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Abstract

We apply the equivariant degree method to a Hopf bifurcation problem for a symmetric system of neutral functional differential
equations, which reflects two symmetrically coupled configurations of the lossless transmission lines. The spectral information of
the linearized system is extracted and translated into a bifurcation invariant, which carries structural information of the solution set.
We calculate the values of the bifurcation invariant by following the standard computational scheme and using a specially developed
Maple! package. The computational results, as well as the minimal number of bifurcating branches and their least symmetries are
summarized.
! 2006 Elsevier Ltd. All rights reserved.

MSC: primary 58E05; 58E09; secondary 35J20

1. Introduction

A tendency to create “elegant designs” very often results in the appearance of symmetries in related physical models
(and, as a consequence, in mathematical models/dynamical systems). A priori it is clear that dynamical processes
are typically less symmetric than the corresponding models. In addition, symmetries usually give rise to multiple
solutions exhibiting different symmetry properties which, in turn, may have an enormous impact on the performance
and predictability of the final project. For example, a symmetric configuration in transmission lines can increase
dramatically the vulnerability of a network due to periodic fluctuations and surges. In this way we arrive at the
following questions:

(a) What is a link between symmetries of a system and symmetric properties of the actual dynamics?
(b) How can one measure, predict and classify symmetric properties/minimal number of solutions to a system?

In the present paper, we illustrate how the new topological tools, such as the equivariant degree theory, provide a way
to answer the above questions (a) and (b), and at the same time, help to better understand the topological nature of
symmetric phenomena.
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Table 1
Examples of the equivariant classification of the Hopf bifurcation with D4 symmetries

Ej ε0, ε1, ε3 !("o,#o)1 # Branches

E0 0,1,1 (D4) − (Z4) − (D1) − (D̃1) + (Z1) 1

E0 1,1,0 −(D4) + (D1) + (D̃1) − (Z1) 1

E0 1,1,1 −(D4) + (Z4) + (D1) + (D̃1) − (Z1) 1

E1 0,0,1 −(Zt
4) + (Dd

2 ) + (D̃d
2 ) − (Z−

2 ) 6

E1 0,1,0 (Zt
4) + (Dd

2 ) + (D̃d
2 ) − (Z−

2 ) − (Dz
1) − (D̃z

1) − (D1) − (D̃1) + 2(Z1) 6

E1 0,1,1 −(Zt
4) + (Dd

2 ) + (D̃d
2 ) − (Z−

2 ) − (Dz
1) − (D̃z

1) − (D1) − (D̃1) + 2(Z1) 6

E1 1,1,0 −(Zt
4) − (Dd

2 ) − (D̃d
2 ) + (Z−

2 ) + (Dz
1) + (D̃1

z) + (D1) + (D̃1) − 2(Z1) 6

E1 1,1,1 (Zt
4) − (Dd

2 ) − (D̃d
2 ) + (Z−

2 ) + (Dz
1) + (D̃z

1) + (D1) + (D̃1) − 2(Z1) 6

E3 0,1,1 (Dd
4 ) − (Zd

4 ) − (D̃z
1) − (D1) + (Z1) 2

E3 1,0,1 −(Dd
4 ) + (Zd

4 ) 2

E3 1,1,0 −(Dd
4 ) + (D̃z

1) + (D1) − (Z1) 2

E3 1,1,1 −(Dd
4 ) + (Zd

4 ) + (D̃z
1) + (D1) − (Z1) 2

Table 2
Examples of the equivariant classification of the Hopf bifurcation with D5 symmetries

Ej ε0, ε1, ε2 !($o)1 # Branches

E0 1,0,1 −(D5) + 2(D1) − (Z1) 1

E0 1,1,0 −(D5) + 2(D1) − (Z1) 1

E0 1,1,1 −(D5) 1

E1 1,0,0 −(Zt1
5 ) − (Dz

1) − (D1) + (Z1) 8

E1 1,0,1 −(Zt1
5 ) + (Dz

1) + (D1) − (Z1) 8

E1 1,1,0 −(Zt1
5 ) + (Dz

1) + (D1) − (Z1) 8

E1 1,1,1 −(Zt1
5 ) − (Dz

1) − (D1) + (Z1) 8

E2 0,0,0 (Zt2
5 ) + (Dz

1) + (D1) − (Z1) 8

E2 1,0,1 −(Zt2
5 ) + (Dz

1) + (D1) − (Z1) 8

E2 1,1,0 −(Zt2
5 ) + (Dz

1) + (D1) − (Z1) 8

E2 1,1,1 −(Zt2
5 ) − (Dz

1) − (D1) + (Z1) 8

Our effort to understand the impact of symmetries is connected to difficult topological problems underlying the
foundation of the equivariant nonlinear analysis. The equivariant analysis deals with symmetric (or the so-called
equivariant) operator equations, for which the existence, multiplicity, stability and topological structure of the solution
set is analyzed by studying topological invariants associated with the corresponding operators. Such symmetric systems
appear naturally (in a form of various types of differential equations) in mathematical models, related to chemical
diffusion, biological oscillation and population dynamics. The equivariant degree theory, being one of the most effective
methods of the equivariant analysis, as it turns out, enables us to “decipher” the mystery of symmetries. For example,
the recently developed new equivariant degree techniques (cf. [3–5]) provide practical hints, which allow concrete
computations for a wide range of applications. Moreover, the above techniques can be used by applied mathematicians
without deep knowledge in equivariant topology and homotopy theory. The goal of the present paper is to study the
Hopf bifurcation phenomena (i.e. the appearance of small amplitude nonconstant periodic solutions) in symmetrically
coupled systems of the lossless transmission lines, by means of the equivariant degree method.

After the introduction the paper is organized as follows. Section 2 collects a minimum preliminary notions from the
equivariant topology required for a proper presentation of the method. In Section 3, we establish a general framework for
a treatment of neutral functional equations, especially an effective computational formula (cf. (22)), which translates the
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Table 3
Examples of the equivariant classification of the Hopf bifurcation with S4 symmetries

