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. The matrix A commutes with the S4-action on V and has the following eigenvalues
and eigenspaces:

µ1 := 3b+ a+ 3c+ d, Ẽ(µ1) ≃ V0

µ2 := −3b+ a+ 3c− d, Ẽ(µ2) ≃ V1,

µ3 := −b+ a− c+ d, Ẽ(µ3) ≃ V4,

µ4 := b+ a− c− d, Ẽ(µ4) ≃ V3.

For definiteness, choose a = 6, b = 1, c = 2, d = 2.5 and τ = 4, so

τµ1 = 70, τµ2 = 26, τµ3 = 22, τµ4 = 10,

and we can easily determine the values n(µi) from Table 1, i.e.

n(µ1) = 10, n(µ2) = 3, n(µ3) = 3, n(µ4) = 1.

As before, we choose j2 = 1 and j1 = 2. Then we have

m0,1 = 1, m0,2 = 2, m0,3 = 3, m0,4 = 4, m0,5 = 5, m0,6 = 5,

m0,7 = 4, m0,8 = 3, m0,9 = 2, m0,10 = 1, m0,11 = 2, m0,12 = 1,

m1,1 = 1, m1,2 = 2, m1,3 = 1, m3,1 = 1, m3,2 = 2, m3,3 = 1,

m4,1 = 1.

By applying formula (47) we obtain

回回回 = − degV0,1
−2 degV0,2

−3 degV0,3
−4 degV0,4

−5 degV0,5
−5 degV0,6

−4 degV0,7

− 3 degV0,8
−2 degV0,9

− degV0,10
− degV1,1

−2 degV1,2
− degV1,3

− degV3,1

− 2 degV3,2
− degV3,3

− degV4,1
,

where

degV0,1
= (S4),

degV1,1
= (S−

4 ),

degV3,1
= (Zc

4) + (Dd
4) + (Dd

2) + (D3) + (Zt
3)− (Z−

2 )− (D1),

degV4,1
= (Zc

4) + (Dz
4) + (Dd

2) + (Dz
3) + (Zt

3)− (Z−
2 )− (Dz

1).

The dominating orbit types in H∗ are (S4), (S
−
4 ), (Dd

4), (D
d
2), (Zc

4), (Zt
3) and

(Dz
4). Consequently, we obtain

• there is at least 1 non-constant periodic solution with orbit type (S4),
• there is at least 1 non-constant periodic solution with orbit type (S−

4 ),
• there are at least 3 non-constant periodic solutions with orbit type (Dd

4),
• there are at least 6 non-constant periodic solutions with orbit type (Dd

2),
• there are at least 6 non-constant periodic solutions with orbit type at least
(Zc

4),
• there are at least 8 non-constant periodic solutions with orbit type at least
(Zt

3),
• there are at least 3 non-constant periodic solutions with orbit type at least
(Dz

4).

In summary, there exist at least 28 nonconstant periodic solutions of (26).
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Remark 2. One can consider other symmetry groups in (26), such as D3, D4,
D5, D6, D7, D9, D10, D11, D12, A4 or A5, for which there have been developed
computational database (including MapleTM routines for the twisted equivariant
degree). As it is clear from the formula (47) and the above examples, the similar
existence results for all these groups can be easily obtained.

Remark 3. Let us point out that the results obtained in this paper can be easily
translated into algorithms and computational routines allowing a development of a
special software that could be used to instantly analyze this type of Lotka-Volterra
symmetric systems, based on the spectral equivariant information provided by the
matrix A. Taking into account that these systems are of special interest in mathe-
matical biology, this computational tool could be of great benefit.
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