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Abstract. In this paper we apply the equivariant degree method to the Hopf
bifurcation problem for a system of symmetric functional differential equa-
tions. Local Hopf bifurcation is classified by means of an equivariant topologi-
cal invariant based on the symmetric properties of the characteristic operator.

As examples, symmetric configurations of identical oscillators, with dihedral,
tetrahedral, octahedral, and icosahedral symmetries, are analyzed.

1. Introduction. This is the second paper in a series devoted to the equivariant
degree theory and its applications to non-linear problems admitting a certain (in
general, non-abelian) compact Lie group of symmetries (cf. [1]). Our main goal is to
study, by means of the equivariant degree theory, the occurrence of Hopf bifurcations
in a symmetric system of delayed functional differential equations. Such models
appear in many important problems in physics, chemistry, biology, engineering,
etc., where the existence of symmetries has an enormous impact on a dynamical
process resulting in a formation of various patterns exhibiting certain symmetric
properties (e.g. the Turing model of a ring of identical oscillators, cf. [32, 15]). They
are also related, for example, to the appearance of turbulence in fluid dynamics (cf.
[13]), fluctuations in transmission lines (see [24]), periodic reoccurrence of epidemics,
traveling waves in neural networks (cf. [34]), etc. The prediction and classification of
the appearing and changing patterns in such systems constitute a complex problem.

The equivariant degree theory (cf. [1, 2, 4, 5, 14, 18, 21, 25, 26]) provides the
most effective method for a full analysis of symmetric Hopf bifurcation problems
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(cf. [5, 6, 12, 18, 24, 34, 35]). It allows to directly translate the equivariant spec-
tral properties of the characteristic operator (associated with the system) into an
algebraic invariant containing the information related to the topological nature of
the occurring Hopf bifurcation, including the symmetric structure of the bifurcating
branches of non-constant periodic solutions, and their multiplicities.

More precisely, in the case of a parameterized system of functional differential
equations, symmetric with respect to a finite∗ group Γ, we associate with an isolated
center (αo, 0) and the corresponding purely imaginary characteristic value iβo, an
element ω(αo, βo) of the Z-module A1(Γ × S1) generated by the conjugacy classes
of the so-called ϕ-twisted l-folded subgroups H := Kϕ,l ⊂ Γ × S1 (recall that the
group S1 acts on periodic solutions by shifting the time variable). This element,
being the so-called primary Γ × S1-equivariant degree of the map Fς , associated
with the Hopf bifurcation problem (see section 4 for more details), can be written
as

ω(αo, βo) = n1(H1) + n2(H2) + · · · + nr(Hr). (1)

The information contained in the element ω(αo, βo) describes and classifies the
symmetric properties of bifurcating branches of non-constant periodic solutions. For
instance, a non-zero coefficient nk of ω(αo, βo) implies the existence of a bifurcating
branch of periodic solutions with symmetries at least Hk (as usual, a solution is said
to have H-symmetry if it has H as its isotropy group). In the case of the so-called
dominating orbit types (Hk) (i.e. satisfying a certain maximality condition (cf.
Definition 5)), we can predict the existence of bifurcating branches of non-constant
periodic solutions with this exact type of symmetry, and establish a lower estimate
of the number of bifurcating branches.

Let us stress that, in order to compute the primary equivariant degree of Fς

and make the above conclusions, we only need the information about the char-
acteristic values of the linearization of a given system around the isolated center,
and their symmetries, i.e. the so-called isotypical decomposition of the correspond-
ing eigenspaces. The primary degree in question can be computed directly from
the tables of the primary degrees of the so-called basic maps (i.e. the equivariant
maps canonically assigned to irreducible G-representations, so that their degrees
can be evaluated in advance) combined with the so-called multiplicativity property
(see Proposition 3). This functorial property of the primary equivariant degree, in
turn, appeals to a module A1(Γ× S1) over the Burnside ring A(Γ) (the addition in
the module reflects unions of zeros, while the multiplication corresponds to a Carte-
sian product of zeros). It should be pointed out that the multiplication structure
in A1(Γ× S1) can be completely described via appropriate tables (also prepared in
advance).

Based on the above arguments, we claim that the (primary) equivariant degree
can actually be evaluated without direct connection to its theoretical roots lying
in equivariant topology, homotopy theory and bordism theory, and, in fact, all the
involved tasks can be completely computerized. The only additional background
behind the machinery of computer routines, which is needed for applying the equi-
variant degree to concrete models, are the representation theory and basic properties
of classical groups and their subgroups. However, a proper understanding of any

∗ Being motivated by the applications presented in this paper, we make this assumption to
avoid technical complications related to the so-called “bi-orientability” property (cf. [29, 14, 1]).
However, the general results, obtained in [1], allow the applications of the equivariant degree
method in the case where Γ is an arbitrary compact Lie group.
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applied problem with symmetries requires this knowledge anyway. All this makes
us believe that our approach meets the following paradigm: equivariant topology,
via algebra and computer routines, in service of applied mathematics.

The equivariant degree method that was used for studying symmetric Hopf bi-
furcation problems in [21, 22, 24, 33, 34, 35] (see also [12, 23, 18]), led to the results
based on partial computations only. This was mainly due to technical difficulties
related to the absence of a general computational scheme and elaborated algebraic
calculations. Using the axiomatic approach to the equivariant degree and the es-
tablished standards for proper functional settings, which can be equally applied to
different kinds of dynamical systems, it is possible to compute (with assistance of
the developed Maple c© routines) the full bifurcation invariant, based only on the
equivariant spectral properties of the linearized system.

After the Introduction the paper is organized as follows. Section 2 contains
the equivariant topology and analysis background together with algebraic construc-
tions frequently used throughout the paper. In section 3, we introduce the primary
equivariant degree, following an axiomatic approach developed in [1], discuss the
multiplicativity property and the Splitting Lemma. In section 4, we present a gen-
eral parameterized system of symmetric delayed functional differential equations,
introduce the notion of the so-called isotypical crossing number, and construct the
Γ× S1-equivariant mapping Fς associated with the Hopf bifurcation problem. Sec-
tion 5 is devoted to the computation of the equivariant degree ω(αo, βo) = Γ× S1-
Deg(Fς , Ω) — the equivariant homotopy invariant associated with Fς . In section 6,
we present, as an example, a system of parameterized symmetric functional differ-
ential equations describing a symmetric configuration of identical oscillators. We
establish computational formulae for the bifurcation invariant ω(αo, βo) in terms
of the spectrum of the characteristic operator. In section 7, we present the Hopf
bifurcation results, based on the computations of ω(αo, βo) for the considered con-
figurations of identical oscillators.

2. Preliminaries.

2.1. Equivariant Jargon and Notations. Hereafter, G stands for a compact Lie
group. Let H be a subgroup of G (which is always assumed to be closed). In what
follows, (H) stands for the conjugacy class of H in G, N(H) for the normalizer of
H in G and W (H) = N(H)/H for the Weyl group of H in G. Denote by Φ(G) the
set of all the conjugacy classes (H) in G. For two subgroups H and K of G, we
write (H) ≤ (K) if H ⊂ g−1Kg for some g ∈ G. The relation ≤ defines a partial
order on the set Φ(G), which can be extended to a total order. We will assume this
total order, also denoted by ≤, is fixed.

Let V be an orthogonal representation of G and x ∈ R⊕V (with G acting trivially
on R). Denote by Gx = {g ∈ G : gx = x} the isotropy group of x and we call the
conjugacy class (Gx) the orbit type of x. Let X ⊂ R⊕V be a G-invariant set. Denote
by J (X) — the set of all orbit types (Gx) for x ∈ X , XH := {x ∈ X : Gx ⊃ H} —
the set of H-fixed points in X and put XH = {x ∈ X : Gx = H}, X(H) = G(XH)
and X(H) = G(XH).

For the equivariant topology background we refer to [7, 19].

2.2. Numbers n(L, H). Given two closed subgroups L ⊂ H of G, define the set

N(L, H) =
{
g ∈ G : gLg−1 ⊂ H

}
.



926 Z. BALANOV, M. FARZAMIRAD, W. KRAWCEWICZ AND H. RUAN

It is easy to check that N(L, H) is a compact subset of G, however, in general, it is
not a subgroup of G.

Put (cf. [17, 9, 23, 26])

n(L, H) =

∣∣∣∣
N(L, H)

N(H)

∣∣∣∣ , (2)

where the symbol |X | stands for the cardinality of the set X .

Proposition 1. (cf. [1]) Let L ⊂ H be two closed subgroups of a compact Lie group
G such that dimW (L) = dimW (H). Then the number n(L, H) is finite and the set
N(L, H)/H is a closed submanifold of G/H.
Remark 1.

1. Let L ⊂ H be two subgroups of G such that dimW (H) = dimW (L). Then
the number n(L, H) has a very simple geometric interpretation. It represents

the number of different subgroups H̃ in the conjugacy class (H) such that

L ⊂ H̃ . In particular, if V is an orthogonal G-representation such that (L),
(H) ∈ J (V ), L ⊂ H , then V L ∩ V(H) is a disjoint union of exactly n(L, H)
sets VHj

, satisfying (Hj) = (H) (cf. [1]).
2. In the case of two conjugacy classes (L) and (H) such that L ⊂ H , the number

n(L, H) is independent of a choice of representatives L and H . Therefore,
n(L, H) is well-defined for (L) ≤ (H) such that L ⊂ H . In the case the
orbit types (L) and (H) are not comparable with respect to the partial order
relation, put n(L, H) = 0.

2.3. Burnside Ring and Primary Equivariant Degree without Free Pa-
rameter. Assume that Γ is a finite group. The Burnside ring A(Γ) is the Z-module
generated by Φ(Γ) with the multiplication defined on the generators by the following
formula (cf. [3, 21, 31]):

(H) · (K) =
∑

(L)∈Φ(Γ)

nL · (L), (3)

where

nL =
1

|W (L)|



n(L, H)|W (H)|n(L, K)|W (K)| −
∑

(eL)>(L)

n(L, L̃)neL|W (L̃)|



 . (4)

Given an orthogonal Γ-representation V , an open bounded invariant set Ω ⊂ V
and a Γ-equivariant map f : V → V with f(x) 6= 0 for all x ∈ ∂Ω, one can define
the (primary) equivariant degree Γ-Deg (f, Ω) ∈ A(Γ) satisfying all the properties
expected from any reasonable degree theory: existence, homotopy, additivity, sus-
pension, multiplicativity (see, for instance, [23] for details).

2.4. Isotypical Decompositions. Consider an orthogonal G-representation V .
The representation V can be decomposed into a direct sum

V = Ṽ1 ⊕ Ṽ2 ⊕ · · · ⊕ Ṽm (5)

of irreducible subrepresentations Ṽj of V (some of them may be equivalent). This
direct decomposition is not “geometrically” unique and is only defined up to iso-
morphism. Of course, among these irreducible subrepresentations there may be
distinct (non-equivalent) subrepresentations which are denoted by Vk1

, . . . , Vkr
,
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including possibly a trivial one-dimensional representation. Let Vkj
be the sum of

all irreducible subrepresentations Ṽj ⊂ V equivalent to Vkj
. Then

V = Vk1
⊕ · · · ⊕ Vkr

, (6)

and the direct sum (6) is called the isotypical decomposition of V . The isotypical
decomposition (6) is unique. The subspaces Vkj

are called the isotypical components
of V (of type Vkj

, or modeled on Vkj
).

2.5. Regular Normal Approximations. Let V be an orthogonal (or Banach)
G-representation, Ω ⊂ R ⊕ V a G-invariant bounded open set and f : R ⊕ V → V
a G-equivariant continuous map such that f(x) 6= 0 for all x ∈ ∂Ω. Then, we say
that f is Ω-admissible and call (f, Ω) an admissible pair. Similarly, we define an
Ω-admissible homotopy.

Definition 1. Let V be an orthogonal G-representation, Ω ⊂ R⊕ V a G-invariant
bounded open set and (f, Ω) an admissible pair. Then f is said to be normal in
Ω, if for every (H) such that H = Gxo

for some xo ∈ f−1(0) ∩ Ω, the following
condition is satisfied:
∀ x ∈ f−1(0) ∩ ΩH ∃ δx > 0 ∀ w ∈ νx(Ω(H))

‖w‖ < δx =⇒ f(x + w) = f(x) + w = w,

where ν(Ω(H)) denotes the normal bundle to the submanifold Ω(H) in R ⊕ V and
νx stands for the normal slice at x. In addition, we say that f is regular normal if

(i) f is of class C1;
(ii) f is normal in Ω;
(iii) for every orbit type (H) in Ω, zero is a regular value of

fH := f|ΩH
: ΩH → V H .

We have the following (cf. [23, 25, 26, 14])

Theorem 1. (Regular Normal Approximation Theorem) Let (f, Ω) be an
admissible pair. Then, for every ε > 0 there exists a regular normal (in Ω) G-

equivariant map f̃ : R ⊕ V → V such that sup
x∈Ω

‖f̃(x) − f(x)‖ < ε. A similar result

is true for Ω-admissible homotopies.

3. Equivariant Degree with One Free Parameter.

3.1. Twisted Subgroups and Canonical Orientation of Weyl groups. From
now on, Γ stands for a finite group and G = Γ × S1.

Consider the set

Φ1(G) :=
{
(H) ∈ Φ(G) : dimW (H) = 1

}
.

It is easy to check that the elements of Φ1(G) are the conjugacy classes (H) of the
so-called ϕ-twisted l-folded subgroups of Γ × S1 with l = 1, 2, . . . , i.e.

H = Kϕ,l :=
{
(γ, z) ∈ K × S1 : ϕ(γ) = zl

}
,

where K is a subgroup of Γ and ϕ : K → S1 is a homomorphism. In the case
of a ϕ-twisted 1-folded subgroup Kϕ,1, we denote it by Kϕ and call it a twisted
subgroup of Γ × S1. Notice that N(Kϕ,l) = No × S1, where

No = {γ ∈ N(K) : ∀k∈K ϕ(γkγ−1) = ϕ(k)}.
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For every (H) ∈ Φ1(G), the Weyl group W (H) has a natural invariant (with
respect to the right and left translations) orientation. Indeed, we have the natural
homomorphism ϕH : S1 → W (H) defined as the following composition

S1 →֒ No × S1 = N(H) −→ N(H)/H = W (H).