Ej ε0, ε1, ε2, ε3 !($o)1 # Branches

E0 0,0,1,1 (S4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1) 1

E0 0,1,0,0 (S4) − 2(D4) 1

E0 0,1,0,1 (S4) − 2(D4) + (Z4) − (Z3) + (D1) + 2(Z2) − (Z1) 1

E0 1,0,0,0 (S4) − 2(D4) − 2(D3) + (D2) + (Z4) + (Z3) + 2(D1) − (Z2) − (Z1) 1

E0 1,0,0,1 −(S4) + (Z4) + (Z3) + (D1) − (Z1) 1

E0 1,1,0,0 −(S4) + 2(D4) 1

E0 1,1,0,1 −(S4) + 2(D4) − (Z4) + (Z3) − (D1) − 2(Z2) + (Z1) 1

E0 1,1,1,1 −(S4) + 2(D4) + 2(D3) − (D2) − (Z4) − (Z3) − 2(D1) + (Z2) + (Z1) 1

E1 0,0,0,0 (S−
4 ) 1

E1 0,1,0,0 (S−
4 ) − 2(Dd̂

4 ) 4

E1 0,1,1,0 (S−
4 ) − 2(Dd̂

4 ) − 2(Dz
3) + (Dz

2) + (Dz
1) + 2(Z2) − (Z1) 4

E1 0,1,1,1 (S−
4 ) − 2(Dd̂

4 ) − 2(Dz
3) + (Dz

2) + (Z−
4 ) + (Z3) + 2(Dz

1) − (Z2) − (Z1) 4

E1 1,0,1,0 −(S−
4 ) + 2(Dz

3) + (Dz
2) − 3(Dz

1) + (Z1) 1

E1 1,1,1,0 −(S−
4 ) + 2(Dd̂

4 ) + 2(Dz
3) − (Dz

2) − (Dz
1) − 2(Z2) + (Z1) 4

E1 1,1,1,1 −(S−
4 ) + 2(Dd̂

4 ) + 2(Dz
3) − (Dz

2) − (Z−
4 ) − (Z3) − 2(Dz

1) + (Z2) + (Z1) 4

E2 0,0,1,0 (Dd
4 ) − (D3) − (Dd

2 ) − (D2) + (Zc
4) − (Zt

3) + (Dz
1) + 3(D1) − (Z−

2 ) − (Z1) 24

E2 0,0,1,1 (Dd
4 ) − (D3) − (Dd

2 ) − (D2) − (Zc
4) − (Z−

4 ) + (Zt
3) + (Z3) + (D1) + (Z−

2 ) + (Z2) − (Z1) 24

E2 0,1,1,0 −(Dd
4 ) − (D3) + (Dd

2 ) + (D2) − (Zc
4) − 2(V −

4 ) − (Zt
3) − (Dz

1) − (D1) + 5(Z−
2 ) + 2(Z2) − (Z1) 24

E2 0,1,1,1 −(Dd
4 ) − (D3) + (Dd

2 ) + (D2) + (Zc
4) + (Z−

4 ) − 2(V −
4 ) + (Zt

3) + (Z3) + (D1) − (Z−
2 ) − (Z2) − (Z1) 24

E2 1,0,0,0 −(Dd
4 ) − (D3) − (Dd

2 ) − (Zc
4) − (Zt

3) + (D1) + (Z−
2 ) 24

E2 1,0,1,0 −(Dd
4 ) + (D3) + (Dd

2 ) + (D2) − (Zc
4) + (Zt

3) − (Dz
1) − 3(D1) + (Z−

2 ) + (Z1) 24

E2 1,0,1,1 −(Dd
4 ) + (D3) + (Dd

2 ) + (D2) + (Zc
4) + (Z−

4 ) − (Zt
3) − (Z3) − (D1) − (Z−

2 ) − (Z2) + (Z1) 24

E2 1,1,0,0 (Dd
4 ) − (D3) + (Dd

2 ) + (Zc
4) + 2(V −

4 ) − (Zt
3) + (D1) − (Z−

2 ) 24

E2 1,1,1,1 (Dd
4 ) + (D3) − (Dd

2 ) − (D2) − (Zc
4) − (Z−

4 ) + 2(V −
4 ) − (Zt

3) − (Z3) − (D1) + 2(Z−
2 ) + (Z2) + (Z1) 24

E3 0,0,1,1 (Dz
4) − (Dz

3) − (Dd
2 ) − (Dz

2) − (Zc
4) − (Z4) + (Zt

3) + (Z3) + (Dz
1) + (Z−

2 ) + (Z2) − (Z1) 27

E3 0,1,0,0 −(Dz
4) + (Dz

3) − (Dd
2 ) − (Zc

4) − 2(V −
4 ) + (Zt

3) − (Dz
1) + (Z−

2 ) 27

E3 0,1,1,0 −(Dz
4) − (Dz

3) + (Dd
2 ) + (Dz

2) − (Zc
4) − 2(V −

4 ) − (Zt
3) − (Dz

1) − (D1) + 5(Z−
2 ) + 2(Z2) − (Z1) 27

E3 0,1,1,1 −(Dz
4) − (Dz

3) + (Dd
2 ) + (Dz

2) + (Zc
4) + (Z4) − 2(V −

4 ) + (Zt
3) + (Z3) + (Dz

1) − (Z−
2 ) − (Z2) − (Z1) 27

E3 1,0,1,1 −(Dz
4) + (Dz

3) + (Dd
2 ) + (Dz

2) + (Zc
4) + (Z4) − (Zt

3) − (Z3) − (Dz
1) − (Z−

2 ) − (Z2) + (Z1) 27

E3 1,1,0,0 (Dz
4) − (Dz

3) + (Dd
2 ) + (Zc

4) + 2(V −
4 ) − (Zt

3) + (Dz
1) − (Z−

2 ) 27

E3 1,1,1,0 (Dz
4) + (Dz

3) − (Dd
2 ) − (Dz

2) + (Zc
4) + 2(V −

4 ) + (Zt
3) + (Dz

1) + (D1) − 5(Z−
2 ) − 2(Z2) + (Z1) 27

E3 1,1,1,1 (Dz
4) + (Dz

3) − (Dd
2 ) − (Dz

2) − (Zc
4) − (Z4) + 2(V −

4 ) − (Zt
3) − (Z3) − (Dz

1) + (Z−
2 ) + (Z2) + (Z1) 27

spectral equivariant information provided by the characteristic equation into a bifurcation invariant expressed in terms
of the equivariant degree. In Section 4, we derive and discuss two systems of symmetrically coupled (internally and
externally) lossless transmission lines. Motivated by the two generic couplings, we consider in Section 5, a symmetric
system of FDEs, for which a detailed analysis of the main steps preceding the computation of the associated Hopf
bifurcation invariant is given. Section 6 summarizes concrete computational results (in the case of the dihedral groups
Dn (n = 4, 5), octahedral group S4 and icosahedral group A5) of the bifurcation invariants in tables (see Tables 1–4),
where minimal numbers of bifurcating branches with their least symmetries are also indicated.

The authors are grateful to Eric Woolgar for his helpful discussions and suggestions related to the derivations of the
transmission line models. The Maple routines used in this work were created by Adrian Biglands.
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Table 4
Examples of the equivariant classification of the Hopf bifurcation with A5 symmetries

Ej ε0, ε1, ε2, ε3, ε4 !($o)1 # Branches

E0 1,0,1,0,1 −(A5) + 2(D5) + 2(D3) − (Z5) − (Z3) − 4(Z2) + 2(Z1) 1

E0 1,1,1,0,1 −(A5) + 2(A4) + 2(D5) − (Z5) − 2(Z3) − 3(Z2) + 2(Z1) 1

E1 0,0,0,0 (A4) + (Dz
3) + (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) + (Zt
3) − (Z3) − (Z−

2 ) − (Z2) 55

E1 0,0,1,0,0 (A4) − (Dz
3) − (D3) − (Zt1

5 ) − (Zt2
5 ) + (V −

4 ) − (Zt
3) − (Z3) 55

−(Z−
2 ) − (Z2) + 2(Z1)

E1 0,0,1,1,0 (A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) + (Zt
3) + (Z3) 55

+(Z−
2 ) + (Z2)

E1 1,0,0,0,1 −(A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + (Zt
3) + 3(Z3) 55

+3(Z−
2 ) + 3(Z2) − 4(Z1)

E1 1,0,1,0,1 −(A4) + (Dz
3) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (V −

4 ) − (Zt
3) − (Z3) 55

−(Z−
2 ) − (Z2) + 2(Z1)

E2 0,0,0,0,0 (A
t1
4 ) + (A

t2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) − 2(Z2) 50

E2 0,0,1,1,0 (A
t1
4 ) + (A

t2
4 ) − (D5) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (Z5) + (V −

4 ) 50

+(Z3) + 2(Z2) − 2(Z1)

E2 0,1,0,1,0 −(A
t1
4 ) − (A

t2
4 ) + (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) − (V −

4 ) + (Z1) 50

E2 1,0,1,0,0 −(A
t1
4 ) − (A

t2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + 4(Zt
3) 50

+2(Z−
2 ) + (Z2) − 3(Z1)

E3 0,0,0,1,0 (Dz
5) + (Dz

3) − (Zt1
5 ) − (Z5) + (V −

4 ) − (Zt
3) − (Z3) − 4(Z−

2 ) − (Z2) + 3(Z1) 44

E3 0,0,1,0,0 −(Dz
5) − (Dz

3) − (Zt1
5 ) + (V −

4 ) − (Zt
3) − (Z2) + (Z1) 44

E3 0,1,0,1,0 (Dz
5) − (Dz

3) − (Zt1
5 ) − (V −

4 ) − (Zt
3) + (Z1) 44

E3 1,0,0,1,1 −(Dz
5) − (Dz

3) − (Zt1
5 ) − (V −

4 ) − (Zt
3) + 2(Z−

2 ) 44

E3 1,0,1,0,0 (Dz
5) + (Dz

3) + (Zt1
5 ) − (V −

4 ) + (Zt
3) + (Z2) − (Z1) 44

E3 1,1,1,1,0 (Dz
5) − (Dz

3) − (Zt1
5 ) − (Z5) + (V −

4 ) − (Zt
3) − 2(Z−

2 ) − (Z2) + 2(Z1) 44

E4 0,0,0,1,0 (Dz
5) + (Dz

3) − (Zt2
5 ) − (Z5) + (V −

4 ) − (Zt
3) − (Z3) − 4(Z−

2 ) − (Z2) + 3(Z1) 44

E4 0,0,1,0,0 −(Dz
5) − (Dz

3) − (Zt2
5 ) + (V −

4 ) − (Zt
3) − (Z2) + (Z1) 44

E4 0,1,0,1,0 (Dz
5) − (Dz

3) − (Zt2
5 ) − (V −

4 ) − (Zt
3) + (Z1) 44

E4 1,0,0,1,1 −(Dz
5) − (Dz

3) − (Zt2
5 ) − (V −

4 ) − (Zt
3) + 2(Z−

2 ) 44

E4 1,0,1,0,0 (Dz
5) + (Dz

3) + (Zt2
5 ) − (V −

4 ) + (Zt
3) + (Z2) − (Z1) 44

E4 1,1,1,1,0 (Dz
5) − (Dz

3) − (Zt2
5 ) − (Z5) + (V −

4 ) − (Zt
3) − 2(Z−

2 ) − (Z2) + 2(Z1) 44

2. Preliminaries

2.1. Definitions and notations

Hereafter, G = % × S1, where % is a finite group and S1 is the unit circle group. For a closed subgroup H of G, we
denote by (H) the conjugacy class of H in G, N(H)—the normalizer of H in G, W(H) = N(H)/H—the Weyl group
of H in G, and &(G)—the set of all conjugacy classes in G (which admits a natural partial order: (K)!(H) if K is
conjugate to a subgroup of H).

Let V be an orthogonal (or isometric Banach) G-representation. For x ∈ V , denote by Gx = {g ∈ G : gx = x} the
isotropy group of x and call the conjugacy class (Gx) the orbit type of x in V. For a G-invariant subset X ⊂ V , put
XH := {x ∈ X : Gx ⊃ H } and call it the H-fixed point subspace.

Let ' be an open bounded G-invariant subset of R ⊕ V , where we will always assume the trivial G-action on R,
and f : R ⊕ V → V a continuous equivariant map in ', meaning f (gx) = gf (x) for all g ∈ G and x ∈ '. f is
called '-admissible if f (x) )= 0 for all x ∈ !', and such a pair (f, ') will be called an admissible pair. Similarly, a
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homotopy h : [0, 1]×R⊕V → V is called an '-admissible G-equivariant homotopy, if ht := h(t, ·) is an '-admissible
G-equivariant map for all t ∈ [0, 1].

2.2. Primary equivariant degree with one free parameter

Consider the set

&1(G) := {(H) ∈ &(G) : dim W(H) = 1}.
It is easy to check that the elements of &1(G) are the conjugacy classes (H) of the so-called (-twisted l-folded subgroups
of % × S1 with l = 1, 2, 3, . . . , i.e.

H = K(,l := {(), z) ∈ K × S1 : (()) = zl},
where K is a subgroup of % and ( : K → S1 is a homomorphism. In the case of a 1-folded (-twisted subgroup K(,1,
we will denote it by K( and call it simply a twisted subgroup of % × S1.

Denote by

A1(G) := Z[&1(G)]
the free Z-module generated by &1(G), i.e. any element " ∈ A1(G) can be written as a finite sum " = nH1(H1) +
nH2(H2) + · · · + nHr (Hr), nHi ∈ Z.