Clearly kerϕH = Zl, thus ϕH induces the injection

ϕH : S1 →֒ W (H).

The induced by ϕH orientation of the connected component of 1 ∈ W (H) can be
extended to an invariant orientation of W (H).

Denote by A1(G) the free Z-module generated by the symbols (H) ∈ Φ1(G).
Then, any element α ∈ A1(G) can be written as a finite sum

α = n1(H1) + n2(H2) + · · · + nr(Hr), ni ∈ Z.

3.2. Positive Orientation in a Slice and Tubular Maps. Given an orthogonal
G-representation V and an invariant subset X ⊂ V , put Φ1(G, X) := J (X)∩Φ1(G).
For every (H) ∈ Φ1(G, V ) we always assume that:

(i) V H (and consequently, R ⊕ V H) is equipped with a fixed orientation;
(ii) W (H) is equipped with the canonical orientation described in the previous

subsection.

Definition 2. Let V be an orthogonal G-representation and xo ∈ R ⊕ V be such
that Gxo

= H with (H) ∈ Φ1(G). Let Sxo
denote the slice to W (H)xo in R ⊕ V H .

We say that Sxo
is positively oriented if the orientation of the slice followed by

the orientation of the orbit W (H)xo (induced by the fixed orientation of W (H))
coincides with the (fixed) orientation of R ⊕ V H (see, for instance, [1]).

Definition 3. Let V be an orthogonal G-representation and f : R ⊕ V → V a
regular normal map such that f(xo) = 0 with Gxo

= H and (H) ∈ Φ1(G). Let
UG(xo) be a tube around G(xo) such that f−1(0) ∩ UG(xo) = G(xo) (notice that, by
regular normality of f , G(xo) is an isolated orbit of zeros of f). Then f is called a
tubular map around G(xo).

Consider a tubular map f defined on the tube UG(xo) around G(xo) with the

positively oriented slice Sxo
. Denote by fH the restriction of f on R⊕V H . We call

sign detDfH(xo)|Sxo
the local index of f at xo in UG(xo).

3.3. Primary Equivariant Degree with One Free Parameter. The following
theorem (cf. [1]), provides an axiomatic approach to the so-called primary G-
equivariant degree G-Deg (f, Ω) ∈ A1(G) of an admissible pair (f, Ω).

Theorem 2. There exists a unique function, denoted by G-Deg , assigning to each
admissible pair (f, Ω) an element G-Deg (f, Ω) ∈ Φ1(G) satisfying the following
properties:

(P1) (Existence) If G-Deg (f, Ω) =
∑

(H)

nH(H) is such that nHo
6= 0 for some

(Ho) ∈ Φ1(G), then there exists xo ∈ Ω with f(xo) = 0 and Gxo
⊃ Ho.

(P2) (Additivity) Assume that Ω1 and Ω2 are two G-invariant open disjoint sub-
sets of Ω such that f−1(0) ∩ Ω ⊂ Ω1 ∪ Ω2. Then,

G-Deg (f, Ω) = G-Deg (f, Ω1) + G-Deg (f, Ω2).
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(P3) (Homotopy) Suppose that h : [0, 1] × R ⊕ V → V is an Ω-admissible G-
equivariant homotopy. Then,

G-Deg (ht, Ω) = constant

where ht := h(t, ·).
(P4) (Suspension) Suppose that W is another orthogonal G-representation and let

U be an open, bounded G-invariant neighborhood of 0 in W . Then,

G-Deg (f × Id , Ω × U) = G-Deg (f, Ω).
(P5) (Normalization) Suppose that f : R ⊕ V → V is a tubular map around

G(xo), H = Gxo
, (H) ∈ Φ1(G), with the local index nxo

of f at xo in UG(xo).
Then,

G-Deg (f, UG(xo)) = nxo
(H).

(P6) (Elimination) Suppose that f : R⊕V → V is an Ω-admissible G-equivariant
map, which is normal in Ω and ΩH∩f−1(0) = ∅ for every (H) ∈ Φ1(G). Then,

G-Deg (f, Ω) = 0.

Remark 2. In a standard way (see, for instance, [18, 23]) the primary equivariant
degree can be extended to equivariant compact Ω-admissible vector fields defined
on infinite dimensional Banach G-representations. We use for this extension the
same symbol.

3.4. Burnside Ring Module A1(G) and Multiplicativity Property.

Proposition 2. The Z-module A1(G) admits a natural structure of an A(Γ)-
module, where A(Γ) denotes the Burnside ring, and the A(Γ)-multiplication on the
generators (R) ∈ A(Γ) and (Kϕ,l) ∈ A1(Γ × S1), is defined by the formula

(R) · (Kϕ,l) =
∑

(L)

nL · (Lϕ,l),

where the numbers nL are computed using the recurrence formula (cf. [1, 21])

nL =

2
4n(L, R)|W (R)|n(Lϕ,l, Kϕ,l)|W (Kϕ,l)/S1| −

X

(eL)>(L)

n(Lϕ,l, eLϕ,l)neL|W (eLϕ,l)/S1|

3
5

|W (Lϕ,l)/S1|
(7)

where n(L, R) and n(Lϕ,l, L̃ϕ,l) are defined by (2), and |Y | stands for the cardinality
of Y .

The following multiplicativity property of the primary degree plays an important
role in practical computations of the primary degree (cf. [5, 21]):

Proposition 3. Assume that (f, Ω) is an admissible pair in R ⊕ V , W is an or-
thogonal representation of Γ, U an open Γ-invariant subset of W and g : W → W
a Γ-equivariant map such that g(v) 6= 0 for all v ∈ ∂U. Then,

(P7) (Multiplicativity) The product map f × g : R ⊕ V ⊕ W → V ⊕ W is
Ω × U-admissible, and

G-Deg (f × g, Ω × U) = Γ-Deg(g, U) · G-Deg (f, Ω),

where Γ-Deg(g, U) ∈ A(Γ) denotes the equivariant degree of g in U (without
free parameter) and ‘·’ stands for the A(Γ)-module multiplication provided by
Proposition 2.
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3.5. Recurrence Formula for Primary Degree. Let V be an orthogonal G-
representation and f : R ⊕ V → V an Ω-admissible G-equivariant map. Then,
the restriction fH : R ⊕ V H → V H is W (H)-equivariant and ΩH -admissible.
Assume, in addition, (H) ∈ Φ1(G, V ). According to our choice of the orienta-
tion on W (H) (see subsection 3.1), S1 can be canonically identified with the con-
nected component of W (H). Therefore, fH is S1-equivariant and the S1-degree
S1-Deg (fH , ΩH) =

∑
k nk(Zk) is well-defined (see [1, 18, 23] for more information

about the S1-equivariant degree). Since W (H) acts freely on ΩH , the orbit type
(Z1) is the “smallest” one among those occuring in ΩH . Put deg1(f

H , ΩH) := n1.
The coefficients nH of the primary equivariant degree

G-Deg (f, Ω) =
∑

(H)

nH(H)

can be computed using the following recurrence formula (cf. [1])

nH =


deg1(f

H , ΩH) −
∑

(L)>(H)

nL n(L, H) |W (L)/S1|




/ ∣∣∣∣
W (H)

S1

∣∣∣∣ . (8)

3.6. Splitting Lemma. The following result established in [1] is used later for the
computations of the primary degree:

Lemma 1. (Splitting Lemma) Let G be a compact Lie group, V1 and V2 orthog-
onal G-representations, V = V1 ⊕ V2. Assume that the isotypical decomposition of
V contains only components modeled on irreducible G-representations of complex
type. Suppose that aj : S1 → GLG(Vj), j = 1, 2, are two continuous maps and
a : S1 → GLG(V ) is given by

a(λ) = a1(λ) ⊕ a2(λ), λ ∈ S1.

Put

Oj : =
{
(λ, vj) ∈ C ⊕ Vj : ‖vj‖ < 2,

1

2
< |λ| < 4

}
, j = 1, 2

O : =
{
(λ, v) ∈ C ⊕ V : ‖v‖ < 2,

1

2
< |λ| < 4

}
.

Define the maps faj
: Oj → R ⊕ Vj, j = 1, 2, fa : O → R ⊕ V by

faj
(λ, vj) =

(
|λ|(‖vj‖ − 1) + ‖vj‖ + 1, aj

(
λ

|λ|

)
vj

)
,

fa(λ, v) =

(
|λ|(‖v‖ − 1) + ‖v‖ + 1, a

(
λ

|λ|

)
v

)
.

Then

G-Deg (fa,O)) = G-Deg (fa1
,O1) + G-Deg (fa2

,O2). (9)

4. Symmetric Hopf Bifurcation for Functional Differential Equations and
Equivariant Degree: General Framework. Let us discuss a general setting for
studying symmetric Hopf bifurcation problems for delayed differential equations
with a finite group Γ of symmetries.
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Hereafter, V stands for an orthogonal Γ-representation. Given a constant τ ≥
0, denote by CV,τ the Banach space of continuous functions from [−τ, 0] into V
equipped with the usual supremum norm

‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|, ϕ ∈ CV,τ .

Given a continuous function x : R → V and t ∈ R, define xt ∈ CV,τ by

xt(θ) = x(t + θ), θ ∈ [−τ, 0].

Clearly, the Γ-action on V induces a natural isometric Banach representation of
Γ on the space CV,τ with the Γ-action given by:

(γϕ)(θ) := γ(ϕ(θ)), γ ∈ Γ, θ ∈ [−τ, 0].

Consider the following one-parameter family of delayed differential equations

ẋ = f(α, xt), (10)

where x : R → V is a continuous function and f : R ⊕ CV,τ → V satisfies the
following assumptions:
(A1) f is continuously differentiable;
(A2) f is Γ-equivariant, i.e.

f(α, γϕ) = γf(α, ϕ), ϕ ∈ CV,τ , α ∈ R, γ ∈ Γ;
(A3) f(α, 0) = 0 for all α ∈ R.

In addition, in order to prevent the occurrence of the steady-state bifurcation at a
considered point (αo, 0) ∈ R ⊕ V , assume that
(A4) detDxf(αo, 0) 6= 0.

For any xo ∈ V , we use the same symbol to denote the constant function xo(t) ≡
xo. Clearly, (xo)t = xo for all t ∈ R. A point (α, xo) ∈ R ⊕ V is said to be a
stationary point of (10) if f(α, xo) = 0. In particular, by condition (A3), (α, 0) is
a stationary point of (10) for all α ∈ R. Moreover, we say that a stationary point
(α, xo) is nonsingular if the restriction of f to the space R ⊕ V ⊂ R ⊕ CV,τ , still
denoted by f , has the derivative Dxf(α, xo) : V → V (with respect to x ∈ V ), which
is an isomorphism. We say that for α = αo the system (10) has a Hopf bifurcation
occuring at (αo, 0) corresponding to the “limit period” 2π

βo
, if there exists a family

of ps-periodic non-constant solutions {(αs, xs(t))}s∈Λ (for a proper index set Λ) of
(10) satisfying the conditions:

(1) The set K :=
⋃

s∈Λ{(αs, xs(t)) : t ∈ R} contains a compact connected set C
such that (αo, 0) ∈ C;

(2) ∀ε > 0, ∃ δ > 0 such that

∀(αs, xs(t)) ∈ C sup
t

‖xs(t)‖ < δ ⇒ ‖αo − αs‖ < ε and ‖ps −
2π

βo

‖ < ε.

4.1. Characteristic Equation. Let V c be a complexification of the vector space
V , i.e. V c := C ⊗R V . Then, V c has a natural structure of a complex Γ-
representation defined by γ(z ⊗ x) = z ⊗ γx for z ∈ C and x ∈ V . Also, a
Γ-isotypical decomposition of the real representation V

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr, (11)

where V0 = V Γ and Vi is modeled on the real irreducible Γ-representation Vi, gives
rise to an isotypical decomposition of the complex Γ-representation V c

V c = U0 ⊕ U1 ⊕ · · · ⊕ Us, (12)
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where U0 = (V c)Γ and Uj is modeled on the complex irreducible Γ-representation
Uj . Notice that the number s of isotypical components in (12) may be different, in
general, from the number r of isotypical components in (11), depending on the type
of the irreducible representations Vi (cf. [8]).

Let (α, xo) be a stationary point of (10). The linearization of (10) at (α, xo) leads
to the following characteristic equation for the stationary point (α, xo),

detC △(α,xo) (λ) = 0, (13)

where
△(α,xo)(λ) := λId − Dxf(α, xo)(e

λ··)
is a complex linear operator from V c to V c, with (eλ··)(θ, x) = eλθx (cf. [33]) and
Dxf(α, xo)(z ⊗ x) = z ⊗ Dxf(α, xo)x for z ⊗ x ∈ V c. Put △α(λ) := △(α,0)(λ).

A solution λo to (13) is called a characteristic root of (13) at the stationary point
(α, xo). It is clear that (α, xo) is a nonsingular stationary point if and only if 0 is
not a characteristic root of (13) at the stationary point (α, xo).

In what follows, we say that a nonsingular stationary point (α, xo) is a center if
(13) permits a purely imaginary root. We call (α, xo) an isolated center if it is the
only center in some neighborhood of (α, xo) in R ⊕ V .

By (A2) and (A3), the operator △α(λ) : V c → V c, α ∈ R, λ ∈ C, is Γ-
equivariant. Consequently, for every isotypical component Uj of V c, j = 0, 1, . . . , s
(cf. (12)), △α(λ)(Uj) ⊆ Uj. Put

△α,j(λ) := △α(λ)|Uj
.

4.2. Crossing Numbers. Assume:
(A5) There is an isolated center (αo, 0) for system (10) such that (13) permits a

purely imaginary root λ = iβo with βo > 0.

Let λ be a complex root of the characteristic equation detC △αo
(λ) = 0. In what

follows, we use the following notations:

E(λ) := ker△αo
(λ) ⊂ V c,

Ej(λ) := E(λ) ∩ Uj,

mj(λ) := dim CEj(λ)/dim CUj .