The Z-module A1(G) is a range of values of the so-called primary equivariant degree G-Deg defined on admissible
pairs (f, ') (' ⊂ R ⊕ V and V is an orthogonal G-representation) and satisfying all the standard properties required
from a “reasonable” degree theory. Moreover, the primary equivariant degree theory admits an axiomatic approach
(see [5,3] for details). Being limited in size, we will list below only those properties which are directly referred to in
the present paper.

• Existence: If G-Deg(f, ')=∑(H) nH (H) is such that nHo )= 0 for some (Ho) ∈ &1(G), then there exists xo ∈ '
with f (xo) = 0 and Gxo ⊃ Ho.

• Homotopy: Suppose that h : [0, 1] × R ⊕ V → V is an '-admissible G-equivariant homotopy. Then, G-Deg
(ht , ') = constant, where ht := h(t, ·).

• Multiplicativity: Let A(%) denote the Burnside ring of % (see [12,16]). There exists a multiplication: A(%) ×
A1(G) → A1(G) such that for an orthogonal %-representation Vo and a continuous equivariant map fo : Vo →
Vo, one has

G-Deg(f × fo, ' ×B) = %-Deg(fo,B) · G-Deg(f, '),

where B ⊂ Vo is the unit ball, fo(x) )= 0 for x ∈ !B and %-Deg stands for the equivariant degree without free
parameters (see [12] for details).

Remark 2.1. (i) The so-called basic maps b : R⊕V → V, associated with orthogonal irreducible G-representations
V (with nontrivial S1-action), are the simplest homotopically nontrivial equivariant maps for which G-Deg can be
easily evaluated (cf. [5,2,3]). To be more specific, define O := {(t, v) ∈ R⊕V : −1 < t < 1, ‖v‖< 2} and b : O → V
by

b(t, v) := (1 − ‖v‖ + it) · v, (t, v) ∈ R ⊕V,

and call the primary degree

degV := G-Deg(b,O)

the basic degree associated with the irreducible G-representationV. The same notion can be applied to the case without
free parameter. Namely, we call degVo

:= %-Deg(−Id,B) (where B ⊂ Vo is the unit ball) the basic degree associated
with the irreducible %-representation Vo.

(ii) By adopting the notion of fundamental set (cf. [1]) to the equivariant context, the concept of the primary equivariant
degree can be extended to admissible pairs (f, ') with ' ⊂ R ⊕ W and f : R ⊕ W → W being a condensing vector
field on the Banach G-representation R ⊕ W (cf. [9,12]). We will use for it the same symbol.
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3. Symmetric Hopf bifurcation for neutral functional differential equations

We present a general framework for studying symmetric Hopf bifurcation problems for a system of neutral functional
differential equations.

Let V be an orthogonal %-representation and *"0 a given constant. Denote by CV,* the Banach space of continuous
functions from [−*, 0] into V equipped with the usual supremum norm ‖(‖∞ = sup−*!+!0 |((+)|, ( ∈ CV,*. Note
that the %-action on V induces a natural isometric Banach %-representation on CV,* (as well as on R ⊕ CV,*) given by

()()(+) := )(((+)), ) ∈ %, + ∈ [−*, 0].
For a continuous function x : R → V and t ∈ R, define xt ∈ CV,* by

xt (+) = x(t + +), + ∈ [−*, 0].
We consider the following one-parameter family of neutral equations:

d
dt

[x(t) − b(", xt )] = f (", xt ), (1)

where x : R → V is a continuous function,3 and b, f : R ⊕ CV,* → V satisfy the following assumptions:

(A1) b, f are continuously differentiable;
(A2) b, f are %-equivariant;
(A3) b(", 0) = 0, f (", 0) = 0 for all " ∈ R.

Also, to prevent the occurrence of the steady-state bifurcation, assume
(A4) det Dxf (", 0)|V )= 0 for all " ∈ R.

In addition, assume that

(A5) b satisfies the Lipschitz condition with respect to the second variable, i.e.

∃, 0!, < 1, s.t. ‖b(", () − b(", -)‖!,‖( − -‖∞ (2)

for all (, - ∈ CV,*, " ∈ R.

For xo ∈ V , we will use the same symbol to denote the constant function xo(t) = xo. We call (", xo) ∈ R ⊕ V a
stationary point to (1), if f (", xo)= 0. By assumption (A3), (", 0) is a stationary point for all " ∈ R. A stationary point
(", xo) is said to be nonsingular if Dxf (", xo)IV : V → V is nonsingular.

3.1. Characteristic equation

In what follows, V c denotes a complexification of the orthogonal %-representation V over R. Then V c has a natural
structure of a complex %-representation given by )(z ⊗ x) = z ⊗ )x, for z ∈ C and x ∈ V . Also, a %-isotypical
decomposition of the real representation V

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr , (3)

where V0=V % and Vi is modeled on the real irreducible %-representationVi , gives rise to a %-isotypical decomposition
of the complex representation V c

V c = U0 ⊕ U1 ⊕ · · · ⊕ Us , (4)

where U0 = (V c)% and Uj is modeled on the complex irreducible %-representation Uj . Note that the number s of
isotypical components in (4) is different in general, from the number r of isotypical components in (3), depending on
the type of the irreducible representations Uj (cf. [6]).

3 Formally speaking, we do not require in (1) that x(t) is differentiable, but only x(t) − b(", xt ) to be continuously differentiable.
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Let (", xo) be a stationary point of (1). The linearization of (1) at (", xo) leads to the following characteristic equation,

detC .(",xo)($) = 0, (5)

where

.(",xo)($) := $[Id − Dxb(", xo)(e$··)] − Dxf (", xo)(e$··) (6)

is a complex linear operator from V c to V c, with (e$··)(+, x) = e$+x and Dxf (", xo)(z ⊗ x) = z ⊗ Dxf (", xo)x for
z ⊗ x ∈ V c (cf. [17]).

A solution $o to (5) is called a characteristic root of system (1) at the stationary point (", xo). It is clear that (", xo)

is nonsingular if and only if 0 is not a characteristic root of (1) at the stationary point (", xo). We say that a nonsingular
stationary point (", xo) is a center if it has a purely imaginary characteristic root. A center (", xo) is called isolated if
it is the only center in some neighborhood of (", xo) in R ⊕ V .

Put$"($) := $(",0)($). By assumption (A2), the complex linear operator$"($) is also %-equivariant. Consequently,
for each isotypical component Uj of V c in (4), we have $"($)(Uj ) ⊆ Uj . Denote

$",j ($) := $"($)|Uj . (7)

Let $ be a characteristic root of system (1) at the stationary point (", 0). We will use the following notations:

Ej($) := ker $",j ($) ⊂ V c,
mj($) := dimC Ej($)/dimC Uj . (8)

The integer mj($) will be called the Uj -multiplicity of the characteristic root $.
In what follows, we will assume that

(A6) System (1) has an isolated center ("o, 0) for some "o ∈ R, with the corresponding purely imaginary characteristic
root i#o, for #o > 0.

With the above definitions in hands, we will discuss the Hopf bifurcation problem for Eq. (1). Namely, we are
interested in detecting and classifying (according to their symmetry properties) branches of small amplitude nonconstant
periodic solutions to (1) bifurcating from the isolated center ("o, 0).

To this end, we will associate to the problem in question the so-called local bifurcation invariant, being a pri-
mary equivariant degree, and follow the standard steps of the degree-theoretical treatment of the Hopf bifurcation
phenomenon.

3.2. Normalization of period

By making a change of variable x(t) = u(#t) with # := 2./p, we obtain

d
dt

[u(t) − b(", ut,#)] = 1
#

f (", ut,#), (9)

where ut,# ∈ CV,* is defined by

ut,#(+) = u(t + #+), + ∈ [−*, 0].

Evidently, u(t) is a 2.-periodic solution of (9) if and only if x(t) is a p-periodic solution of (1).

3.3. % × S1-equivariant setting in functional spaces

We use the standard identification S1 0 R/2.Z and denote W := H 1(S1; V ) the first Sobolev space of 2.-periodic
V-valued functions, C(S1; V ) the space of continuous 2.-periodic V-valued functions equipped with the usual
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supremum norm. Note that the space W is an isometric Hilbert G-representation with the action given by

((), ei*)u)(t) = )u(ei*t) for ) ∈ %, ei* ∈ S1.

Put R2
+ := R × R+.

For u ∈ W , v ∈ C(S1; V ), t ∈ R, define the following operators:

L : W → L2(S1; V ), Lu(t) = u̇(t),

j : W → C(S1; V ), j (u(t)) = ũ(t),

K : W → L2(S1; V ), Ku(t) = 1
2.

∫ 2.

0
u(s) ds,

Nf : R2
+ × C(S1; V ) → L2(S1; V ), Nf (", #, v)(t) = f (", vt,#),

Nb : R2
+ × C(S1; V ) → L2(S1; V ), Nb(", #, v)(t) = b(", vt,#).

where ũ=u a.e. (cf. [14]). It can be easily shown that (L+K)−1 : L2(S1; V ) → W exists and the mapF : R2
+×W →

W given by

F(", #, u) = (L + K)−1
[

1
#

Nf (", #, u) + K(u − Nb(", #, u))

]
+ Nb(", #, u) (10)

is a condensing map. Indeed, the map F is a sum of two maps, where the first map

(", #, u) 1→ (L + K)−1
[

1
#

Nf (", #, u) + K(u − Nb(", #, u))

]
,

is completely continuous, and the second map (", #, u) 1→ Nb(", #, u) is a Banach contraction with constant, (0!,<1)

(see assumptions (A1) and (A5)).

Remark 3.1. Note that, (", #, u) ∈ R2
+×W is a 2.-periodic solution to (9) if and only if u=F(", #, u). Consequently,

the occurrence of a Hopf bifurcation at ("o, 0) for Eq. (1) is equivalent to a bifurcation of 2.-periodic solutions for
(9) from ("o, #o, 0) for some #o > 0. On the other hand, if a bifurcation at ("o, #o, 0) ∈ R2

+ × W takes place in (9),
then we necessarily have that the operator Id − DuF("o, #o, 0) : W → W is not an isomorphism, or equivalently,
il#o, for some l ∈ N, is a purely imaginary characteristic root of ("o, 0), i.e. detC ."o (il#o) = 0 (cf. conditions (A4)
and (A6)).

3.4. Dominating orbit types

In order to take advantage of the information provided by the local bifurcation invariant we need to introduce the
following important concept.

Definition 3.2. An orbit type (H) in W is called dominating, if (H) is maximal (with respect to the usual order relation
(see Section 2.1)) in the class of all (-twisted one-folded orbit types in W (in particular, H = K().

In what follows, the dominating orbit types will be used to estimate the minimal number of different periodic solutions
(as well as their symmetries) to system (1) (see Theorem 3.4).

Remark 3.3. (i) Assume there is a solution uo ∈ W to (9) (for " = "o and some # > 0), for which one has Guo ⊃ Ho.
If (Ho) is a dominating orbit type in W with Ho = K( for some K ⊂ % and ( : K → S1, then, by the maximality
condition, (Guo) = (K(,l) with l"1, and the corresponding orbit G(uo) is composed of exactly |G/Guo |S1 different
periodic functions (where |Y |S1 denotes the number of S1-orbits in Y). It is easy to check that the number of S1-orbits
in G/Guo is |%/K| (where |X| stands for the number of elements in X).

On the other hand, let xo be a, say, p-periodic solution to (1) canonically corresponding to the above uo. It follows
from the definition of l-folding and %×S1-action on W that xo is also a p/l-periodic solution to (1). The pair (xo, p/l)
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canonically determines an element u′
o ∈ W being a solution to (9) (for " = "o and some #′) satisfying the condition

Gu′
o
=Ho. In this way we obtain that (1) has at least |%/K| different periodic solutions with the orbit type exactly (Ho)

(considered in W).
(ii) Due to the maximality property of dominating orbit types and the fact that the isotropy groups increase under pro-

jections, the dominating orbit types can be easily recognized from the isotropy lattices of the irreducible representations
of W.

3.5. Sufficient condition for Hopf bifurcation

For convenience, we identify R2
+ with a subset of C, and given (", #) ∈ R2

+ put $="+i# (in particular, $o="o+i#o).
Take an isolated center ("o, 0) provided by condition (A6). Then, there exists / > 0 such that

a($) := Id − DuF($, 0) : W → W (11)

is an isomorphism for 0 < |$ − $o|!/. By implicit function theorem, there exists 0 ∈ (0, min{1, /}) such that u −
F($, u) )= 0 for all ($, u) satisfying |$ − $o| = / and 0 < ‖u‖!0.

Define the subset ' ⊂ R2
+ × W by

' := {($, u) ∈ R2
+ × W : |$ − $o| < /, ‖u‖< 0} (12)

and put

!0 := ' ∩ (R2
+ × {0}) and !0 := {($, u) ∈ ' : ‖u‖ = 0}.

Next, take a G-invariant function 1 : ' → R satisfying the conditions:
{

1($, u) > 0 for ($, u) ∈ !0,

1($, u) < 0 for ($, u) ∈ !0.

(Following Ize, such a function is usually called auxiliary). An auxiliary function can be easily constructed, for
example,

1($, u) = |$ − $o|(‖u‖ − 0) + ‖u‖ − 0
2
; ($, u) ∈ '. (13)

Define the map F1 : ' → R ⊕ W by

F1($, u) = (1($, u), u −F($, u)), ($, u) ∈ ' (14)

(see formula (10) and Fig. 1).
By construction, F1 is G-equivariant and '-admissible condensing field. Put (cf. Remark 2.1(ii))

!($o) := G-Deg(F1, ') ∈ A1(G), (15)

and call !($o) the local G-invariant for the %-symmetric Hopf bifurcation at the point ($o, 0).
Following the same ideas as in the proof of the Theorem 3.2 in [7] (see also [10,5]), one can easily establish:

Theorem 3.4. Given system (1), assume conditions (A1)–(A6) to be satisfied. Take F defined by (10) and con-
struct ' according to (12). Let 1 : ' → R be a G-invariant auxiliary function (see (13)) and let F1 be defined
by (14).

(i) Assume (cf. (15)) !($o) )= 0, i.e.

!($o) =
∑

(H)

nH (H) and nHo )= 0 (16)

for some (Ho) ∈ &1(G). Then, there exists a branch of nontrivial solutions to (1) bifurcating from the point
("o, 0) (with the limit frequency l#o for some l ∈ N). More precisely, the closure of the set composed of all
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Fig. 1. Auxiliary function for Hopf bifurcation.

nontrivial solutions ($, u) ∈ ' to (9), i.e.

{($, u) ∈ ': F($, u) = 0, u )= 0}

contains a compact connected subset C such that

($o, 0) ∈ C and C ∩ !r )= ∅, C ⊂ R2
+ × WHo ,

($o = "o + i#o) which, in particular, implies that for every (", #, u) ∈ C we have Gu ⊃ Ho.
(ii) If, in addition, (Ho) is a dominating orbit type in W, then there exist at least |G/Ho|S1 different branches of

periodic solutions to Eq. (1) bifurcating from ("o, 0) (with the limit frequency l#o for some l ∈ N). Moreover,
for each (", #, u) belonging to these branches of (nontrivial) solutions one has (Gu) = (Ho) (considered in the
space W).

Remark 3.5. (i) It is usually the case that there is more than one dominating orbit type in W contributing to the lower
estimate of all bifurcating branches of solutions.

(ii) In addition, if there is also a coefficient nK )= 0 such that (K) is not a dominating orbit type, but nH = 0 for
all dominating orbit types (H) such that (K) < (H), then we can also predict the existence of multiple branches by
analyzing all the dominating orbit types (H) larger than (K). However, the exact orbit type of these branches (as well
as the corresponding estimate) cannot be determined precisely.

To apply Theorem 3.4 to classify symmetries of periodic solutions to concrete symmetric FDEs, we use a sequence
of reductions that allows us to establish an effective formula for computing/estimating !($o).

3.6. Computation of the local % × S1-invariant and its first coefficients

We will present a computational formula of the local % × S1-invariant !($o), based on the homotopy and multi-
plicativity properties of the primary equivariant degree (cf. Section 2.2). For details and justification of the derivation,
we refer to [3].

Using the standard linearization argument and homotopy property of the primary equivariant degree, it can be verified
that

!($o) = G-Deg(Fo, '), (17)

where Fo($, uo) := (1($, uo), uo − DuF($, 0)uo) and F is defined by (10).
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On the other hand, the Hilbert % × S1-representation W = H 1(S1; V ) permits an S1-isotypical decomposition

W = V ⊕
∞⊕

l=1

Wl , (18)

where V := WS1
stands for the subspace of the constant functions in W, which is naturally a real %-representation,

and the subspace Wl is defined by

Wl := {eilt (xn + iyn) : xn, yn ∈ V },

which is isomorphic to V c as a complex %-representation. Taking into account (3), (4) and (18), we have the following
G-isotypical decomposition of W:

W =
r⊕

i=0

Vi ⊕
⊕

j,l

Vj,l , (19)

where Vj,l stands for a G-isotypical component of Wl modeled on a G-irreducible representationVj,l (j =0, 1, . . . , s).
Put

ai($) := Id − DuF($, 0)|Vi , aj,l($) := Id − DuF($, 0)|Vj,l for |$ − $o|!/.

It can be shown that

ai($) = −1
#

Dxf (", 0)|Vi , aj,l($) = 1
il#

$",j (il#), (20)

where $ = " + i# ∈ C.
Combining the multiplicativity property of the primary degree with the so-called Splitting Lemma (see [5,3]), one

obtains:

!($o) = G-Deg(Fo, ')

=
r∏

i=0

%-Deg(ai($o),Bi ) ·
∑

j,l

G-Deg(aj,l($o), ' ∩ (R2
+ × Vj,l)), (21)

where Bi denotes the unit ball in Vi . Moreover, based on the values of the basic degrees degVi
and degVj,l

associated
with Vi and Vj,l (cf. Remark 2.1), and the so-called Vj,l-isotypical crossing numbers tj,l("o, #o) (cf. [3]), formula
(21) can be reduced to the following one:

!($o) =
∏

2∈3−

r∏

i=0

(degVi
)mi(2) ·

∑

j,l

tj,l("o, #o) degVj,l
, (22)

where 3− denotes the set of all negative eigenvalues of
⊕r

i=0 ai($o), mi(2) is the Vi-multiplicity of 2 given by

mi(2) := dimR (Ei(2))/dimR Vi , (23)

where Ei(2) is the eigenspace of 2 when restricted to Vi , and tj,l("o, #o) can be obtained via the Uj -multiplicity of
i#o (cf. (8)) by

tj,l("o, #o) = −sign
du

d"

∣∣∣∣
"="o

mj (il#o), (24)

where u(") stands for the real part of solution to (5) for xo = 0.

Remark 3.6. Although the entire value of the invariant !($o) should be considered to fully classify the symmetric
Hopf bifurcation branches for system (1), in order to simplify our exposition (by reducing the number of additional
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Fig. 2. Symmetric model of transmission lines: internal coupling.

cases), we will restrict our computations to the coefficients nHo = n
K

(,1
o

, which will be called first coefficients, and we
will denote the corresponding part of the invariant !($o) by !($o)1. Thus, by (22)

!($o)1 =
∏

2∈3−

r∏

i=0

(degVi
)mi(2) ·

∑

j

tj,1("o, #o) degVj,1
. (25)

In fact, the first coefficients turn out to be sufficient to detect the solutions corresponding to the dominating orbit
types.