The integer mj(λ) is called the Uj-multiplicity of the characteristic root λ.
Let B := (0, δ1) × (βo − δ2, βo + δ2) ⊂ C. Under the assumption (A5), the

constants δ1 > 0, δ2 > 0 and ε > 0 can be chosen so small that the following
condition is satisfied:

(*) For every α ∈ [αo − ε, αo + ε], if there is a characteristic root u + iv ∈ ∂B at
(α, 0) then u + iv = iβo and α = αo.

Note that △α(λ) is analytic in λ ∈ C and continuous in α ∈ [αo − ε, αo + ε] (see
[16]). It follows that detC △αo±ε(λ) 6= 0 for all λ ∈ ∂B. So the following notation

t
±
j,1(αo, βo) := deg(detC △α0±ε,j (·), B), (14)

where deg stands for the usual Brouwer degree, is well-defined for 0 ≤ j ≤ s (cf. (16)
for the use of the lower index “1”). We can now introduce the following important
concept (cf. [12, 21, 23, 24], see also [10, 11, 20, 27, 28, 34]):

Definition 4. The Uj-isotypical crossing number of (αo, 0) corresponding to the
characteristic root iβo is defined as

tj,1(αo, βo) := t
−
j,1(αo, βo) − t

+
j,1(αo, βo), (15)
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where Uj is the complex Γ-irreducible representation on which is modeled the iso-
typical component Uj .

The crossing number tj,1 has a very simple interpretation. In the case

detC(△α,j(iβo)) = 0 (i.e. iβo is a Uj-characteristic root), the number t
−
j,1 counts

all the Uj-characteristic roots (with multiplicity) in the set B, before α crosses the
value αo, and the number t+j,1 counts the Uj-characteristic roots in B, after α crosses
αo. The difference, which is exactly the number tj,1, represents the net number of
the Uj-characteristic roots which ‘escaped’ (if tj,1 is positive) or ‘entered’ (if tj,1 is
negative) the set B when α was crossing αo. This situation is illustrated in Figure
1.

b biβo iβo

B B

b

b

b

b

b

b

b

b

b

b

b

αo − ε < α < αo αo < α < αo + ε

t−j,1 = 5 t+j,1 = 3

tj,1 = 5 − 3 = 2

Figure 1. The Uj-isotypical crossing number

Remark and Definition 3. For any integer l > 1, put

tj,l(αo, βo) := tj,1(αo, lβo). (16)

Observe that tj,l(αo, βo) = 0 if ilβo is not a root of (13) (cf. (14) and (15)).

In order to establish the existence of small amplitude periodic solutions bifurcat-
ing from the stationary point (αo, 0), i.e. the occurrence of the Hopf bifurcation at
the stationary point (αo, 0), and to associate with (αo, 0) a local bifurcation invari-
ant, we apply the standard steps for the degree-theoretical approach described in
next two subsections.

4.3. Normalization of the Period. Normalization of the period is obtained by
making the change of variable u(t) = x( p

2π
t) for t ∈ R. We obtain the following

equation, which is equivalent to (10):

u̇(t) =
p

2π
f(α, u

t,
2π
p

), (17)

where u
t,

2π
p

∈ CV,τ is defined by

u
t,

2π
p

(θ) = u
(
t + 2π

p
θ
)
, θ ∈ [−τ, 0].

Evidently, u(t) is a 2π-periodic solution of (17) if and only if x(t) is a p-periodic
solution of (10). Introduce β := 2π

p
into the equation (17) to obtain

u̇(t) =
1

β
f(α, ut,β). (18)
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4.4. Γ × S1-Equivariant Setting in Functional Spaces. We use the standard
identification S1 = R/2πZ (with t ↔ eit) and introduce the operators L : H1(S1; V )
→ L2(S1; V ) defined by Lu(t) = u̇(t), j : H1(S1; V ) → C(S1; V ) by j(u(t)) = ũ(t)

and K : H1(S1; V ) → L2(S1; V ) by Ku(t) = 1
2π

∫ 2π

0 u(s) ds, for u ∈ H1(S1; V ),

t ∈ R, where H1(S1; V ) (resp. C(S1; V )) denotes the first Sobolev space of 2π-
periodic V -valued functions (resp. the space of continuous 2π-periodic V -valued
functions equipped with the usual supremum norm), and ũ = u a.e. (cf. [30]). Put
R2

+ := R × R+. It can be easily shown that (L + K)−1 : L2(S1; V ) → H1(S1; V )

exists and the map F : R2
+ × H1(S1; V ) → H1(S1; V ) defined by

F(α, β, u) = (L + K)−1
[
Ku + 1

β
Nf (α, β, j(u))

]
(19)

is completely continuous, where Nf : R2
+ × C(S1; V ) → L2(S1; V ) is defined by

Nf (α, β, v)(t) = f(α, vt,β),

and eit ∈ S1, (α, β, v) ∈ R2
+ × C(S1; V ).

Put W := H1(S1; V ). The space W is an isometric Hilbert representation of the
group G = Γ × S1 with the action given by

(γ, ϑ)x(t) = γ(x(t + ϑ)), eiϑ, eit ∈ S1, γ ∈ Γ, x ∈ W.

The nonlinear operator F defined by (19) is clearly G-equivariant.

Remark 3. Notice that, (α, β, u) ∈ R2
+ ×W is a 2π-periodic solution of (18) if and

only if u = F(α, β, u). Consequently, the occurrence of a Hopf bifurcation at (αo, 0)
for the equation (10) is equivalent to a bifurcation of 2π-periodic solutions of (18)
from (αo, βo, 0) for some βo > 0. On the other hand, if a bifurcation at (αo, βo, 0) ∈
R2

+ × W takes place in (18), then necessarily the operator Id − DuF(αo, βo, 0) :
W → W is not an isomorphism, or equivalently, ilβo, for some l ∈ N, is a purely
imaginary characteristic root at (αo, 0), i.e. detC △αo

(ilβo) = 0.

4.5. Local Γ × S1-Invariant for the Γ-Symmetric Hopf Bifurcation. It is
convenient to identify R2

+ with a subset of C, i.e. an element (α, β) ∈ R2
+ is written

as λ = α + iβ, and put λo = αo + iβo. By assumption (A5), (αo, 0) is an isolated
center, thus there exists δ > 0 such that

a(λ) := Id − DuF(λ, 0) : W → W (20)

is an isomorphism for 0 < |λ−λo| ≤ δ. Consequently, by implicit function theorem,
there exists ρ, 0 < ρ < min{1, δ}, such that for (λ, u) satisfying |λ − λo| = δ and
0 < ‖u‖ ≤ ρ, we have u −F(λ, u) 6= 0. Define the subset Ω ⊂ R2

+ × W by

Ω :=
{
(λ, u) ∈ R2

+ × W : |λ − λo| < δ, ‖u‖ < ρ
}

(21)

and put

∂0 := Ω ∩
(
R2

+ × {0}
)

and ∂ρ := {(λ, u) ∈ Ω : ‖u‖ = ρ}.
Following the standard degree theory treatment of the bifurcation phenomenon

(see, for instance, [18]), introduce an auxiliary function ς : Ω → R, which is G-
invariant and satisfies the conditions

{
ς(λ, u) > 0 for (λ, u) ∈ ∂ρ,

ς(λ, u) < 0 for (λ, u) ∈ ∂0.
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bb b

W

R2

W

u −F(λ, u)
Ω

λo

ς > 0

ς < 0

ς > 0

Figure 2. Auxiliary Function for Hopf Bifurcation

Such a function ς can be easily constructed, for example,

ς(λ, u) = |λ − λo|(‖u‖ − ρ) + ‖u‖ − ρ

2
; (λ, u) ∈ Ω. (22)

Define the map Fς : Ω → R ⊕ W by

Fς(λ, u) =
(
ς(λ, u), u −F(λ, u)

)
, (λ, u) ∈ Ω (23)

(see formula (19) and Figure 2).
Obviously, Fς is an Ω-admissible G-equivariant compact field, and thus Remark

2 is applied. Put
ω(λo) := G-Deg (Fς , Ω) ∈ A1(G), (24)

and we call ω(λo) the local Γ × S1-invariant for the Γ-symmetric Hopf bifurcation
at the point (λo, 0).

4.6. Dominating Orbit Types. In order to take advantage of the information
provided by the local bifurcation invariant, we need to introduce the following im-
portant concept.

Definition 5. An orbit type (H) in W is called dominating, if (H) is maximal
(with respect to the usual order relation (see subsection 2.1)) in the class of all
ϕ-twisted one-folded orbit types in W (in particular, H = Kϕ).

In what follows, the dominating orbit types are used to estimate the minimal
number of different periodic solutions (as well as their symmetries) to system (10)
(see Theorem 4).

Remark 4. (i) Assume there is a solution uo ∈ W to (18) (for α = αo and some
β > 0), for which one has Guo

⊃ Ho. If (Ho) is a dominating orbit type in
W with Ho = Kϕ for some K ⊂ Γ and ϕ : K → S1, then, by maximality
condition, (Guo

) = (Kϕ,l) with l ≥ 1, and the corresponding orbit G(uo)
is composed of exactly |G/Guo

|S1 different periodic functions (where |Y |S1

denotes the number of S1-orbits in Y ). It is easy to check that the number of
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S1-orbits in G/Guo
is |Γ/K| (where |X | stands for the number of elements in

X).
On the other hand, let xo be, say, a p-periodic solution to (10) canonically

corresponding to the above uo. It follows from the definition of l-folding and
Γ × S1-action on W that xo is also a p

l
-periodic solution to (10). The pair

(xo,
p
l
) canonically determines an element u′

o ∈ W being a solution to (18)
(for α = αo and some β′) satisfying the condition Gu′

o
= Ho. In this way we

obtain that (10) has at least |Γ/K| different periodic solutions with the orbit
type exactly (Ho) (considered in W ).

(ii) Due to the maximality property of dominating orbit types and the fact that the
isotropy groups increase under projections, the dominating orbit types can be
easily recognized from the isotropy lattices of the irreducible representations
of W .

4.7. Sufficient Conditions for Symmetric Hopf Bifurcation. Following the
same lines as in the proof of Theorem 3.2 from [12] (see also [21] and [1]), one can
easily establish

Theorem 4. Given system (10), assume conditions (A1)–(A5) to be satisfied. Take
F defined by (19) and construct Ω according to (21). Let ς : Ω → R be a G-invariant
auxiliary function (see (22)) and let Fς be defined by (23).

(i) Assume ωo(λo) = G-Deg (Fς , Ω) 6= 0, i.e.

G-Deg (Fς , Ω) =
∑

(H)

nH(H), and nHo
6= 0 (25)

for some (Ho) ∈ Φ1(G). Then, there exists a branch of non-trivial solutions
to (10) bifurcating from the point (αo, 0) (with the limit frequency lβo for
some l ∈ N). More precisely, the closure of the set composed of all non-trivial
solutions (λ, u) ∈ Ω to (18), i.e.

{(λ, u) ∈ Ω : F(λ, u) = 0, u 6= 0}
contains a compact connected subset C such that

(λo, 0) ∈ C and C ∩ ∂r 6= ∅, C ⊂ R2
+ × WHo ,

(λo = αo + iβo) which, in particular, implies that for every (α, β, u) ∈ C we
have Gu ⊃ Ho.

(ii) If, in addition, (Ho) is a dominating orbit type in W , then there exist at least
|G/Ho|S1 different branches of periodic solutions to the equation (10) bifur-
cating from (αo, 0) (with the limit frequency lβo for some l ∈ N). Moreover,
for each (α, β, u) belonging to these branches of (non-trivial) solutions one has
(Gu) = (Ho) (considered in the space W ).

Remark 5. (i) It is usually the case that there are more than one dominating
orbit types in W contributing to the lower estimate of all bifurcating branches
of solutions.

(ii) In addition, if there is also a coefficient nK 6= 0 such that (K) is not a
dominating orbit type, but nH = 0 for all dominating orbit types (H) such
that (K) < (H), then we can also predict the existence of multiple branches
by analyzing all the dominating orbit types (H) larger than (K). However,
the exact orbit type of these branches (as well as the corresponding estimate)
can not be determined precisely.
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5. Computation of the Local Γ×S1-invariant. To apply Theorem 4 to classify
symmetries of periodic solutions to concrete symmetric FDE’s, we use a sequence of
reductions that allows us to establish an effective formula for computing/estimating
ω(λo).

5.1. Linearization of the Problem. Assume δ, ρ and Ω are chosen as described
in subsection 4.5 (cf. (21)) and define

ς̃(λ, u) = |λ − λo|(‖u‖ − ρ) + ‖u‖ +
δ

2
ρ, (λ, u) ∈ Ω.

(cf. (22)). It is clear (cf. (23)) that Fς and Feς are homotopic by an Ω-admissible
(linear) homotopy, thus

G-Deg (Fς , Ω) = G-Deg (Feς , Ω). (26)

Notice that for |λ − λo| ≤ δ
4 and ‖u‖ ≤ ρ,

ς̃(λ, u) = ‖u‖ +
δ

2
ρ − |λ − λo|(ρ − ‖u‖) ≥ δ

2
ρ − δ

4
ρ =

δ

4
ρ > 0.

Put

Ω1 :=
{
(λ, u) ∈ R2

+ × W : ‖u‖ < ρ,
δ

4
< |λ − λo| < δ

}
. (27)

By excision property of the G-equivariant degree,

G-Deg (Feς , Ω) = G-Deg (Feς , Ω1). (28)

Define F̃ : Ω1 → R ⊕ W by

F̃(λ, u) := (ς̃(λ, u), u − DuF(λ, 0)u), (λ, u) ∈ Ω1. (29)

By standard linearization argument (cf. (26)),

G-Deg (Feς , Ω1) = G-Deg (F̃, Ω1) = G-Deg (F̃, Ω) = G-Deg (Fς , Ω). (30)

5.2. Isotypical Decomposition of W . We start with the following

Remark and Definition 5. For any complex Γ-representation U and l = 1, 2, . . . ,
define a Γ × S1-action on U by

(γ, z)w = zl · (γw), (γ, z) ∈ Γ × S1, w ∈ U,

where ‘·’ is the complex multiplication. This real Γ × S1-representation is denoted
by lU . Moreover, if U is a complex irreducible Γ-representation, then lU is a real
irreducible Γ × S1-representation.