4. Symmetric configurations of lossless transmission line models

In this section, we consider two simple (but generic) types of symmetric configurations for the lossless transmission
line models, and derive the corresponding symmetric neutral functional differential equations, which give insight of
reasonable symmetries one could expect in suchmodels.

4.1. Configuration 1: internal coupling

Consider first a cube of symmetrically coupled lossless transmission line networks between two recipients and two
power stations.Assume all coupled networks are identical, each of which is a uniformly distributed lossless transmission
line with the inductance Ls and parallel capacitance Cs per unit length. To derive the network equations, we place the
x-axis in the direction of the line, with two ends of the normalized line at x = 0 and 1 (see Fig. 2).4

Denote by ij (x, t) the current flowing in the jth line at time t and distance x down the line and vj (x, t) the voltage
across the line at t and x, for j = 1, 2, 3, 4. It is well-known that (see, for instance, [13]) the functions ij := ij (x, t)

and vj := vj (x, t) obey the following partial differential equations (Telegrapher’s equation)





!vj

!x
= −Ls

!ij

!t
,

Cs
!vj

!t
= −!ij

!x
.

(26)

4 This example of internal coupling can be easily generalized to a coupling of N recipients and N power stations with an N > 2.
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When these networks are coupled symmetrically in the way shown in Fig. 2, the vertical lines have coupling terms
from the preceding and succeeding lines at each end x = 0 and x = 1, thus it gives rise to the boundary conditions






E = v1
0 + (i1

0 + i2
0 )R,

i1
1 + i3

1 = f (v1
1) + C

dv1
1

dt
,

E = v3
0 + (i3

0 + i4
0)R,

i2
1 + i4

1 = f (v2
1) + C

dv2
1

dt
,

v1
0 = v2

0, v3
0 = v4

0,

v1
1 = v3

1, v2
1 = v4

1,

(27)

where i
j

/ = i
j

/ (t) := ij (/, t), v
j

/ = v
j

/(t) := vj (/, t) for / ∈ {0, 1}, E is the constant direct current voltage and f (v
j
1 )

is the current through the nonlinear resistor in the direction shown in Fig. 2.
For mathematical simplicity, we assume that:

(E1) the boundary value problem (26)–(27) admits a unique solution (v
j
∗ , i

j
∗ ) := (v

j
∗(x, t), i

j
∗ (x, t)), for j = 1, 2, 3, 4

such that !i
j
∗/!x = !v

j
∗/!x = 0 (the so-called equilibrium point).

Thus, the equilibrium point (v
j
∗ , i

j
∗ ), j = 1, 2, 3, 4 satisfies the following equilibrium equations:






E = v1
∗ + (i1

∗ + i2
∗)R,

i1
∗ + i3

∗ = f (v1
∗) + C

dv1
∗

dt
,

E = v3
∗ + (i3

∗ + i4
∗)R,

i2
∗ + i4

∗ = f (v2
∗) + C

dv2
∗

dt
.

(28)

Now, subtract the first four equations in (27) by (28), we obtain





0 = v1
0 − v1

∗ + (i1
0 − i1

∗ + i2
0 − i2

∗)R,

i1
1 − i1

∗ + i3
1 − i3

∗ = f (v1
1) − f (v1

∗) + C
d
dt

(v1
1 − v1

∗),

0 = v3
0 − v3

∗ + (i3
0 − i3

∗ + i4
0 − i4

∗)R,

i2
1 − i2

∗ + i4
1 − i4

∗ = f (v2
1) − f (v2

∗) + C
d
dt

(v2
1 − v2

∗).

(29)

By changing variables, Xj

/ = v
j

/ − v
j
∗ , Yj

/ = i
j

/ − i
j
∗ (for / = 0, 1), and putting

g(X
j
1) := f (X

j
1 + v

j
∗) − f (v

j
∗) = f (v

j
1 ) − f (v

j
∗), (30)

the boundary conditions (27) reduce to






0 = X1
0 + (Y1

0 + Y2
0)R,

Y1
1 + Y3

1 = g(X1
1) + C

dX1
1

dt
,

0 = X3
0 + (Y3

0 + Y4
0)R,

Y2
1 + Y4

1 = g(X2
1) + C

dX2
1

dt
,

X1
0 = X2

0, X3
0 = X4

0,

X1
1 = X3

1, X2
1 = X4

1.
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For simplicity, we replace the symbols Xj

/ and Y
j

/ with v
j

/ and i
j

/ , respectively (for / = 0, 1),





0 = v1
0 + (i1

0 + i2
0 )R,

i1
1 + i3

1 = g(v1
1) + C

dv1
1

dt
,

0 = v3
0 + (i3

0 + i4
0)R,

i2
1 + i4

1 = g(v2
1) + C

dv2
1

dt
,

v1
0 = v2

0, v3
0 = v4

0,

v1
1 = v3

1, v2
1 = v4

1 .

(31)

Our goal is to reduce the boundary value problem (26) and (31) to a system of symmetric FDEs. To this end, recall
that the general solution to (26) (the so-called d’Alembert solution) takes the form:






vj (x, t) = 1
2

[4j (x − at) + -j (x + at)],

ij (x, t) = 1
2b

[4j (x − at) − -j (x + at)],
(32)

where

a = 1√
LsCs

, b =
√

Ls

Cs
(33)

are, respectively, the propagation velocity of waves and the characteristic impedance of the line, and 4j ∈ C1((−∞, 1];
R), -j ∈ C1([0,∞); R) (see, for instance, [15]).

Next, we will essentially use the identity

ij (x, t) + ij
(

x, t − 2
a

)
= ij

(
x − 1, t − 1

a

)
+ ij

(
x + 1, t − 1

a

)
, (34)

supported by the following simple computation:

ij (x, t) = 1
2b

[4j (x − at) − -j (x + at)]

= 1
2b

[
4j

(
x − 1 − a

(
t − 1

a

))
− -j

(
x + 1 + a

(
t − 1

a

))]

= 1
2b

[
4j

(
x − 1 − a

(
t − 1

a

))
− -j

(
x − 1 + a

(
t − 1

a

))]
+ 1

2b

[
-j

(
x − 1 + a

(
t − 1

a

))

−4j

(
x + 1 − a

(
t − 1

a

))]
+ 1

2b

[
4j

(
x + 1 − a

(
t − 1

a

))
− -j

(
x + 1 + a

(
t − 1

a

))]

= 1
2b

[
4j

(
x − 1 − a

(
t − 1

a

))
− -j

(
x − 1 + a

(
t − 1

a

))]
− 1

2b

[
4j

(
x − a

(
t − 2

a

))

−-j

(
x + a

(
t − 2

a

))]
+ 1

2b

[
4j

(
x + 1 − a

(
t − 1

a

))
− -j

(
x + 1 + a

(
t − 1

a

))]

= ij
(

x − 1, t − 1
a

)
− ij

(
x, t − 2

a

)
+ ij

(
x + 1, t − 1

a

)
.

In particular, by substituting x = 1 in (34), we have

ij
(

2, t − 1
a

)
= i

j
1 (t) + i

j
1

(
t − 2

a

)
− i

j
0

(
t − 1

a

)
. (35)

Return to the boundary conditions (31). Using (32), we obtain:





41(−at) = R − b

R + b
-1(at) − 2bR

R + b
i2
0 (t),

43(−at) = R − b

R + b
-3(at) − 2bR

R + b
i4
0(t).
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Consequently,

C
dv1

1

dt
= i1

1 + i3
1 − g(v1

1)

= 41(1 − at) − v1
1

b
+ 43(1 − at) − v3

1

b
− g(v1

1)

= 41(−a(t − 1
a )) − v1

1

b
+ 43(−a(t − 1

a )) − v3
1

b
− g(v1

1)

=
R−b
R+b-1(at − 1) − 2bR

R+b i2
0 (t − 1

a ) − v1
1

b
+

R−b
R+b-3(at − 1) − 2bR

R+b i4
0(t − 1

a ) − v3
1

b
− g(v1

1). (36)

Similarly, we also have

C
R − b

R + b

dv1
1

dt
(t − 2

a
)

= R − b

R + b

[
i1
1

(
t − 2

a

)
+ i3

1

(
t − 2

a

)
− g

(
v1

1

(
t − 2

a

))]

= R − b

R + b

[
v1

1(t − 2
a ) − -1(1 + a(t − 2

a ))

b
+ v3

1(t − 2
a ) − -3(1 + a(t − 2

a ))

b
− g

(
v1

1

(
t − 2

a

))]

= 1
b

R − b

R + b

[
v1

1

(
t − 2

a

)
+ v3

1

(
t − 2

a

)]
− 1

b

R − b

R + b
[-1(at − 1) + -3(at − 1)]

− R − b

R + b
g

(
v1

1

(
t − 2

a

))
. (37)

Combining (36) and (37) results in

C

[
dv1

1

dt
+ R − b

R + b

dv1
1

dt

(
t − 2

a

)]

= − 2R

R + b

[
i2
0

(
t − 1

a

)
+ i4

0

(
t − 1

a

)]
− 1

b
(v1

1 + v3
1)

+ 1
b

R − b

R + b

[
v1

1

(
t − 2

a

)
+ v3

1

(
t − 2

a

)]

− g(v1
1) − R − b

R + b
g

(
v1

1

(
t − 2

a

))
. (38)

On the other hand, since by (32),

i2
0

(
t − 1

a

)
= 1

2b
[42(1 − at) − -2(at − 1)]

= 1
2b

[2v2
1 − -2(1 + at) − -2(at − 1)]

= 1
b

v2
1 − 1

2b
[-2(1 + at) + -2(at − 1)]

= 1
b

v2
1 − 1

2b

[
-2(1 + at) + 2v2

1

(
t − 2

a

)
− 42(3 − at)

]

= 1
b

v2
1 − 1

b
v2

1

(
t − 2

a

)
+ 1

2b
[42(3 − at) − -2(1 + at)]

= 1
b

v2
1 − 1

b
v2

1

(
t − 2

a

)
+ i2

(
2, t − 1

a

)
,

it follows from (35) that

i2
0

(
t − 1

a

)
= 1

2b
v2

1 − 1
2b

v2
1

(
t − 2

a

)
+ 1

2

[
i2
1 (t) + i2

1

(
t − 2

a

)]
. (39)
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Symmetrically, a similar statement is valid for i4
0 , i.e.

i4
0

(
t − 1

a

)
= 1

2b
v4

1 − 1
2b

v4
1

(
t − 2

a

)
+ 1

2

[
i4
1(t) + i4

1

(
t − 2

a

)]
. (40)

Using the boundary conditions (31) and (39)–(40), we have

i2
0

(
t − 1

a

)
+ i4

0

(
t − 1

a

)
= 1

b
v2

1 − 1
b

v2
1

(
t − 2

a

)
+ 1

2

[

g(v2
1) + C

dv2
1

dt

+g

(
v2

1

(
t − 2

a

))
+ C

dv2
1

dt

(
t − 2

a

)]

. (41)

Therefore, by substituting (41) into (38) and using the last equality from (31), we obtain:

C

[
dv1

1
dt

+ R − b

R + b

dv1
1

dt

(
t − 2

a

)]

= − 2R

R + b

[
1
b

v2
1 − 1

b
v2

1

(
t − 2

a

)]
− R

R + b

[

g(v2
1) + C

dv2
1

dt
+ g

(
v2

1

(
t − 2

a

))
+ C

dv2
1

dt

(
t − 2

a

)]

− 2
b

v1
1 + 2

b

R − b

R + b
v1

1

(
t − 2

a

)
− g(v1

1) − R − b

R + b
g

(
v1

1

(
t − 2

a

))

= −C
R

R + b

[
dv2

1

dt
+ dv2

1

dt

(
t − 2

a

)]

− 2
b

v1
1 + 2

b

R − b

R + b
v1

1

(
t − 2

a

)
− g(v1

1) − R − b

R + b
g

(
v1

1

(
t − 2

a

))

− 2R

R + b

[
1
b

v2
1 − 1

b
v2

1

(
t − 2

a

)]
− R

R + b

[
g(v2

1) + g

(
v2

1

(
t − 2

a

))]
,

which, after rearrangement, yields:

C

[
dv1

1

dt
+ R

R + b

dv2
1

dt
+ R − b

R + b

dv1
1

dt

(
t − 2

a

)
+ R

R + b

dv2
1

dt

(
t − 2

a

)]

= −2
b

v1
1 + 2

b

R − b

R + b
v1

1

(
t − 2

a

)
− 2

b

R

R + b

[
v2

1 − v2
1

(
t − 2

a

)]

− g(v1
1) − R − b

R + b
g

(
v1

1

(
t − 2

a

))
− R

R + b

[
g(v2

1) + g

(
v2

1

(
t − 2

a

))]
. (42)

By the same argument, we obtain:

C

[
dv2

1
dt

+ R

R + b

dv1
1

dt
+ R − b

R + b

dv2
1

dt

(
t − 2

a

)
+ R

R + b

dv1
1

dt

(
t − 2

a

)]

= −2
b

v2
1 + 2

b

R − b

R + b
v2

1

(
t − 2

a

)
− 2

b

R

R + b

[
v1

1 − v1
1

(
t − 2

a

)]

− g(v2
1) − R − b

R + b
g

(
v2

1

(
t − 2

a

))
− R

R + b

[
g(v1

1) + g

(
v1

1

(
t − 2

a

))]
. (43)
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In terms of matrices, system (42)–(43) can be rewritten as

C

[
S1

d
dt

x(t) − S2
d
dt

x(t − r)

]
= −S3x(t) − S4x(t − r) − S5G(x(t)) + S6G(x(t − r)), (44)

where

r = 2
a
, x(t) =

[
v1

1(t)

v2
1(t)

]
, G(x(t)) =

[
g(v1

1(t))

g(v2
1(t))

]
,

S1 =




1

R

R + b

R

R + b
1



 , S2 =





b − R

R + b
− R

R + b

− R

R + b

b − R

R + b



 ,

S3 =





2
b

2
b

R

R + b

2
b

R

R + b

2
b



= 2
b

S1, S4 =




−2

b

R − b

R + b
−2

b

R

R + b

−2
b

R

R + b
−2

b

R − b

R + b



= 2
b

S2,

S5 =




1

R

R + b

R

R + b
1



= S1, S6 =





b − R

R + b
− R

R + b

− R

R + b

b − R

R + b



= S2.

Multiplying (44) by S−1
1 (recall that b )= 0 (see (33))), we arrive at

d
dt

[x(t) − Qx(t − r)] = − 2
bC

x(t) − 2
bC

Qx(t − r) − 1
C

G(x(t)) + 1
C

QG(x(t − r)), (45)

where Q = S−1
1 S2.

Note that system (44) embodies the symmetric situation, namely the internal coupling, in the following way: let
% := D2 act on V := R2 by permuting the coordinates of vectors x = [ v1

v2 ] ∈ V , then system (44) is symmetric with
respect to the %-action on V.

4.2. Configuration 2: external coupling

A second example of symmetric coupling was considered in [17] , where N recipients are mutually coupled via
lossless transmission line network which are interconnected by a common resistor Ro between neighboring recipients,
and extensively connected with N power stations (Fig. 3).

Denote by ij (x, t) the current flowing in the jth line at time t and distance x down the line and vj (x, t) the voltage
across the line at t and x, for j = 1, . . . , N . The same Telegrapher’s equation (26) holds for ij (x, t) and vj (x, t).
However, the boundary conditions need to be modified for this external coupling. For j = 1, . . . , N , we have






E = v
j
0 + i

j
0 R,

i
j
1 = f (v

j
1 ) + C

dv
j
1

dt
− (I j−1(t) − I j (t)),

v
j
1 − v

j+1
1 = I j (t)Ro,

(46)

where I 0(t) := IN(t), vN+1 := v1, I j ’s are the so-called coupling terms (see [17]).
For mathematical simplicity, we assume that (cf. (E1)):

(E2) the boundary value problem (26) and (46) admits a unique equilibrium point (v
j
∗ , i

j
∗ ) := (v

j
∗(x, t), i

j
∗ (x, t)), for

j = 1, . . . , N .
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A1 B1

C1D1

A2

B2

C2D2

+

- 
E

R

C

C

C

f (v)

f (v)

f (v)

f (v)

C +

- 
E

R

+

- 
E

R

+

- 
E

R

i1

i2

ij

iN

Fig. 3. Symmetric model of transmission lines: external coupling.

By a change of variables provided by (30), the boundary conditions (46) can be translated to





0 = v
j
0 + i

j
0 R,

i
j
1 = g(v

j
1 ) + C

dv
j
1

dt
− 1

Ro
(v

j+1
1 − 2v

j
1 + v

j−1
1 ).

(47)

We are now in a position to reduce the boundary value problem (26) and (47) to a symmetric system of FDEs. By
(47) and (32), we have

4j (−at) = R − b

R + b
-j (at),

and

C
dv

j
1

dt
= i

j
1 − g(v

j
1 ) + 1

Ro

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)

= 4j (1 − at) − v
j
1

b
− g(v

j
1 ) + 1

Ro

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)

= 4j (−a(t − 1
a )) − v

j
1

b
− g(v

j
1 ) + 1

Ro

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)

= (R − b/R + b)-j (at − 1) − v
j
1

b
− g(v

j
1 ) + 1

Ro

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)
.

Similarly,

C
R − b

R + b

dv
j
1

dt

(
t − 2

a

)

= R − b

R + b
i
j
1

(
t − 2

a

)
− R − b

R + b
g

(
v

j
1

(
t − 2

a

))
+ 1

Ro

R − b

R + b

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)

= R − b

R + b

v
j
1 (t − 2

a ) − -j (at − 1))

b
− R − b

R + b
g

(
v

j
1

(
t − 2

a

))
+ 1

Ro

R − b

R + b

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)
.
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Therefore,

C

[
dv

j
1

dt
+ R − b

R + b

dv
j
1

dt

(
t − 2

a

)]

= − 1
b

v
j
1 + 1

b

R − b

R + b
v

j
1

(
t − 2

a

)
− g(v

j
1 ) − R − b

R + b
g

(
v

j
1

(
t − 2

a

))

+ 1
Ro

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)
+ 1

Ro

R − b

R + b

(
v

j+1
1 − 2v

j
1 + v

j−1
1

)
. (48)

In terms of matrices, we rewrite (48) as

d
dt

[x(t) − "x(t − r)] = − 1
bC

Px(t) − 1
bC

"Px(t − r) − 1
C

G(x(t)) + 1
C

"G(x(t − r)), (49)

where

r = 2
a
, x(t) =




v1

1(t)
...

vN
1 (t)



 , G(x(t)) =




g(v1

1(t))
...

g(vN
1 (t))



 ,

" = −R − b

R + b
, P =





1 + 2b

Ro
− b

Ro
0 · · · 0 − b

Ro

− b

Ro
1 + 2b

Ro
− b

Ro
· · · 0 0

...
. . .

...
...

− b

Ro
0 0 · · · − b

Ro
1 + 2b

Ro





.

Note that system (49) is a % := DN -symmetric system in the following sense: consider % acting on V := RN by

permuting the coordinates of vectors x =




v1

...

vN



 ∈ V , then system (49) is symmetric with respect to the %-action

on V.