It is easy to observe that the S1-action on W induces the following S1-isotypical
decomposition of the space W

W = V ⊕
∞⊕

l=1

Wl, (31)

where V = WS1

is the subspace of the constant functions in W and

Wl = {eilt(xn + iyn) : xn, yn ∈ V }, l = 1, 2, . . .

The subspaces V and Wl, l = 1, 2, . . . , are Γ-invariant and Wl, as a complex Γ-
representation, is isomorphic to V c.

Keeping in mind the notations introduced in Remark and Definition 5, observe
that the real Γ× S1-representation l(V c) is equivalent to the Γ× S1-representation
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Wl. Thus, the isotypical decomposition (12) of V c induces, for every l = 1, 2, . . . ,
the corresponding Γ × S1-isotypical decomposition

Wl = V0,l ⊕ V1,l ⊕ · · · ⊕ Vs,l, (32)

where Vj,l is the isotypical component modeled on the Γ×S1-irreducible representa-
tion Vj,l := l(Uj). On the other hand, (11) gives the Γ×S1-isotypical decomposition
of V (here S1 acts trivially). Consequently, we have the following isotypical decom-
position of W :

W = V0 ⊕ · · · ⊕ Vr ⊕
⊕

j,l

Vj,l. (33)

For every j = 0, 1, . . . , s and l = 0, 1, 2, . . . , define

aj,l(λ) := Id − (L + K)−1
[
K + 1

β
DuNf(α, β, 0)

] ∣∣∣∣
Vj,l

, λ = α + iβ, (34)

where |λ − λo| ≤ δ.
Using the same argument as in [22], we obtain that

aj,l(λ) = 1
ilβ

△α,j (ilβ), j = 0, 1, 2, . . . , s (35)

and

aj,0(λ) = − 1

β
Dxf(α, 0)|Vj

, j = 0, 1, . . . , r. (36)

5.3. Computation of G-Deg (F̃, Ω1): Reduction to the Product Formula.
Put

Wo :=

∞⊕

l=1

Wl

(cf. (31)). By applying the standard finite-dimensional reduction, we can assume
without loss of generality that Wo is finite-dimensional. Also, without loss of gen-
erality one can assume that Ω1 = B × Ωo, where B stands for the unit ball in V
and

Ωo = Ω1 ∩ (R2 ⊕ Wo). (37)

Consider two operators F := − 1
βo

Dxf(αo, 0) : V → V (cf. (36)), which is clearly

Γ-equivariant, and Fo : Ωo → R ⊕ Wo, defined by

Fo(λ, uo) = (ς̃(λ, uo), uo − DuF(λ, 0)uo), (λ, uo) ∈ Ωo.

It is easy to verify that the product map F × Fo is homotopic to (F̃, Ω1) by a
Γ × S1-equivariant Ω1-admissible homotopy, therefore

G-Deg (Fς , Ω) = G-Deg (F̃, Ω1) = G-Deg (F × Fo,B × Ωo)

(cf. (30)). By applying multiplicativity property of the equivariant degree (cf.
Proposition 3), we obtain that

G-Deg (F × Fo,B × Ωo) = Γ-Deg (F,B) · G-Deg (Fo, Ωo). (38)
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5.4. Computation of Γ-Deg (F,B). For every negative eigenvalue µ of the linear
Γ-equivariant operator F, which is clearly a positive eigenvalue of the operator
Dxf(αo, 0), consider the Γ-isotypical decomposition of the eigenspace E(µ)

E(µ) = E0(µ) ⊕ E1(µ) ⊕ · · · ⊕ Er(µ),

where the component Ei(µ) is modeled on the irreducible Γ-representation Vi. Put

mi(µ) := dim REi(µ)/dim RVi. (39)

Let σ+ denote the set of all negative eigenvalues of F. Take µ ∈ σ+ and suppose
E(µ) contains an isotypical component Ei(µ) modeled on Vi. Denote by degVi

the
Γ-equivariant degree of the operator −Id : Vi → Vi on the unit ball in Vi. Then, by
multiplicativity property of the Γ-equivariant degree (in the case without parameter
(see [23])), we obtain (cf. (39)):

Γ-Deg (F,B) =
∏

µ∈σ+

r∏

i=0

(
degVi

)mi(µ)

, (40)

where the multiplication is taken in the Burnside ring A(Γ) (cf. formulae (3) and
(4)).

5.5. Computation of G-Deg (Fo, Ωo). Define F̃o : Ωo → R ⊕ Wo (cf. (37) and
(27)) by

F̃o(λ, uo) := (|λ|(‖uo‖ − ρ) + ‖uo‖ + 1, a(λ)uo) ,

where a(λ) := a
(
λo + (λ−λo)δ

2|λ−λo|

)
and a(λ) : Wo → Wo is given by (20) (recall, Wo

is assumed to be finite-dimensional, see subsection 5.3). By excision and homotopy
properties of the equivariant degree,

G-Deg (Fo, Ωo) = G-Deg (F̃o, Ωo).

To compute the latter degree, consider the Γ × S1-isotypical decomposition

Wo =
⊕

j,l

Vj,l.

Then, we have the following decomposition of the map a with respect to this rep-
resentation

a(λ) =
⊕

j,l

aj,l(λ),

where aj,l(λ) := a(λ)|Vj,l
(see (35)).

Define

Ωj,l :=
{

(λ, v) ∈ R2
+ × Vj,l : ‖v‖ < ρ,

δ

4
< |λ − λo| < δ

}
,

and F̃j,l : Ωj,l → R ⊕ Vj,l by

F̃j,l(λ, v) := (|λ|(‖v‖ − ρ) + ‖v‖ + 1, aj,l(λ)v) , (λ, v) ∈ Ωj,l.

By applying the Splitting Lemma, we obtain that

G-Deg (F̃o, Ωo) =
∑

j,l

G-Deg (F̃j,l, Ωj,l). (41)

On the other hand, define

Oj,l = {(t, v) ∈ R ⊕ Vj,l :
1

2
< ‖v‖ < 2, −1 < t < 1},
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and the so-called basic map b : Oj,l → Vj,l on Vj,l, given by

b(t, v) = (1 − ‖v‖ + it) · v, (t, v) ∈ Oj,l. (42)

Then, using (35) and the standard argument, we obtain (cf. [23] for the computation
of crossing numbers, [21]-[22] for the reduction to the basic maps)

G-Deg (F̃j,l, Ωj,l) = tj,l(αo, βo) degVj,l
, (43)

where degVj,l
:= G-Deg (b,Oj,l) and tj,l(αo, βo) is the Vj,l-isotypical crossing number

of (αo, 0) corresponding to iβo (see Definition 4 and (16)).

Remark 6. Notice that (41) may contain a large number of (j, l)-summands de-
pending on a Lerray-Schauder approximation. However, not all of them are essen-

tial. By Remark 3 and formula (43), G-Deg (F̃j,l, Ωj,l) = 0 for all l such that ilβo

is not a characteristic root of (13) at the stationary point (αo, 0). Therefore, we
know in advance exactly which degVj,l

may contribute to the non-triviality of (41).

Consequently, we obtain

G-Deg (Fo, Ωo) =
∑

j,l

tj,l(αo, βo) degVj,l
, (44)

where l runs over “reasonable” positive integer values.

Combining (44) with (40), we obtain the following result:

G-Deg (F̃, Ω) =
∏

µ∈σ+

r∏

i=0

(
degVi

)mi(µ)

·
∑

j,l

tj,l(αo, βo) degVj,l
, (45)

where j = 0, 1, . . . , s and l runs over positive integers such that ilβo is a character-
istic root of (13) at the stationary point (αo, 0).

6. Symmetric Configurations of Identical Oscillators as
Γ-symmetric FDEs.

6.1. The Model. Consider a network of n identical cells (for example, being chem-
ical oscillators) coupled symmetrically by diffusion between certain selected cells.
Denote by xj(t), the concentration of the chemical substance in the j-th cell. As-
sume that the coupling is taking place between adjacent cells connected by the edges
of a regular polygon or polyhedron, describing the geometrical configuration of this
network. More precisely, the coupling strength between cells is represented by a
function h : R → R, in general, nonlinear, which is continuously differentiable and
h(x) 6= 0 for all x ∈ R. Since the coupling strength between the adjacent j-th and
i-th cells may be nonlinear as well, and depending on the concentrations xj and xi,
we assume that it is of the form

h(xj(t))
(
g(α, xj

t ) − g(α, xi
t)

)
.

This term is supported by the ordinary law of diffusion, which simply means that
the chemical substance moves from a region of greater concentration to a region
of less concentration, at the rate proportional to the gradient of the concentration.
Suppose also that the kinetic law obeyed by the concentration xj in every cell is
described by a certain functional f .

In summary, assume that
(H1) g : R × C([−τ, 0]; R) → R, τ > 0, is a continuously differentiable map such

that g(α, 0) = 0 for all α ∈ R;
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(H2) f : R × C([−τ, 0]; R) → R is continuously differentiable;
(H3) f(α, 0) = 0 for all α ∈ R.

A dynamical system describing such a configuration, is of the type

d

dt
x(t) = F (α, xt) + H(x(t)) · C(G(α, xt)), (46)

where

x =




x1

x2

...
xn


 , xt =




x1
t

x2
t

...
xn

t


 , F (α, xt) =




f(α, x1
t )

f(α, x2
t )

...
f(α, xn

t )


 , G(α, xt) =




g(α, x1
t )

g(α, x2
t )

...
g(α, xn

t )


 ,

H(x) =




h(x1)
h(x2)

...
h(xn)


 , x · y =




x1

x2

...
xn


 ·




y1

y2

...
yn


 =




x1y1

x2y2

...
xnyn


 ,

and C is a symmetric n × n-matrix.
Clearly, by (H3), (α, 0) is a stationary point of (46).
Suppose in addition, that

(H4) The geometrical configuration of these cells has a symmetry group Γ. The
group Γ permutes the vertices of the related polygon or polyhedron, which
means that it acts on Rn by permuting the coordinates of the vectors x ∈ Rn,
and C commutes with this action.

Clearly, the system (46) is symmetric with respect to the Γ-action on V := Rn.
In this way, we are dealing here with a Γ-symmetric system of FDEs.

6.2. Examples. In the subsequent examples, we discuss concrete configurations
of such identical cells coupled symmetrically by diffusion between adjacent cells,
modeled on the regular n-gon, tetrahedron, octahedron, and dodecahedron. In each
case, the symmetry group Γ of the system is composed of the orthogonal symmetries
corresponding to the given n-gon or polyhedron. To simplify the presentation, in the
case of symmetry groups modeled on the above polyhedrons, we consider only those
orthogonal symmetries T for which detT = 1. This assumption is not essential, and
in the general case, similar results can be easily derived based on the computations
here. We refer the reader to our paper [3] for applied aspects related to these
configurations.
Dihedral Configurations of Identical Oscillators. Consider a ring of n iden-
tical oscillators, where the interaction takes place only between the neighboring
oscillators. In this case, the matrix C is of the type

C =




c d 0 . . . 0 d
d c d . . . 0 0
...

...
...

. . .
...

...
d 0 0 . . . d c


 . (47)

It is easy to check that the system (46) is symmetric with respect to the action
of the dihedral group Dn.
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Tetrahedral Configuration of Identical Oscillators. Consider four identical
inter-connected oscillators having exactly the same linear interaction between all
the other oscillators. In this case, the matrix C is of the type

C =




c d d d
d c d d
d d c d
d d d c


 (48)

It is also clear that this system of differential equations (46) is symmetric with
respect to the tetrahedral group T = A4.
Octahedral Configuration of Identical Oscillators. Suppose that the identical
cells (oscillators) are arranged in a configuration corresponding to the vertices of
a cube. Assume that the interaction takes place between those oscillators that are
connected by an edge of the cube. This configuration leads to the system of eight
equations with the matrix C of the type

C =




c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d
d 0 d c d 0 0 0
0 0 0 d c d 0 d
d 0 0 0 d c d 0
0 d 0 0 0 d c d
0 0 d 0 d 0 d c




. (49)

It is clear that in this case the system (46) is symmetric with respect to the octa-
hedral symmetry group O which is isomorphic to the symmetric group S4.
Icosahedral Configuration of Identical Oscillators. Consider an arrangement
of identical oscillators based on the inter-connections given by the edges of a do-
decahedron. It is clear that the group of symmetries of the dodecahedron, which
is the icosahedral group I, is the symmetry group of the system (46). Let us point
out that the icosahedral group I is isomorphic to the alternating group A5. In this
case, we have the system (46) composed of 20 equations, where the matrix C is of
the type

C =

2
666666666666666666666666666666664

c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0
d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d

0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d

0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d

0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c

3
777777777777777777777777777777775

. (50)

Of course, other configurations of identical oscillators could also be considered,
for example, those based on octahedron, icosahedron or other higher dimensional
polyhedra.
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6.3. Characteristic Equation for a Symmetric Configuration of Identical
Oscillators. Consider the linearization of the system (46) at (α, 0), i.e.

d

dt
x(t) = DxF (α, 0)xt + h(0)C(DxG(α, 0)xt).

Since DxG(α, 0) is diagonal and C has constant coefficients, CDxG(α, 0) =
DxG(α, 0)C. Put K(α) := h(0)DxG(α, 0), i.e. the linearized system (46) can
be written as

d

dt
x(t) = DxF (α, 0)xt + K(α)Cxt.

A number λ ∈ C is a characteristic root of (13) at the stationary solution (α, 0) ∈
R ⊕ V if there exists a nonzero vector z ∈ V c such that

△α(λ)z := λz − DxF (α, 0)(eλ·z) − K(α)C
(
eλ·z

)
= 0. (51)

Since the matrix C is symmetric, it is completely diagonalizable by using a basis
composed of its eigenvectors. Thus, suppose that σ(C) = {ξ1, ξ2, . . . , ξk} is the set
of all eigenvalues of C. Then (cf. (13) and (51)), we have the following

Proposition 4. Given system (46), a number λ ∈ C is a characteristic root of (13)
at the stationary solution (α, 0) for the system (46) if and only if

detC △α (λ) =

k∏

i=1

[
λ − Dxf(α, 0)eλ· − ξiK(α)eλ·

]
= 0,

where ξ1, ξ2, . . . , ξk are the eigenvalues of the matrix C.

Since the characteristic operator △α(λ) : V c → V c is Γ-equivariant, its eigenspaces
are Γ-invariant.

Remark 7. To be compatible with the general setting described in section 4, as-
sume that system (46) satisfies the corresponding analogs of conditions (A4) and
(A5), which is referred to as (H5) and (H6).

6.4. Applications of the Equivariant Degree. By following the steps, which
were explained in section 4, associate with the point (αo, βo) a local bifurcation
invariant ω(αo, βo, 0) := G-Deg (Fς , Ω), where G = Γ×S1, Ω ⊂ R2

+ ×W is an open

neighborhood of (αo, βo, 0) defined by (21), W := H1(S1; V ), and Fς : R2
+ × W →

R⊕W is the mapping associated with the bifurcation problem (46) (cf. (23)). This
bifurcation invariant can be evaluated by applying the standard steps, which were
explained in subsections 5.3–5.5.

Consider, for instance, the argument given in subsection 5.4. Put A(αo) :=
DxF (αo, 0) + K(αo)C : V → V . It is easy to check that a number µ belongs to the
spectrum σ(A(αo)) if and only if for some eigenvalue ξ of the matrix C we have

µ = Dxf(αo, 0)(1) + k(αo)ξ,

where k(αo) = h(0)Dxg(α, 0)(1) and Dxf(αo, 0)(1) are constants (here,
1 ∈ C([−τ, 0]; R) is the constant function). Consequently, we obtain

σ(A(αo)) =
{
µi : µi := Dxf(αo, 0)(1) + k(αo)ξi, i = 1, 2, . . . , k

}
.

Let σ+(A(αo)) be the set of all positive eigenvalues of A(αo). Then (cf. (40)),
formula (45) is applied with σ+ replaced by σ+(A(αo)).

Under the assumptions (H1)-(H6), Theorem 4 can be applied.



944 Z. BALANOV, M. FARZAMIRAD, W. KRAWCEWICZ AND H. RUAN

7. Hopf Bifurcation Results for Concrete Configurations of Identical Os-
cillators. In the previous sections, we outlined a general approach to studying
the symmetric Hopf bifurcation occuring in (symmetric) FDEs. This approach is
applied to a particular case of system (46) in the presence of specific finite sym-
metry groups. Our final results are presented in tables containing, in particular,
information about a minimal number of bifurcating solutions and their symmetries.

7.1. Model and Equivariant Degree Data.

7.1.1. Model. We consider the following system of delayed differential equations

d

dt
x(t) = −αx(t) − αH(x(t)) · C(G(x(t − 1))), (52)

where

x =




x1

x2

...
xn


 , H(x) =




h(x1)
h(x2)

...
h(xn)


 , G(x) =




g(x1)
g(x2)

...
g(xn)


 ,

and the product ‘·’ is defined on the vectors by component-wise multiplication,
where

(G1) The functions h, g : R → R are continuously differentiable, h(t) 6= 0 for all
t ∈ R, g(0) = 0, g′(0) > 0 and C is a symmetric n×n-matrix, which commutes
with an orthogonal Γ-representation (Γ is finite).

Therefore, conditions (H1)-(H4) are satisfied for system (52).

7.1.2. Characteristic Values. To specify conditions (H5)-(H6), we consider the lin-
earization of the system (52) at (α, 0):

d

dt
x(t) = −αx(t) − αh(0)g′(0)C(x(t − 1)), (53)

and put
η := h(0)g′(0). (54)

Thus, the condition (H5), which is an analog to (A4) for the system (46), amounts
to

k∏

i=1

[
− α − αηξi

]
6= 0, (55)

where ξ1, ξ2, . . . , ξk are the eigenvalues of the matrix C. Moreover,

△α(λ) = (λ + α)Id + αηe−λC

(cf. (51)). Therefore, by Proposition 4, a number λ ∈ C is a characteristic root of
(13) at the stationary point (αo, 0) if and only if

detC △α (λ) =
k∏

i=1

[
λ + α + αηξie

−λ
]

= 0. (56)

To find a root λ ∈ C of the system (56), consider the following equation

λ + α + αηξoe
−λ = 0, (57)

where ξo is an eigenvalue of C. Obviously, ξo 6= 0 (otherwise λ = −α ∈ R can not
be purely imaginary). A similar reason forces

α 6= 0. (58)
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The equation (57) can be written as the system
{

u + α + αηξoe
−u cos v = 0

v − αηξoe
−u sin v = 0,

(59)

where λ = u + iv.
Since we are interested in purely imaginary characteristic roots λ = iβo, by

substituting u = 0 and v = β into the system (59), we obtain
{

α + αηξo cosβ = 0

β − αηξo sin β = 0,

which can be easily transformed to
{

cosβ = − 1
ηξo

sin β = 1
αηξo

β.
(60)

If
∣∣∣ 1
ξoη

∣∣∣ < 1, then there exists βo ∈ (0, π] such that cosβo = − 1
ηξo

, and, in addition,

it is possible to find a unique αo = −βo cotβo. Therefore, we obtain a pair of
solutions (αo, βo) to (60) so that (H6) is satisfied.

In what follows we always assume that
(G2) | 1

ξη
| < 1 for all non-zero ξ ∈ σ(C).

Notice that under the assumption (G2), the condition (H5) is also satisfied for
αo 6= 0 (cf. Remark 7 and condition (58)).

7.1.3. Crossing Numbers. In order to determine the value of the crossing number
associated with a purely imaginary characteristic root λo = iβo, we compute (by
implicit differentiation) d

dα
u(α). By differentiating the system (59) with respect to

α, {
u′(1 − αηξoe

−u cos v) − v′(αηξoe
−u sin v) = −ηξoe

−u cos v − 1

u′(αηξoe
−u sin v) + v′(1 − αηξoe

−u cos v) = ηξoe
−u sin v,

which, by (59), leads to
{

u′(1 + u + α) − v′v = u+α
α

− 1

u′v + v′(1 + u + α) = v
α
.

(61)

By substituting α = αo, u = 0 and v = βo into the system (61), we obtain
{

u′(1 + αo) − v′βo = 0

u′βo + v′(1 + αo) = βo

αo
.

(62)

The system (62) yields

d

dα
u|α=αo

=
β2

o

αo((αo + 1)2 + β2
o)

, (63)

thus

sign
d

dα
u|α=αo

= sign αo. (64)

Consider a non-zero eigenvalue ξd ∈ σ(C). Then, by condition (G2), there al-
ways exists a purely imaginary characteristic root iβd, βd > 0, of the characteristic
equation (56) for α = αd, where

cosβd = − 1

ηξd

, αd =
βd

ηξd sinβd

.
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In what follows, we assume that
(G3) h(0) > 0.

Consequently (see formula (54) and condition (G1)), η > 0. Thus, signαd =
sign (ηξd). Therefore, using Definition 4 and the fact that detC△α (λ) is an analytic
function in λ (cf. [16]), we have:

if αd > 0 then tj,1(αd, βd) = −mj(iβd), (65)

if αd < 0 then tj,1(αd, βd) = mj(iβd). (66)

7.1.4. Positive Eigenvalues. We use the same notations as in section 6. We have
A(α) = −αId − αh(0)g′(0)C = −αId − αηC, so

σ(A(α)) =
{

µ : µ = −α − αηξ, ξ ∈ σ(C)
}

.

In order to determine all the positive eigenvalues of the operator A(α), we divide
the spectrum σ(C) into two parts σa(C) and σb(C):

σa(C) = {ξ ∈ σ(C) : −1 < ηξ} , (67)

σb(C) = {ξ ∈ σ(C) : ηξ < −1} . (68)

By condition (G2), 1+ηξ 6= 0 for all eigenvalues ξ of C, thus σ(C) = σa(C)∪σb(C).
Put

Σ(C) :=

{
σa(C) if α < 0,

σb(C) if α > 0.
(69)

Then, by (67)-(68), (58) and condition (G3), the set σ+(A(α)) of all positive eigen-
values of A(α) can be identified as

σ+(A(α)) = {µ : µ = −α(1 + ηξ), ξ ∈ Σ(C)}. (70)

7.2. Equivariant Degree: First Coefficients. The local bifurcation invariant
ω(λo) defined by (24) provides a complete description of the symmetric Hopf bi-
furcation at (αo, 0), i.e. (see Theorem 4(i)) every non-zero coefficient nHo

in (25)
indicates a “topological obstruction” resulting in the existence of a branch of non-
trivial periodic solutions to (52) of the orbit type at least (Ho). Although, the entire
value of the degree Γ×S1-Deg (Fς , Ω) should be considered as the equivariant invari-
ant classifying the symmetric Hopf bifurcation, in order to simplify the exposition
(by reducing the number of additional cases) we will restrict our computations to
the coefficients nHo

= nLϕ,1 , which are called the first coefficients, and we denote
the corresponding part of the equivariant degree (24) by Γ × S1-Deg (Fς , Ω)1.

It follows immediately from formula (45) that under the assumptions (G1)-(G3)
and (58) (which we always assume), one has

ω(λo)1 = Γ×S1-Deg (Fς , Ω)1 =
∏

µ∈σ+(A(αo))

r∏

i=0

(
degVi

)mi(µ)

·
s∑

j=0

tj,1(αo, βo) degVj,1
,

(71)
and Theorem 4 can be applied.

For convenience, we describe below the scheme one has to follow in order to
compute ω(λo)1:

(a) Take a non-zero ξo ∈ σ(C). By condition (G2), one can find a solution (αo, βo)
to system (60) so that (αo, 0) is an isolated center of (52) and detC△αo

(iβo) =
0.
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(b) Given a real orthogonal Γ-representation V , take its complexification V c and
consider the isotypical decomposition (12).

(c) Using formula (32), define on V c a Γ × S1-action with l = 1 and denote the
obtained (real) representation by W1. Then, formula (12) induces a (real)
Γ × S1-isotypical decomposition:

W1 = V0,1 ⊕ V1,1 ⊕ · · · ⊕ Vs,1, (72)

where Vj,1 is modeled on Vj,1.
(d) Put E(iβo) := ker△αo

(iβo) and Ej,1(iβo) := E(iβo) ∩ Vj,1.
(e) Evaluate mj(iβo) := dimEj,1(iβo)/dimVj,1.
(f) Evaluate Vj,1-crossing numbers of (αo, 0) according to (65)-(66):

tj,1(αo, βo) = −sign (αo) · mj(iβo).

(g) For all j = 0, 1, . . . , s such that mj(iβo) 6= 0, take degVj,1
from the list of basic

degrees provided by [3].
(h) Identify σ+(A(αo)) (see (67)-(70) with α replaced by αo).
(i) For each µ ∈ σ+(A(αo)), choose the corresponding ξ ∈ σ(C) (cf. (70)) and let

Ẽ(ξ) be the eigenspace corresponding to ξ. Then the isotypical decomposition
(11) yields

Ẽ(ξ) = Ẽ0(ξ) ⊕ Ẽ1(ξ) ⊕ · · · ⊕ Ẽr(ξ).

(j) Compute mi(µ) := dim Ẽi(ξ)/dimVi.
(k) For each i = 0, 1, . . . , r such that mi(µ) 6= 0, take degVi

(see subsection 5.4)
from the list of the degrees provided by [3].

(l) Use the multiplication tables for · : A(Γ) × A1(Γ × S1) → A1(Γ × S1) given
in [3] to compute (71).

We are now in a position to discuss concrete examples of the system (52), ad-
mitting dihedral, tetrahedral, octahedral and icosahedral group symmetries.

7.3. Usage of Maple c© Routines. By putting together all the elements discussed
in the previous subsection, we can compute for the system (52) the value of the
invariant Γ × S1-Deg (Fς , Ω)1 according to the computational formula (71). Then,
by applying Theorem 4 and Remark 5, we can classify the bifurcating branches
according to their symmetries. For each of the considered group Γ, we assume that
all the real (resp. complex) irreducible Γ-representations Vj (resp. Uj) are listed in
a specific order (see [3]). This order, as well as the notations for twisted subgroups,
are compatible with the data format that should be used in the Maple c© package
for the computation of the equivariant degree.

For a non-zero ξo ∈ σ(C), consider the corresponding isolated center (αo, 0) with
a purely imaginary characteristic value iβo. Then, the (real) eigenspace Eo := E(ξo)
is also the eigenspace of the operator F̄ (defined for (αo, βo)) associated to the
eigenvalue µo = −αo − αoηξo.

In all the examples considered in the sequel, the following condition is satisfied.
Condition (R)

(i) Decomposition (11) contains isotypical components modeled only on irre-
ducible representations of real type (in particular (cf. (11) and (12)), r = s).

(ii) For each ξo ∈ σ(C) there exists a single isotypical component Vj in (11) which
(completely) contains the eigenspace E(ξo).
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Remark and Notation 6. By technical reasons related to the usage of Maple c©

routines, we present the computational results in such a way that the Γ-isotypical de-
composition (11) corresponds to a complete list of the irreducible Γ-representations
V0, V1, . . . , Vr given in [3], i.e. we do not exclude the possibility that Vj = {0} for
some j. Also, given ξo ∈ σ(C) and assuming Condition (R) to be satisfied, in what
follows we use the notation ξj

o to indicate a component Vj in (11) containing E(ξo).

In order to compute Γ-Deg(F̄,B), we need to organize the equivariant spectral
data. As is well-known, for any degV ∈ A(Γ) one has (degV)2 = (Γ). Therefore, we
associate with σ+(A(αo)) the sequence (ε0, ε1, . . . , εr) defined by

εi =
∑

µ∈σ+(A(αo))

mi(µ) (mod 2).

Then, the formula (40) can be reduced to

Γ-Deg(F̄,B) =

r∏

i=0

(
degVi

)εi

.

On the other hand, assuming the condition (R) to be satisfied, take ξj
o ∈ σ(C) and

the pair (αo, βo) associated with it. Then, tj,1(αo, βo) = −sign (αo) ·mj(iβo), while
tj′,1(αo, βo) = 0 for j 6= j′. Thus, (71) takes the following form:

ω(αo, βo)1 = Γ × S1-Deg (Fς , Ω)1 =

r∏

i=0

(
degVi

)εi

·
(
− sign (αo)

)
mj(iβo) degVj,1

.