5. Hopf bifurcation results for symmetric configurations of transmission line models

Being motivated by the two generic models of symmetric couplings (cf. (45) and (49)), we will present below a
general symmetric system of functional differential equations and discuss several crucial elements in computations of
its associated bifurcation invariant, which are the prerequisite for the usage of our Maple! package.

5.1. Statement of the problem

We combine the two different coupling models discussed in Section 4 in the following symmetric functional differ-
ential equation

d
dt

[x(t) − "Qx(t − r)] = −P1x(t) − "QP 2x(t − r) − aG(x(t)) + a"QG(x(t − r)), (50)

where a and r are positive constants, " is the bifurcation parameter and

x(t) =





x1(t)

x2(t)
...

xn(t)



 ∈ Rn, G(x(t)) =





g(x1(t))

g(x2(t))
...

g(xn(t))



 ∈ Rn.

In addition, we assume

(H1) g : R → R is continuously differentiable, g(0) = g′(0) = 0;
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(H2) A finite group % acts on Rn by permuting the coordinates of vectors x ∈ V := Rn, meaning geometrically it
permutes the vertices of a certain related polygon or polyhedron;

(H3) (i) Q, P1, P2 are n × n-matrices, which commute pairwisely;
(ii) Q, P1, P2 commute with the %-action on V;

(H4) |"| · ‖Q‖< 1.

Remark 5.1. (i) Since Q, P1, P2 are pairwisely commuting matrices, they can be diagonalized simultaneously. In
other words, Q, P1, P2 share the same eigenspaces with respect to a certain choice of a basis of V. We will use the
symbols 5, 6 and 7 to denote the eigenvalues of Q, P1, and P2, respectively, corresponding to the same eigenvector
v ∈ V . Further, assume that 6 and 7 satisfy the following condition:

(H5) In the case 67 > 0,
√

67 )= ((2k + 1)/2r). for any k ∈ Z.
(ii) By assumption (H4), system (50) satisfies (A5).
(iii) It is clear that system (50) is symmetric with respect to the %-action on V and (", 0) is a stationary point for all ".

In this way, we are dealing here with a %-symmetric system of functional differential equations, and we are interested
in studying the nontrivial periodic solutions that bifurcate from the stationary point.

5.2. Characateristic equation and isolated centers

By linearizing system (50) at x = 0, we obtain

d
dt

[x(t) − "Qx(t − r)] = −P1x(t) − "QP 2x(t − r).

Substituting x = e$t v for $ ∈ C, 0 )= v ∈ V , we have

$e$t v − "Q$e$(t−r)v = −P1e$t v − "QP 2e$(t−r)v,

i.e.

[$Id − "Q$e−$r + P1 + "QP 2e−$r ]v = 0.

Therefore, we have the following characteristic equation for system (50)

detC$(",0)($) = 0, (51)

where

$(",0)($) := ($Id − "Q$e−$r ) + P1 + "QP 2e−$r .

Next, we need to find possible values of " such that (51) has a purely imaginary root i# for some # > 0, so we could
detect the potential bifurcation points (", #, 0) ∈ R2

+ × W .
By Remark 5.1(i), when restricted to the same eigenspace of Q, P1 and P2, the characteristic equation (51) reduces

to the following algebraic equation

($ + 6)e$r − "5($ − 7) = 0. (52)

By replacing in (52) $ with i# for some # )= 0, and separating the real and imaginary parts, we obtain
{

6 cos(#r) − # sin(#r) = −7"5,

6 sin(#r) + # cos(#r) = #"5.
(53)

which leads to

tan(#r) =






#(6 + 7)

#2 − 67
if #2 )= 67,

∞ if #2 = 67.

(54)

However, it can be verified that under the assumption (H5), the second case in (54) cannot occur.
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Hence, we have the following (note that # )= 0)

sin(#r) = /
#(6 + 7)

62 + #2

√
62 + #2

72 + #2 , cos(#r) = /
#2 − 67

62 + #2

√
62 + #2

72 + #2 , (55)

where / ∈ {±1} depending on the range of #r . Also, observe that in the case 5 = 0, (53) does not permit any nonzero
solution of #. So we suppose 5 )= 0, then (53) yields:

" = /
5

√
62 + #2

72 + #2 . (56)

Using (56), we simplify (55) to

sin(#r) = "5#(6 + 7)

62 + #2 , cos(#r) = "5(#2 − 67)

62 + #2 . (57)

Clearly, assumption (A6) is satisfied for system (50). We summarize the corresponding information in the statement
following below (the needed arguments can be easily deducted from graphing (54)).

Lemma 5.2. Given system (50) satisfying (H1) and (H3), fix a triple of reals 6, 7 and 5 as in Remark 5.1(i) satisfying
(H5). Then the equation

tan(#r) = #(6 + 7)

#2 − 67

has infinitely many positive solutions #k’s (k ∈ N), such that

(a) 0 < #k < #l for k < l;
(b) limk→∞ #k = ∞;
(c) for each #k , the point ("k, 0) is an isolated center for system (50), where

"k = /
5

√
62 + #2

k

72 + #2
k

, / = ±1.

Moreover,

(1) In the case 67 > 0, by putting ko := 6(r
√

67/.)+ 1
27, where the symbol 6·7 stands for the greatest integer function,

we have
(1d) If ko = r

√
67/., then

#k ∈






(
2k − 1

2r
.,

k

r
.
)

for k < ko,
(

k

r
.,

2k + 1
2r

.
)

for k"ko.

(1d′) Otherwise,

#k ∈






(
2k − 1

2r
.,

k

r
.
)

for k!ko,
(

k − 1
r

.,
2k − 1

2r
.
)

for k > ko.

(2) In the case 67 < 0 and 6 + 7 < 0, we have
(2d) #k ∈ ( 2k−1

2r ., k
r .) for k ∈ N.

(3) In the case 67 < 0 and 6 + 7 > 0, we have
(3d) if 6 + 7! − 67, then #k ∈ ((k/r)., ((2k + 1)/2r).) for k ∈ N;

(3d′) otherwise, #k ∈ ((k − 1)/r)., ((2k − 1)/2r).) for k ∈ N.
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5.3. Negative spectrum 3− and Vi-multiplicity

To use the computational formula (25), we need the information on the negative spectrum 3− of the linear operator⊕r
i=0 ai($o) and the Vi-multiplicity mi(2) for each 2 ∈ 3−.
Under assumption (H1), system (50) gives rise to (cf. (20))

r⊕

i=0

ai($o) = −1
# o

Dxf ("o, 0) = 1
# o

(P1 + "oQP 2) : V → V ,

for each isolated center ("o, 0) ($o = "o + i#o).
Under the notations of Remark 5.1(i), we will assume for a fixed triple of 5, 6, 7 that

(H6) 6 + "o57 )= 0.

Then, system (50) satisfies the assumption (A4).

Recall "o = /
5

√
(62 + #2

o)/(72 + #2
o) (cf. (56)), thus the negative spectrum 3− of

⊕r
i=0 ai($o) is determined by

3− =
{
2 = 1

# o

(6 + "o57) : 1
# o

(6 + "o57) < 0
}

=
{

2 = 1
# o

(6 + "o57) : 1
# o

(

6 + /

√
62 + #2

o

72 + #2
o

7

)

< 0

}

=
{
2 = 1

# o

(6 + "o57) : 6
√

72 + #2
o + /7

√
62 + #2

o < 0
}

=
{
2 = 1

# o

(6 + "o57) : 6 + /7 < 0
}

, (58)

where we used the fact that sign(6
√

72 + #2
o + /7

√
62 + #2

o) = sign(6 + /7).
In all the examples considered in the sequel, the following condition is satisfied
Condition (R). (i) Decomposition (3) contains isotypical components modeled only on irreducible representations

of real type (in particular (cf. (3) and (4)), r = s).
(ii) For each 2 ∈ 3− there exists a single isotypical component Vi := Vi2 in (3) which (completely) contains the

eigenspace E(2).
Therefore, formula (23) of the Vi-multiplicity mi(2) reduces to

mi(2) =
{

dimR E(2)/dimR Vi , i = i2,

0, i )= i2.
(59)

5.4. Crossing numbers tj,1 and Vj,1-multiplicity

To proceed with the computational formula (25), we also need to evaluate the crossing numbers tj,1("o, #o), in
particular (cf. (24)), to determine (sign(d/d") u("o)), and the Vj,1-multiplicity mj(i#o).

By substituting $ = u + iv in (52) and separating the real and imaginary parts, we obtain
{

eur (u + 6) cos(vr) − eurv sin(vr) = 5"(u − 7),

eur (u + 6) sin(vr) + eurv cos(vr) = 5"v.
(60)

By implicit differentiation of (60) with respect to " at "o, u = 0, v = #o, we obtain




A

du

d"
("o) − B

dv

d"
("o) = −75,

B
du

d"
("o) + A

dv

d"
("o) = #o5,

(61)
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where
{

A = r(6 cos(#or) − #o sin(#or)) + (cos(#or) − "o5),

B = r(6 sin(#or) + #o cos(#or)) + sin(#or).
(62)

Substituting (57) into (62) leads to





A = − "o5

62 + #2
o

[7r(62 + #2
o) + 6(6 + 7)],

B = "o5

62 + #2
o

[#or(6
2 + #2

o) + #o(6 + 7)].
(63)

Thus, it follows from (63) and (61) that

du

d"
("o) = 1

A2 + B2 (−75A + #o5B)

= "o52

A2 + B2

[

r(72 + #2
o) + 1

62 + #2
o

(76 + #2
o)(6 + 7)

]

. (64)

Lemma 5.3. Let ("o, 0) be an isolated center for system (50) and i# the corresponding characteristic root. Assume
that for " close to "o, the characteristic roots have the form u(") + iv("). Assume, finally,

(i) r "1;
(ii) # > 1.