(73)
In this way, the Maple c© input data for the computation of the invariant ω(αo, βo)1
consists of the two sequences:

{ε0, ε1, . . . , εr}, {t0, t1, . . . , tr},
where tj = tj,1(αo, βo), j = 0, 1, . . . , r, and we can use the Maple c© package as
follows:

ω(αo, βo)1 = showdegree [Γ](ε0, ε1, . . . , εr, t0, t1, . . . , tr).

For simplicity, we assume that signαo < 0 (for signαo > 0, the value of ω(αo, βo)1
can be obtained simply by reversing its sign (cf. (65)-(66) and (71))).

Remark 8. In general, it might happen that there are several eigenvalues ξj
o corre-

sponding to the same isotypical component Vj . However, by formula (73), they con-
tribute equivalently in the value of ω(αo, βo)1, meaning that in this case, ω(αo, βo)1
only depends on the isotypical component Vj associated with ξj

o and the sequence
(ε0, ε1, . . . , εr). Therefore, we present the results in a form of a matrix

ξj
o εi1 , εi2 , . . . , εim

ω(αo, βo)1 No. of branches

where in the sequence {εi1 , εi2 , . . . , εim
} ⊂ {ε0, ε1, . . . , εr} we only list those εj

which can realize the value 1.

7.4. Hopf Bifurcation in a System with Dihedral Symmetries. Consider
here the system (52) with the matrix C of the type (47). This system is symmetric

with respect to the dihedral group Γ = Dn acting on V = Rn. Denote by ρ := e
2π
n

i

the generator of Zn and κ :=

[
1 0
0 −1

]
the operator of complex conjugation.

Notice that ρ acts on a vector x = (x0, x1, . . . , xn−1) by sending the k-th coordinate
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of x to the k + 1 (mod n) coordinate, and κ acts by reversing the order of the
components of x.

In the case n is odd, the Dn-isotypical components of V are: V0, Vi, 1 ≤ i <
n
2 , where V0 is equivalent to the trivial one-dimensional representation V0, Vi is

equivalent to the irreducible two-dimensional representation Vi defined on R2 = C
by γz := γi · z, γ ∈ Zn, z ∈ C, 1 ≤ i < n

2 , κz := z (here “·” stands for the complex
multiplication).

In the case n is even, we have additionally Vn
2
+1, which is equivalent to the one-

dimensional representation Vn
2
+1 (cf. [3]) given by the homomorphism d : Dn →

Z2 ⊂ O(1) with kerd = Dn
2
. Obviously, Condition (R) is satisfied and each Vi is an

eigenspace of the matrix C. Moreover, for 0 ≤ i < n
2 , the corresponding eigenvalue

is

ξi := c + 2d cos
i2π

n
. (74)

In addition, for n even, the eigenspace Vn
2
+1 corresponds to the eigenvalue

ξn
2
+1 = c − 2d. (75)

It seems to be a difficult task to completely evaluate Dn × S1-Deg (Fς , Ω)1 for
an arbitrary n. However, in the case of the Hopf bifurcation with the symmetry
group Dn, it is possible to determine the coefficients nHo

of the invariant Dn ×
S1-Deg (Fς , Ω)1 =

∑
(H) nH(H) corresponding to the dominating orbit types (Ho)

(cf. Definition 5). For this purpose, we need the following

Lemma 2. Let V and Vi be the Dn-representations described above and let (Ho)
be a dominating orbit type in W1 (cf. Definition 5 and (32)). Then, the coeffi-
cient of (Ho) in degVi

·(Ho) is different from zero for all i (here ”·” stands for the
multiplication described in Proposition 2).

Proof. By Remark 4 (ii), the dominating orbit types in W1 can be easily recognized
from lattices of orbit types in the irreducible Dn × S1-representations appearing in
the isotypical decomposition of W1:

W1 =
⊕

Vj,1

where Vj,1 is the isotypical component modeled on the Dn × S1-irreducible repre-
sentation Vj,1. For each 0 < j < n

2 , put

h′ = gcd(j, n), m′ =
n

h′ . (76)

From the lattices of orbit types provided by [3], all possible choices of (Ho) are

(c1) (Z
tj
n ), for 0 < j < n

2 ;
(c2) (Dh′), (Dz

h′) if m′ is odd;
(c3) (Dd

2h′) if m′ is even;

(c4) (Dd̂
2h′) if m′ is even but 4h′ ∤ n;

(c5) (D̃d
2h′) if m′ is even and 4h′ | n;

(c6) (Dd
n) , for j = n

2 + 1 (if n is even).

On the other hand, according to the list of basic degrees given in [3], degVi
=

δ(Dn)+
∑

α(K), where α ∈ Z, (K) 6= (Dn) and δ ∈ {−1, 1} depending on the irre-
ducible representation Vi. Since (Dn) · (Ho) = (Ho) in any case, the only possibility
for the coefficient of (Ho) in degVi

·(Ho) to be zero is some of the (K) · (Ho) con-
tains a non-trivial term α′(Ho) and a cancelation of the coefficients of (Ho) occurs.
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Suppose that Ho = Kϕ
o , then the product (K) · (Kϕ

o ) contains α′(Ho) with α′ 6= 0
only if (K) > (Ko). For convenience, given a dominating orbit type (Ho) in W1, we
refer to (K) satisfying the conditions:

(i) (K) appears with a non-trivial coefficient in a degVi
, for some i;

(ii) (K) 6= (Dn);
(iii) (K) > (Ko),

as satisfying condition (†) for (Ho).
We look into the following cases.
The case i = 0. We have the one-dimensional trivial representation V0 and

degV0
= −(Dn). Consequently, degV0

·(Ho) = −(Ho) for any dominating orbit type
(Ho).

The case 1 ≤ i < n
2 . Put

h = gcd(i, n), m =
n

h
. (77)

The subcase m is odd. We have

degVi
= (Dn) − 2(Dh) + (Zh). (78)

By (77), it is clear that h < n, so (Zh) 6> (Zn), thus (Zh) does not satisfy condition
(†) for the case (c1) of (Ho). Also, since (Zh) 6> (Dk) for any k, (Zh) does not satisfy
condition (†) for the cases (c2)-(c6) as well. Thus (Zh) · (Ho) does not contain a
non-trivial (Ho)-term.

Also, by the fact that h < n, clearly (Dh) 6> (Zn) and (Dh) 6> (Dn), so (Dh)
does not satisfy condition (†) for the cases (c1) and (c6) of (Ho). For the remaining

possibilities of (Ho), using the fact that (Dh) > (Dk) if k | h | n and (Dh) > (D̃k)
if 2k | h | n and 2h ∤ n, (c2)-(c5) yield the following results for (Dh): (Dh) satisfies
condition (†) for

(r1) (Dh′), (Dz
h′) if h′ | h | n and m′ is odd;

(r2) (Dd
2h′) if 2h′ | h | n (m′ is even);

(r3) (Dd̂
2h′) if 2h′ | h | n but 4h′ ∤ n (m′ is even);

(r4) (D̃d
2h′) if 4h′ | h | n and 2h ∤ n (m′ is even).

Notice that all the possible cases for (Ho) = (Kϕ
o ) listed in (r1)-(r4) force (Ko) =

(Dk) for an appropriate k. Thus, the (Ho)-coefficient no in the product (Dh) · (Ho)
can be computed via the formula (7) as follows

no =
n(Dk, Dh)|W (Dh)|n(Ho, Ho)|W (Ho)/S1|

|W (Ho)/S1|
= n(Dk, Dh)|W (Dh)|n(Ho, Ho)

= 1 · |W (Dh)| · 1
= |W (Dh)|. (79)

Combining (79) with the fact that W (Dh) ∼= Z1 in Dn if m is odd, we arrive at
no = 1. Therefore (see (78)),

degVi
·(Ho) = −(Ho) + other terms,

where (Ho) runs over (r1)-(r4).
The subcase m is even. We have

degVi
= (Dn) − (Dh) − (D̃h) + (Zh).
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By the same reason as discussed in the previous subcase, (Zh)·(Ho) does not provide
a non-trivial (Ho)-term.

According to (76) and (77), if h′ | h we immediately have m | m′. Thus, in
the case m is even, m′ has also to be even, which implies that the case (r1) is
excluded for (Dh). However, the remaining cases (r2)-(r4) are still valid for (Dh).
So, combining (79) with the fact that W (Dh) ∼= Z2 in Dn if m is even, we have
(Dh) · (Ho) = 2(Ho) + other terms, where (Ho) is from (r2)-(r4).

Again, by the fact that h < n, (D̃h) 6> (Zn) and (D̃h) 6> (Dn), so (D̃h) does not

satisfy condition (†) for the cases (c1) and (c6) of (Ho). Also, since (D̃h) 6> (Dk) for

any k, (D̃h) does not satisfy condition (†) for the cases (c2)-(c4) of (Ho). Finally,

in the case (c5), (D̃h) satisfies condition (†) for (D̃d
2h′) if and only if 4h′ | 2h | n,

and we will refer to such a case as (c5)’. Namely, (D̃h) satisfies condition (†) for

(c5)’ (D̃d
2h′) if 4h′ | 2h | n, m′ is even and 4h′ | n.

Moreover, under the conditions mentioned in (c5)’, we have the following formula

(cf. (79)) for the (D̃d
2h′)-coefficient no

′ in the product (D̃h) · (D̃d
2h′):

no
′ =

n(D̃2h′ , D̃h)|W (D̃h)|n(D̃d
2h′ , D̃d

2h′)|W (D̃d
2h′)/S1|

|W (D̃d
2h′)/S1|

= n(D̃2h′ , D̃h)|W (D̃h)|n(D̃d
2h′ , D̃d

2h′)

= 1 · |W (D̃h)| · 1
= |W (D̃h)|

Since W (D̃h) ∼= Z2 in Dn, we have under (c5)’ the following: (D̃h) · (D̃d
2h′) =

2(D̃d
2h′) + other terms. Notice that (r4) and (c5)’ can not be satisfied simultane-

ously, therefore
degVi

·(Ho) = −(Ho) + other terms,

where (Ho) runs over (r2)-(r4) and (c5)’.
The case i = n

2 + 1 (if n is even). We have

degVn
2

+1 = (Dn) − (Dn
2
).

By replacing h with n
2 and analyzing the possibility of each condition listed in

(r1)-(r4), we have that (Dn
2
) satisfies condition (†) only for (r2). By (79) and the

fact that W (Dn
2
) ∼= Z2 in Dn, we have (Dn

2
) · (Dd

2h′) = 2(Dd
2h′) + other terms.

Therefore,
degVi

·(Ho) = −(Ho) + other terms,

where (Ho) is from (r2).

As an immediate consequence of Lemma 2, we have

Proposition 5. Assume that the system (52) admits the symmetry group Γ = Dn,
i.e. the matrix C is of type (47), and let the invariant Dn × S1-Deg (Fς , Ω)1 be
defined by (73). Let (Ho) ∈ Vj,1 be a dominating orbit type appearing in degVj,1

with a non-zero coefficient. Then, (Ho) will also appear with a non-zero coefficient
in Dn × S1-Deg (Fς , Ω)1.

Remark 9. In general, an A(Γ)-multiplication in A1(Γ × S1) can lead to a cance-
lation of a maximal (in Φ1(Γ× S1)) conjugacy class. For example, in A1(S4 × S1),
we have (2(S4) − (A4)) · (At

4) = 0. Therefore, it is possible that the conclusion of
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Proposition 5 may not be true for Γ 6= Dn. Thus, in general, it is necessary to
use the complete value of Γ × S1-Deg(Fς , Ω)1 to detect branches of solutions and
classify their symmetries.

We are now in a position to present the following general result (cf. [22]).

Theorem 7. Assume that the system (52) admits the symmetry group Γ = Dn, i.e.
the matrix C is of type (47). Assume also that the system (52) satisfies (G1)-(G3)
and (58) as described in subsection 7.1. Take ξi ∈ σ(C) (cf. (74) and (75)), and
let (αi, βi) ∈ R2

+ satisfy the relations

cos βi = − 1

ηξi

, αi =
βi

ηξi sin βi

,

(cf. subsubsection 7.1.2).
Then there exists a branch of non-constant 2π

β
-periodic∗ solutions to (52) bifur-

cating from (αi, 0) with the “limit period” 2π
βi

(cf. section 4). In addition,

(i) If i = 0, then there exists at least 1 branch of non-constant periodic solutions
with symmetries at least (Dn).

(ii) If 1 ≤ i < n
2 , let h and m be defined as in (77).

(a) If m is odd, then there exist at least 2 branches of non-constant peri-
odic solutions with symmetries at least (Zti

n ), n
h

branches of non-constant
periodic solutions with symmetries at least (Dh), and n

h
branches of non-

constant periodic solutions with symmetries at least (Dz
h);

(b) If m ≡ 2 (mod 4), then there exist at least 2 branches of non-constant peri-
odic solutions with symmetries at least (Zti

n ), n
2h

branches of non-constant

periodic solutions with symmetries at least (Dd
2h), and n

2h
branches of non-

constant periodic solutions with symmetries at least (D
bd
2h);

(c) If m ≡ 0 (mod 4), then there exist at least 2 branches of non-constant peri-
odic solutions with symmetries at least (Zti

n ), n
2h

branches of non-constant

periodic solutions with symmetries at least (Dd
2h), and n

2h
branches of non-

constant periodic solutions with symmetries at least (D̃d
2h).

(iii) If i = n
2 + 1 (for n even), then there exists at least 1 branch of non-constant

periodic solutions with symmetries at least (Dd
n).

(We assume, of course, that each orbit type appearing in the statement is considered
in the setting when it is dominating (cf. Remark 5).)

Proof. Theorem 7 is a direct consequence of Theorem 4, formula (73), the dom-
inating orbit type list (c1)-(c6) in the proof of Lemma 2, Proposition 5 and the
following list of basic degrees provided by [3]:

degV0,1
= (Dn),

degVi,1
=





(Zti
n ) + (Dh) + (Dz

h) − (Zh) ( if m is odd),

(Zti
n ) + (Dd

2h) + (D
bd
2h) − (Zd

2h) ( if m ≡ 2 (mod 4))

(Zti
n ) + (Dd

2h) + (D̃d
2h) − (Zd

2h) ( if m ≡ 0 (mod 4)),

for 1 ≤ i <
n

2
,

degVn
2

+1,1
= (Dd

n) ( if n is even).

∗ We do not assume the period to be minimal.
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Remark 10. The advantage of Theorem 7 rests on the fact that it can be applied to
study the Dn-symmetric Hopf bifurcation phenomena for an arbitrary n. However,
Theorem 7 does not take into account the possible contribution of non-dominating
orbit types. To be more specific, according to formula (73), the complete value of
Dn × S1-Deg(Fς , Ω)1 may contain a non-dominating orbit type (with a non-trivial
coefficient), which is not smaller than any dominating orbit types appearing in
degVj,1

. The appearance of a such a non-dominating orbit type contributes to at
least 1 more branch of non-constant periodic solutions.

Below, we discuss 3 examples of dihedral groups Dn (n = 3, 4, 5), for which we
obtain a classification of the symmetric Hopf bifurcation, in terms of the invariant
ω(αj , βj)1 = Dn × S1-Deg(Fς , Ω)1, with non-dominating orbit types being taken
into account (for notations see Remark and Notation 6 and [3]).
Hopf Bifurcation with D3 Symmetries. In this case,

V = V0 ⊕ V1, V0 = V0, V1 = V1,

σ(C) = {ξ0
0 = c + 2d, ξ1

1 = c − d}, with each of the eigenvalues∗ ξj
j (j = 0, 1)

corresponding to a pair (αj , βj) such that iβj is a purely imaginary characteristic
root of (56) at the point (αj , 0). The dominating orbit types in W (cf. (31))

are (D3), (Zt
3) := (Zt1

3 ) and (Dz
1). Apply the invariant D3 × S1-Deg(Fς , Ω)1 to

classify the Hopf bifurcation at the point (αj , 0) according to the symmetries of
the corresponding branches. We summarize in Table 1 the topological invariants
ω(αj , βj)1 = D3 × S1-Deg(Fς , Ω)1 corresponding to possible values of (αj , βj) and
variations of σ+(A(αj)) (cf. (67)-(70)), represented by (ε0, ε1).
Hopf Bifurcation with D4 Symmetries. Here,

V = V0 ⊕ V1 ⊕ V3, V0 = V0, V1 = V1, V3 = V3,

σ(C) =
{
ξ0
0 = c + 2d, ξ1

1 = c, ξ3
2 = c − 2d

}
and the dominating orbit types in

W are (D4), (Zt
4) := (Zt1

4 ), (Dd
2), (D̃d

2) and (Dd
4). We summarize in Table 2 the

corresponding results for D4-symmetric Hopf bifurcation.
Hopf Bifurcation with D5 Symmetries. We have

V = V0 ⊕ V1 ⊕ V2, V0 = V0, V1 = V1, V2 = V2,

σ(C) =
{
ξ0
0 = c + 2d, ξ1

1 = c + 2d
√

5−1
4 , ξ2

2 = c − 2d
√

5+1
4

}
and the dominating

orbit types in W are (D5), (Zt1
5 ), (Zt2

5 ) and (Dz
1). We summarize in Table 3 the

corresponding results for D5-symmetric Hopf bifurcation.

7.5. Hopf Bifurcation in a System with Tetrahedral Symmetries. We con-
sider here the system (52) with the matrix C of the type (48), which commutes with
the tetrahedral group Γ = A4-action on the space V = R4. The group A4 acts on
R4 by permuting the coordinates of the vectors in the same way as the symmetries
of a tetrahedron in R3 permute its four vertices. We have (see [3] for notations and
details)

V = V0 ⊕ V3, V0 = V0, V3 = V3,

where V0 stands for the trivial one-dimensional representation and V3 denotes the
standard three-dimensional representation of the tetrahedral group. Also, σ(C) =
{ξ0

0 = c + 3d, ξ3
1 = c − d}. The dominating orbit types in W are (A4), (Zt1

3 ), (Zt2
3 )

∗ We use the lower index j to enumerate the eigenvalues, which, in general, may not be related
to the order of the isotypical components
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ξj
o ε0, ε1 ω(αj , βj)1 # Branches

ξ0
o 00 (D3) 1

ξ0
o 10 −(D3) 1

ξ0
o 01 (D3) − 2(D1) + (Z1) 1

ξ0
o 11 −(D3) + 2(D1) − (Z1) 1

ξ1
o 00 (Zt

3) + (Dz
1) + (D1) − (Z1) 6

ξ1
o 10 −(Zt

3) − (Dz
1) − (D1) + (Z1) 6

ξ1
o 01 (Zt

3) − (D1) − (Dz
1) + (Z1) 6

ξ1
o 11 −(Zt

3) + (D1) + (Dz
1) − (Z1) 6

Table 1. Equivariant classification of the Hopf bifurcation with
D3 symmetries

and (V −
4 ) . We summarize in Table 4 the corresponding results for A4-symmetric

Hopf bifurcation.

7.6. Hopf Bifurcation in a System with Octahedral Symmetries. Consider
the system (52) with the matrix C of the type (49), which is symmetric with respect
to the octahedral group Γ = S4, where S4 acts on the space V := R8 by permuting
the coordinates of the vectors in the same way as the symmetries of a cube in R3

permute its eight vertices. The representation V has the following S4-isotypical
decomposition (see [3] for details)

V = V0 ⊕ V1 ⊕ V3 ⊕ V4, V0 = V0, V1 = V1, V3 = V3, V4 = V4,

(here V0 stands for the trivial one-dimensional S4-representation; V1 is the one-
dimensional representation corresponding to the homomorphism S4 → Z2 ⊂ O(1);
V3 denotes the standard three-dimensional S4-representation (where S4 acts as a
subgroup of SO(3)); V4 = V1 ⊗ V3). Also, all the above irreducible representations
are of real type. In addition, the spectrum of C is given by

σ(C) = {ξ0
0 = c + 3d, ξ1

1 = c − 3d, ξ3
2 = c + d, ξ4

3 = c − d}.
The dominating orbit types in W are (S4), (S−

4 ), (Dd
4), (Dd

2), (Zc
4), (Zt

3) and (Dz
4).

We summarize in Tables 5 the corresponding results for S4-symmetric Hopf bifur-
cation.

7.7. Hopf Bifurcation in a System with Icosahedral Symmetries. Finally,
consider the system (52) with the matrix C of the type (50), which commutes with
the Γ = A5-action on the space V := R20 permuting the coordinates of the vectors
in the same way as the symmetries of a dodecahedron in R3 permute its 20 vertices.
The A5-isotypical decomposition of V is given by (cf. [3])

V = V0 ⊕ V1 ⊕ V2 ⊕ V3, V0 = V0, ; V1 = V1 ⊕ V1, V2 = V2, V3 = V3, V4 = V4,

and

σ(C) :=
{
ξ0
0 = c + 3d, ξ1

1 = c, ξ1
2 = c − 2d, ξ2

3 = c + d, ξ3
4 = c +

√
5d, ξ4

5 = c −
√

5d
}

.

For a pair (αj , βj) such that iβj is a purely imaginary root of (56) at (αj , 0), there
are the following possible combinations of the eigenvalues µk, k = 0, 1, 2, 3, 4, 5,
in σ+(A(αj)), with the corresponding to them sequences {ε0, ε1, ε2, ε3, ε4}:
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ξj
o ε0, ε1, ε3 ω(αj , βj)1 # Branches

ξ0
o 000 (D4) 1

ξ0
o 100 −(D4) 1

ξ0
o 001 (D4) 1

ξ0
o 110 −(D4) + (D1) + (D̃1) − (Z1) 1

ξ0
o 011 (D4) − (D1) − (D̃1) + (Z1) 1

ξ0
o 111 −(D4) + (D1) + (D̃1) − (Z1) 1

ξ1
o 000 (Zt

4) + (Dd
2) + (D̃d

2) − (Z−
2 ) 6

ξ1
o 100 −(Zt

4) − (Dd
2) − (D̃d

2) + (Z−
2 ) 6

ξ1
o 001 (Zt

4) + (Dd
2) + (D̃d

2) − (Z−
2 ) 6

ξ1
o 110 −(Zt

4) − (Dd
2) − (D̃d

2) + (Z−
2 ) + (Dz

1) + (D̃z
1) + (D1) + (D̃1) − 2(Z1) 6

ξ1
o 011 (Zt

4) + (Dd
2) + (D̃d

2) − (Z−
2 ) − (Dz

1) − (D̃z
1) − (D1) − (D̃1) + 2(Z1) 6

ξ1
o 111 −(Zt

4) − (Dd
2) − (D̃d

2) + (Z−
2 ) + (Dz

1) + (D̃z
1) + (D1) + (D̃1) − 2(Z1) 6

ξ3
o 000 (Dd

4) 1
ξ3
o 100 −(Dd

4) 1
ξ3
o 001 (Dd

4) 1

ξ3
o 110 −(Dd

4) + (D̃z
1) + (D1) − (Z1) 1

ξ3
o 011 (Dd

4) − (D̃z
1) − (D1) + (Z1) 1

ξ3
o 111 −(Dd

4) + (D̃z
1) + (D1) − (Z1) 1

Table 2. Equivariant classification of the Hopf bifurcation with
D4 symmetries

ξj
o ε0, ε1, ε2 ω(αj , βj)1 # Branches

ξ0
o 000 (D5) 1

ξ0
o 100 −(D5) 1

ξ0
o 001 (D5) − 2(D1) + (Z1) 1

ξ0
o 110 −(D5) + 2(D1) − (Z1) 1

ξ0
o 011 (D5) 1

ξ0
o 111 −(D5) 1

ξ1
o 000 (Zt1

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ1
o 100 −(Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 001 (Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 110 −(Zt1

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ1
o 011 (Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ1
o 111 −(Zt1

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 000 (Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 100 −(Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 001 (Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

ξ2
o 110 −(Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 011 (Zt2

5 ) + (Dz
1) + (D1) − (Z1) 8

ξ2
o 111 −(Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8

Table 3. Equivariant classification of the Hopf bifurcation with
D5 symmetries

σ+(A(αj)) {ε0, ε1, ε2, ε3, ε4} σ+(A(αj)) {ε0, ε1, ε2, ε3, ε4}

{µ5} 00001 {µ0} 10000
{µ2, µ5} 01001 {µ0, µ4} 10010

{µ1, µ2, µ5} 00001 {µ0, µ3, µ4} 10110
{µ1, µ2, µ3, µ5} 00101 {µ0, µ1, µ3, µ4} 11110

{µ1, µ2, µ3, µ4, µ5} 00111 {µ0, µ1, µ2, µ3, µ4} 10110
{µ0, µ1, µ2, µ3, µ4, µ5} 10111 ∅ 00000
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ξj
o ε0, ε3 ω(αj , βj)1 # Branches