Then,

sign
(

du

d"
("o)

)
= sign("o).

Proof. Directly from (64), it suffices to show

Υ (7, 6) := r(72 + #2
o) + 1

62 + #2
o

(76 + #2
o)(6 + 7) > 0.

Put

&(7, 6) := 72 + #2
o + 1

62 + #2
o

(76 + #2
o)(6 + 7).

By assumption (i), Υ (7, 6)"&(7, 6) for all 7, 6, thus we only need to show

&(7, 6) > 0.

Case 1: If 7 = 0, &(0, 6) = #2
o + (1/(62 + #2

o))#2
o6 = #2

o((6
2 + 6 + #2

o)/(6
2 + #2

o))
(ii)
> 0.

Case 2: If 7 )= 0, then we can write (7, 6) = (7, t7) for a unique t ∈ R. Thus,

&(7, t7) = 72 + #2
o + 1

t272 + #2
o

(t72 + #2
o)(t + 1)7.

Seeking a contradiction, assume

&(7o, to7o)!0 (65)

at some (7o, to7o) and put

8(t) := &(7o, t7o).
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Since limt→±∞ 8(t) = 72
o + #2

o + 7o

(ii)
> 0, it follows from (65) that 8(t) has a nonpositive minimum value at some

tmin. An elementary calculus argument implies:

tmin =






#o

7o

if 7o < 0,

−#o

7o

if 7o > 0.

Thus,

8(tmin) =






72
o + #2

o + (7o + #o)
2

2#o

if 7o < 0,

72
o + #2

o − (7o − #o)
2

2#o

if 7o > 0.

Clearly, in the case 7o < 0, 8(tmin) > 0, and for 7o > 0

8(tmin) = 72
o + #2

o − (7o − #o)
2

2#o

(ii)
> 72

o + #2
o − (7o − #o)

2

2
= (7o + #o)

2

2
"0,

and a contradiction arises, which asserts the conclusion. #

To evaluate the Vj,1-multiplicity mj(i#o), recall that $o = i#o is a solution to (5), i.e. detC ."o (i#o)=0. In the case
of system (50), it is equivalent to (cf. (52))

(i#o + 6)ei#or − "o5(i#o − 7) = 0.

Under Condition (R), we have each E(i#o) is completely contained in a single isotypical component Uj for some
j = j#o

in (4). Thus,

mj(i#o) =
{

dimC E(i#o)/dimC Uj , j = j#o
,

0, j )= j#o
.

(66)

Without loss of generality,5 we can assume "o < 0, so by Lemma 5.3, sign (du/d")("o) = −1. Therefore, by (24), we
have

tj,1("o, #o) =
{

dimC E(i#o)/dimC Uj , j = j#o
,

0, j )= j#o
.

(67)

6. Concrete results for selected symmetry groups and usage of Maple! package

In this section, assuming conditions (H1)–(H6) and " < 0 to be satisfied by system (50), we will present quantative
results for some specific symmetry group %, where % takes values from the dihedral groups D4, D5, the octahedral
group S4 and the icosahedral group A5.

For the details and notations related to the lists of irreducible representations, basic degrees, multiplication tables
and identification of the dominating orbit types, we refer to [2].

Below we will briefly summarize our discussions presented in Sections 5.2–5.4, and describe the input data to the
Maple package used to compute the equivariant bifurcation invariant.

Recall that, by (25),

!($o)1 = !% · !G,

5 In the case "o > 0, the value of tj,1("o, #o) can be obtained simply by reversing its sign (cf. (24)).
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where

!% =
∏

2∈3−

∏r

i=0
(degVi

)mi(2),

and

!G =
∑

j

tj,1("o, #o) degVj,1
∈ A1(G).

By formula (59),

!% =
r∏

i=0

(degVi
)
∑

2∈3− mi2 (2).

Note that (degVi
)2 = (%), which is a trivial element in the Burnside ring A(%). Therefore, by putting

εi :=
∑

2∈3−

mi2(2) (mod 2), i = 0, 1, . . . , r ,

one obtains

!% =
r∏

i=0

(degVi
)εi .

Clearly, the sequence {ε0, ε1, . . . , εr} permits only possibly finitely many different values.
By formula (67),

!G = dimC E(i#o)/dimC Uj#o
degVj#o

,1
.

We will use the notation tj#o
:= dimC E(i#o)/dimC Uj#o

, which stands for the Uj -multiplicity of i#o. Thus tj#o
also

permits only possibly finitely many different values.
Therefore, we have the following formula for the local bifurcation invariant

!($o)1 =
r∏

i=0

(degVi
)εi · tj#o

degVj#o
,1

. (68)

The input data for the computation of the local invariant thus consists of two finite sequences:

{ε0, ε1, . . . , εr}, {t0, t1, . . . , tr},
which are forwarded to the following command from the Maple! package6:

!($o)1 := showdegree(ε0, ε1, . . . , εr , t0, t1, . . . , tr ).

Since the value of tj#o
depends only on the Ej#o

(i#o), we put Ej#o
:= Ej#o

(i#o) and present our quantative results
in a form of a matrix

Ej#o
9i1, 9i2, . . . , 9im !($o)1 # Branches     ,

where we only list {εi1 , εi2 , . . . , εim} ⊂ {ε0, ε1, . . . , εr} for those εik , which can realize the value 1.

Remark 6.1. Although by Lemma 5.2(c), we are potentially dealing with infinitely many bifurcation points, only
finitely many different values of !($o)1 can occur, which is related to the fact that the value of !($o)1 is determined
by only possibly finitely many different choices of the values of the two sequences {ε0, ε1, . . . , εr} and {t0, t1, . . . , tr}.

6 The package is available at 〈http://krawcewicz.net/degree〉.

http://krawcewicz.net/degree
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The case % = D4. We have the D4-isotypical decompositions

V = V0 ⊕V1 ⊕V3, V c = U0 ⊕U1 ⊕U3,

thus {εi1 , εi2 , . . . , εim} = {ε0, ε1, ε3}, and there are three types of bifurcation points ("o, #o) correspondingly. Since
getting the complete list of the bifurcation invariants !($o)1 for system (50) is a simple task of applying the Maple!

package for the group % = D4 by

!($o)1 = showdegree[D4](ε0, ε1, 0, ε3, 0, t0, t1, 0, t3, 0),

we present in Table 1 only some selected results for the group D4.
The case % = D5. We have the following D5-isotypical decompositions

V = V0 ⊕V1 ⊕V2, V c = U0 ⊕U1 ⊕U2,

thus {εi1 , εi2 , . . . , εim}={ε0, ε1, ε2}, and there are three types of bifurcation points ("o, #o) correspondingly. We present
the list of selected bifurcation invariants !($o)1 for system (50) in Table 2. To treat the remaining cases, one can use
the Maple! package for D5,

!($o)1 = showdegree[D5](ε0, ε1, ε3, 0, t0, t1, t2, 0).

The case % = S4. We have the following S4-isotypical decompositions

V = V0 ⊕V1 ⊕V3 ⊕V4, V c = U0 ⊕U1 ⊕U3 ⊕U4,

thus {εi1 , εi2 , . . . , εim} = {ε0, ε1, ε3, ε4}, and there are four types of bifurcation points ("o, #o) correspondingly.
The list of selected bifurcation invariants !($o)1 for system (50) is presented in Table 3. One can use the Maple!

package for the group % = S4 to obtain the remaining invariants,

!($o)1 = showdegree[S4](ε0, ε1, 0, ε3, ε4, t0, t1, 0, t3, t4).

The case % = A5. We have the following A5-isotypical decompositions

V = V0 ⊕ [V1 ⊕V1] ⊕V2 ⊕V3 ⊕V4,
V c = U0 ⊕ [U1 ⊕U1] ⊕U2 ⊕U3 ⊕U4,

thus {εi1 , εi2 , . . . , εim} = {ε0, ε1, ε2, ε3, ε4}, and there are five types of bifurcation points ("o, #o) correspondingly.
A partial list of the bifurcation invariants !($o)1 for system (50) is presented in Table 4, which was established by
using the Maple! package for the group % = A5,

!($o)1 = showdegree[A5](ε0, ε1, ε2, ε3, ε4, t0, t1, t2, t3, t4).

Let us explain quickly how to estimate, based on the value of !($o)1, the minimal number of branches bifurcating
from ("o, 0) as well as their symmetries. In Fig. 4, we present the isotropy lattice (for twisted one-folded orbit types) for
W. The dominating orbit types (H) in W, which are (A5), (Dz

3), (V
−
4 ), (Zt1

5 ), (Zt2
5 ), (At1

4 ), (At2
4 ) and (Dz

5), are indicated
by bold characters. They are maximal elements in this lattice under the usual partial order relation. We use the notation
(H)[n] to indicate that there are n S1-orbits in an orbit G(x) of the type (H). Consider, for example,

!($o)1 = −(A4) − (Dz
3) − (D3) + (Zt1

5 ) + (Zt2
5 ) − (V−

4 ) + (Zt
3) + 3(Z3).

Then, we will definitely have 10 branches of periodic solutions with the symmetries (Dz
3), 12 with the symmetries

(Zt1
5 ), 12 with the symmetries (Zt2

5 ), and 15 with the symmetries (V −
4 ). Since (A5) is the dominating orbit type larger

than the orbit types (A4), (D3), it follows that there must be at least one additional branch of periodic solutions. On
the other hand, the only dominating orbit types larger than (Zt

3) are (A
t1
4 ) and (A

t2
4 ), therefore, the nontriviality of

the (Zt
3)-coefficient implies the existence of 5 additional branches of periodic solutions. All together, we predict 55

branches of nontrivial periodic solutions.
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Fig. 4. Twisted one-folded orbit types in W for % = A5.
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