ξ0
o 00 (A4) 1

ξ0
o 10 −(A4) 1

ξ0
o 01 (A4) − 2(Z3) − (Z2) + (Z1) 1

ξ0
o 11 −(A4) + 2(Z3) + (Z2) − (Z1) 1

ξ3
o 00 (V −

4 ) + (Zt1
3 ) + (Zt2

3 ) + (Z3) − (Z1) 12
ξ3
o 10 −(V −

4 ) − (Zt1
3 ) − (Zt2

3 ) − (Z3) + (Z1) 12
ξ3
o 01 (V −

4 ) − (Zt1
3 ) − (Zt2

3 ) − (Z3) − 2(Zz
2) − (Z3) + (Z1) 12

ξ3
o 11 −(V −

4 ) + (Zt1
3 ) + (Zt2

3 ) + (Z3) + 2(Zz
2) + (Z3) − (Z1) 12

Table 4. Equivariant classification of the Hopf bifurcation with
A4 symmetries

ξj
o ε0, ε1, ε3, ε4 ω(αj , βj)1 # Branches

ξ0
0 0000 (S4) 1

ξ0
0 1000 −(S4) 1

ξ0
0 0100 (S4) − (A4) 1

ξ0
0 1010 −(S4) + 2(D3) + (D2) − 3(D1) + (Z1) 1

ξ0
0 0101 (S4) − (A4) − (Z4) + (Z3) − (D1) + (Z1) 1

ξ0
0 1011 −(S4) + 2(D3) + (D2) + (Z4) − (Z3) − 2(D1) − (Z2) + (Z1) 1

ξ0
0 0111 −(S4) − (A4) − 2(D3) − (D2) − (Z4) + (Z3) + 2(D1) + (Z2) − (Z1) 1

ξ0
0 1111 (S4) + (A4) + 2(D3) + (D2) + (Z4) − (Z3) − 2(D1) − (Z2) + (Z1) 1

ξ1
1 0000 (S−

4 ) 1
ξ1
1 1000 −(S−

4 ) 1
ξ1
1 0100 (S−

4 ) − (A4) 1
ξ1
1 1010 −(S−

4 ) + 2(Dz
3) + (Dz

2) − 3(Dz
1) + (Z1) 1

ξ1
1 0101 (S−

4 ) − (A4) − (Z−
4 ) + (Z3) − (Dz

1) + (Z2) 1
ξ1
1 1011 −(S−

4 ) + 2(Dz
3) + (Dz

2) + (Z−
4 ) − (Z3) − 2(Dz

1) − (Z2) + (Z1) 1
ξ1
1 0111 (S−

4 ) − (A4) − 2(Dz
3) − (Dz

2) − (Z−
4 ) + (Z3) + 2(Dz

1) + (Z2) − (Z1) 1
ξ1
1 1111 −(S−

4 ) + (A4) + 2(Dz
3) + (Dz

2) + (Z−
4 ) − (Z3) − 2(Dz

1) − (Z2) + (Z1) 1
ξ3
2 0000 (Dd

4) + (D3) + (Dd
2) + (Zc

4) + (Zt
3) − (D1) − (Z−

2 ) 24
ξ3
2 1000 −(Dd

4) − (D3) − (Dd
2) − (Zc

4) − (Zt
3) + (D1) + (Z−

2 ) 24
ξ3
2 0100 (Dd

4) + (D3) + (Dd
2) + (Zc

4) − (V −
4 ) − (Zt

3) − (Z3) − (D1) − (Z−
2 ) + (Z1) 24

ξ3
2 1010 −(Dd

4) + (D3) + (Dd
2) − (Zc

4) + (Zt
3) − (Dz

1) − 3(D1) + (Z−
2 ) + (Z1) 24

ξ3
2 0101 (Dd

4) + (D3) + (Dd
2) + (D2) − (Zc

4) − (Z−
4 ) − (V −

4 ) + (Zt
3) − (Dz

1) − 3(D1) + (Z−
2 ) + (Z2) + (Z1) 24

ξ3
2 1011 −(Dd

4) + (D3) + (Dd
2) + (D2) + (Zc

4) + (Z−
4 ) − (Zt

3) − (Z3) − (D1) − (Z−
2 ) − (Z2) + (Z1) 24

ξ3
2 0111 (Dd

4) − (D3) − (Dd
2) − (D2) − (Zc

4) − (Z−
4 ) − (V −

4 ) − (Zt
3) + (D1) + (Z−

2 ) + (Z2) 24
ξ3
2 1111 −(Dd

4) + (D3) + (Dd
2) + (D2) + (Zc

4) + (Z−
4 ) + (V −

4 ) + (Zt
3) − (D1) − (Z−

2 ) − (Z2) 24
ξ4
3 0000 (Dz

4) + (Dz
3) + (Dd

2) + (Zc
4) + (Zt

3) − (Dz
1) − (Z−

2 ) 24
ξ4
3 1000 −(Dz

4) − (Dz
3) − (Dd

2) − (Zc
4) − (Zt

3) + (Dz
1) + (Z−

2 ) 24
ξ4
3 0100 (Dz

4) + (Dz
3) + (Dd

2) + (Zc
4) − (V −

4 ) − (Zt
3) − (Z3) − (Dz

1) − (Z−
2 ) + (Z1) 24

ξ4
3 1010 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) − (Zc

4) + (Zt
3) − 3(Dz

1) − (D1) + (Z−
2 ) + (Z1) 24

ξ4
3 0101 (Dz

4) + (Dz
3) + (Dd

2) − (Zc
4) − (Z4) − (V −

4 ) + (Zt
3) − 3(Dz

1) − (D1) + (Z−
2 ) + (Z2) + (Z1) 24

ξ4
3 1011 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) + (Zc

4) + (Z4) − (Zt
3) − (Z3) − (Dz

1) − (Z−
2 ) − (Z2) + (Z1) 24

ξ4
3 0111 (Dz

4) − (Dz
3) − (Dd

2) − (Dz
2) − (Zc

4) − (Z4) − (V −
4 ) − (Zt

3) + (Dz
1) + (Z−

2 ) + (Z2) 24
ξ4
3 1111 −(Dz

4) + (Dz
3) + (Dd

2) + (Dz
2) + (Zc

4) + (Z4) + (V −
4 ) + (Zt

3) − (Dz
1) − (Z−

2 ) − (Z2) 24

Table 5. Equivariant classification of the Hopf bifurcation with S4 symmetries

The dominating orbit types are (A5), (Dz
3), (V −

4 ), (Zt1
5 ), (Zt2

5 ), (At1
4 ), (At2

4 ) and
(Dz

5). We summarize in Tables 6 and 7 the corresponding results for A5-symmetric
Hopf bifurcation.

Remark 11. Let us explain how to decode the information provided by the invari-
ant ω(αj , βj)1 = Γ×S1-Deg(Fς, Ω)1 from the corresponding table. For example, in
the case Γ = A4, ξ3

o = ξ3
1 = c − d, (ε0, ε3) = (1, 0), we have (as listed in Table 4)

ω(αj , βj)1 = −(V −
4 ) − (Zt1

3 ) − (Zt2
3 ) − (Z3) + (Z1).
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ξj
o ε0, ε1, ε2, ε3, ε4 ω(αj , βj)1 # Branches

ξ0
0 00000 (A5) 1

ξ0
0 00001 (A5) − (Z5) − (Z3) − (Z2) + (Z1) 1

ξ0
0 00111 (A5) − 2(D5) − 2(D3) + 3(Z2) − (Z1) 1

ξ0
0 00101 (A5) − 2(D5) − 2(D3) + (Z5) + (Z3) + 4(Z2) − 2(Z1) 1

ξ0
0 01001 (A5) − 2(A4) − 2(D3) − (Z5) + 2(Z3) + 2(Z2) − (Z1) 1

ξ0
0 10000 −(A5) 1

ξ0
0 10010 −(A5) + (Z5) + (Z3) + (Z2) − (Z1) 1

ξ0
0 10111 −(A5) + 2(D5) + 2(D3) − 3(Z2) + (Z1) 1

ξ0
0 10110 −(A5) + 2(D5) + 2(D3) − (Z5) − (Z3) − 4(Z2) + 2(Z1) 1

ξ0
0 11110 −(A5) + 2(A4) + 2(D5) − (Z5) − 2(Z3) − 3(Z2) + 2(Z1) 1

ξ1
0 00000 (A4) + (Dz

3) + (D3) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) + (Zt

3) − (Z3) − (Z−
2 ) − (Z2) 55

ξ1
o 00001 (A4) + (Dz

3) + (D3) − (Zt1
5 ) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − 3(Z3) 55
−3(Z−

2 ) − 3(Z2) + 4(Z1)
ξ1
o 00111 (A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1)
ξ1
o 00101 (A4) − (Dz

3) − (D3) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) + (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2) − 2(Z1)
ξ1
o 01001 −(A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) − (V −
4 ) − (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2)
ξ1
o 10000 −(A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) − (V −
4 ) − (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2)
ξ1
o 10010 −(A4) − (Dz

3) − (D3) + (Zt1
5 ) + (Zt2

5 ) − (V −
4 ) + (Zt

3) + 3(Z3) 55
+3(Z−

2 ) + 3(Z2) − 4(Z1)
ξ1
o 10111 −(A4) + (Dz

3) + (D3) + (Zt1
5 ) + (Zt2

5 ) − (V −
4 ) + (Zt

3) + (Z3) 55
+(Z−

2 ) + (Z2) − 2(Z1)
ξ1
o 10110 −(A4) + (Dz

3) + (D3) − (Zt1
5 ) − (Zt2

5 ) − (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1)
ξ1
o 11110 (A4) − (Dz

3) − (D3) − (Zt1
5 ) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − (Z3) 55
−(Z−

2 ) − (Z2) + 2(Z1)
ξ2
3 00000 (At1

4 ) + (At2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) + (V −

4 ) − 2(Z2) 50
ξ2
3 00001 (At1

4 ) + (At2
4 ) + (D5) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) + (V −

4 ) 50
−4(Zt

3) − (Z3) − 2(Z−
2 ) − 5(Z2) + 5(Z1)

ξ2
3 00111 (At1

4 ) + (At2
4 ) − (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) + (V −

4 ) − 4(Zt
3) 50

−2(Z−
2 ) − (Z2) + 3(Z1)

ξ2
3 00101 (At1

4 ) + (At2
4 ) − (D5) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (Z5) + (V −

4 ) 50
+(Z3) + 2(Z2) − 2(Z1)

ξ2
3 01001 −(At1

4 ) − (At2
4 ) + (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) − (V −

4 ) + (Z1) 50
ξ2
3 10000 −(At1

4 ) − (At2
4 ) − (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (V −

4 ) + 2(Z2) 50
ξ2
3 10010 −(At1

4 ) − (At2
4 ) − (D5) − (D3) + (Zt1

5 ) + (Zt2
5 ) + (Z5) − (V −

4 ) 50
+4(Zt

3) + (Z3) + 2(Z−
2 ) + 5(Z2) − 5(Z1)

ξ2
3 10111 −(At1

4 ) − (At2
4 ) + (D5) + (D3) + (Zt1

5 ) + (Zt2
5 ) − (V −

4 ) + 4(Zt
3) 50

+2(Z−
2 ) + (Z2) − 3(Z1)

ξ2
3 10110 −(At1

4 ) − (At2
4 ) + (D5) + (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) − (V −

4 ) − (Z3) 50
−2(Z2) + 2(Z1)

ξ2
3 11110 (At1

4 ) + (At2
4 ) + (D5) − (D3) − (Zt1

5 ) − (Zt2
5 ) − (Z5) + (V −

4 ) − 4(Zt
3) 50

−2(Z−
2 ) − 3(Z2) + 4(Z1)

ξ3
4 00000 (Dz

5) + (Dz
3) + (Zt1

5 ) + (V −
4 ) + (Zt

3) − 2(Z−
2 ) 48

ξ3
4 00001 (Dz

5) + (Dz
3) − (Zt1

5 ) − (Z5) + (V −
4 ) − (Zt

3) − (Z3) − 4(Z−
2 ) − (Z2) + 3(Z1) 48

ξ3
4 00111 −(Dz

5) − (Dz
3) − (Zt1

5 ) + (V −
4 ) − (Zt

3) − (Z2) + (Z1) 48
ξ3
4 00101 −(Dz

5) − (Dz
3) + (Zt1

5 ) + (Z5) + (V −
4 ) + (Zt

3) + (Z3) + 2(Z−
2 ) − 2(Z2) 48

ξ3
4 01001 (Dz

5) − (Dz
3) − (Zt1

5 ) − (V −
4 ) − (Zt

3) + (Z1) 48
ξ3
4 10000 −(Dz

5) − (Dz
3) − (Zt1

5 ) − (V −
4 ) − (Zt

3) + 2(Z−
2 ) 48

ξ3
4 10010 −(Dz

5) − (Dz
3) + (Zt1

5 ) + (Z5) − (V −
4 ) + (Zt

3) + (Z3) + 4(Z−
2 ) + (Z2) − 3(Z1) 48

ξ3
4 10111 (Dz

5) + (Dz
3) + (Zt1

5 ) − (V −
4 ) + (Zt

3) + (Z2) − (Z1) 48
ξ3
4 10110 (Dz

5) + (Dz
3) − (Zt1

5 ) − (Z5) − (V −
4 ) − (Zt

3) − (Z3) − 2(Z−
2 ) + 2(Z1) 48

ξ3
4 11110 (Dz

5) − (Dz
3) − (Zt1

5 ) − (Z5) + (V −
4 ) − (Zt

3) − 2(Z−
2 ) − (Z2) + 2(Z1) 48

Table 6. Equivariant classification of the Hopf bifurcation with
A5 symmetries – Part I.

The dominating orbit types in ω(αj , βj)1 with non-trivial coefficients are (Zt1
3 ),

(Zt2
3 ) and (V −

4 ). Therefore, by Theorem 4, there is a Hopf bifurcation occuring at
(α0, 0). More specifically, one can expect the occurrence of at least 3 branches of
non-constant periodic solutions with the symmetries at least (V −

4 ), 4 branches of
non-constant periodic solutions with the symmetries at least (Zt1

3 ) and 4 branches
of non-constant periodic solutions with the symmetries at least (Zt2

3 ). Moreover, the
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ξj
o ε0, ε1, ε2, ε3, ε4 ω(αj , βj)1 # Branches

ξ4
5 00000 (Dz

5) + (Dz
3) + (Zt2

5 ) + (V −
4 ) + (Zt

3) − 2(Z−
2 ) 48

ξ4
5 00001 (Dz

5) + (Dz
3) − (Zt2

5 ) − (Z5) + (V −
4 ) − (Zt

3) − (Z3) − 4(Z−
2 ) − (Z2) + 3(Z1) 48

ξ4
5 00111 −(Dz

5) − (Dz
3) − (Zt2

5 ) + (V −
4 ) − (Zt

3) − (Z2) + (Z1) 48
ξ4
5 00101 −(Dz

5) − (Dz
3) + (Zt2

5 ) + (Z5) + (V −
4 ) + (Zt

3) + (Z3) + 2(Z−
2 ) − 2(Z2) 48

ξ4
5 01001 (Dz

5) − (Dz
3) − (Zt2

5 ) − (V −
4 ) − (Zt

3) + (Z1) 48
ξ4
5 10000 −(Dz

5) − (Dz
3) − (Zt2

5 ) − (V −
4 ) − (Zt

3) + 2(Z−
2 ) 48

ξ4
5 10010 −(Dz

5) − (Dz
3) + (Zt2

5 ) + (Z5) − (V −
4 ) + (Zt

3) + (Z3) + 4(Z−
2 ) + (Z2) − 3(Z1) 48

ξ4
5 10111 (Dz

5) + (Dz
3) + (Zt2

5 ) − (V −
4 ) + (Zt

3) + (Z2) − (Z1) 48
ξ4
5 10110 (Dz

5) + (Dz
3) − (Zt2

5 ) − (Z5) − (V −
4 ) − (Zt

3) − (Z3) − 2(Z−
2 ) + 2(Z1) 48

ξ4
5 11110 (Dz

5) − (Dz
3) − (Zt2

5 ) − (Z5) + (V −
4 ) − (Zt

3) − 2(Z−
2 ) − (Z2) + 2(Z1) 48

Table 7. Equivariant classification of the Hopf bifurcation with
A5 symmetries – Part II.

non-trivial (Z3)-term also contributes to at least one more branch of non-constant
periodic solutions with the symmetry at least (Z3) (cf. Remark 10). In this way,
we predict the existence of at least 12 branches of non-constant periodic solutions.
We illustrate this situation on a diagram below.

[h] b

(Zt1
3 )

(Zt2
3 )

(V −
4 )

ad
di
ti
on

al
br

an
ch

(αo, βo)

Remark 12. Computations of the equivariant degrees, which were applied to es-
timate of the number of non-constant periodic solutions of the systems (52) with
different symmetries, were done with the assistance of the Maple c© package “Equiv-
ariantDegree”. This package, which contains the complete multiplication tables and
the equivariant degrees of the basic maps for the groups D3×S1, D4×S1, D5×S1,
A4 × S1, S4 × S1 and A5 × S1, was created by Adrian Biglands, and is available at
the web site:

http://www.math.ualberta.ca/∼wkrawcew/degree or
http://krawcewicz.net/degree
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