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Interior Symmetries and Multiple Eigenvalues for Homogeneous Networks∗

M. A. D. Aguiar† and H. Ruan‡

Abstract. We analyze the impact of interior symmetries on the multiplicity of the eigenvalues of the Jacobian
matrix at a fully synchronous equilibrium for the coupled cell systems associated to homogeneous
networks. We consider also the special cases of regular and uniform networks. It follows from our
results that the interior symmetries, as well as the reverse interior symmetries and quotient interior
symmetries, of the network force the existence of eigenvalues with algebraic multiplicity greater than
one. The proofs are based on the special form of the adjacency matrices of the networks induced by
these interior symmetries.
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1. Introduction. A coupled cell system is a finite collection of individual dynamical sys-
tems (or cells) that are coupled together through mutual interactions. Coupled cell systems
can be used to model a wide variety of phenomena in many scientific fields, ranging from
physics, biology, and chemistry to engineering, social science, and climatology.

As one of the most prevailing and studied phenomena in dynamical systems, bifurcation
describes the sudden change of properties of systems subject to variation of a parameter. In
the case of change of stability of an equilibrium, a bifurcation can usually be foreseen by a
critical eigenvalue associated to the linearization at the equilibrium. While the bifurcation
analysis for simple critical eigenvalues is straightforward, multiple eigenvalues can lead to
complicated bifurcating behavior of the system such as multiple bifurcations and secondary
bifurcations (cf. Iooss and Joseph [12] for general systems, Golubitsky, Stewart, and Schaef-
fer [9] for symmetric systems, Leite and Golubitsky [13] and Elmhirst and Golubitsky [4] for
coupled systems, and Aguiar et al. [1] for coupled systems with quotient symmetry). However,
knowing the cause for existence of multiple eigenvalues can help develop effective techniques
for bifurcation analysis. A standard example is the appearance of multiple eigenvalues in
equivariant dynamical systems due to the presence of symmetry; then generic behavior of
bifurcating branches related to multiple eigenvalues can be analyzed using equivariant bifur-
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cation theory (cf. Golubitsky, Stewart, and Schaeffer [9]).
Topological configuration of a coupled cell system can be described by a directed graph,

a coupled cell network, whose nodes correspond to the cells and whose edges represent the
interactions. Network structure of a coupled cell network of n cells can be represented by
adjacency matrices A1, . . . , As, where Al is an n × n matrix, whose (i, j)-entry equals the
number of lth-type edges directing from cell j to cell i. Two cells of a coupled cell network
are called identical if they have the same phase space and the same internal dynamics (cf.
Golubitsky, Pivato, and Stewart [6]). A coupled cell network is called homogeneous if it consists
of identical cells having identical input couplings. A homogeneous network is called regular if
all the couplings (arrows or edges) are of the same type. An important feature of homogeneous
networks is that every admissible coupled cell system admits the diagonal subspace Δ, formed
by setting all cell coordinates equal in the total phase space, as flow-invariant subspace.
Moreover, the restriction of these systems to Δ gives the set of all vector fields on Δ (cf.
Theorem 5.2 of Golubitsky, Stewart, and Török [10]). Assume that a homogeneous cell system
admits a fully synchronous equilibrium in Δ. We say that the system undergoes a local
synchrony-breaking steady-state bifurcation if the synchronous equilibrium loses its stability
and bifurcates to a steady state with less synchrony as a bifurcation parameter crosses a
certain critical value. If it bifurcates to a periodic state with less synchrony, we call it a local
synchrony-breaking Hopf bifurcation.

Parallel properties exist between synchrony-breaking bifurcations of coupled cell systems
and symmetry-breaking bifurcations of equivariant systems, where the stringent symmetry
is replaced by a general network structure, and fixed point subspaces of isotropy subgroups
are replaced with synchrony subspaces. In this direction, linear theory of regular coupled
cell networks was presented in Golubitsky and Lauterbach [5], where it was shown that the
linearized normal form at the bifurcation is generically isomorphic to the adjacency matrix
restricted to one of its generalized eigenspaces if the dimension of the internal dynamics is at
least 2; however, in the case of 1-dimensional internal dynamics, additional degeneracies may
occur. Moreover, an analogue of the equivariant branching lemma and the equivariant Hopf
theorem has been established in Golubitsky, Pivato, and Stewart [6] and Antoneli, Dias, and
Paiva [2] for systems admitting interior symmetry. Following Antoneli, Dias, and Paiva [2], a
network G has an interior symmetry on a subset S of cells if S together with all the arrows
directed to it forms a subnetwork that has a nontrivial symmetry. In the case where S is the
total set of cells, the interior symmetry becomes a symmetry.

However, bifurcation theory for coupled cell systems differs from equivariant bifurcation
theory (cf. Golubitsky, Pivato, and Stewart [6], Leite and Golubitsky [13], and Golubitsky and
Lauterbach [5]), and this is the case even when the critical eigenvalue is real and simple (cf.
Stewart and Golubitsky [17]). It is known that in general (nonsymmetric noncoupled) systems,
steady-state or Hopf bifurcations occur at simple eigenvalues under generic conditions (cf.
Golubitsky and Schaeffer [7]). It is also known that in symmetric systems, although multiple
eigenvalues can occur generically, they only appear generically as a result of a real absolutely
irreducible action by the symmetry group for steady-state bifurcations; for Hopf bifurcations,
they are related to a complex irreducible action (cf. Golubitsky, Stewart, and Schaeffer [9]). In
coupled cell systems, the underlying network structure (which is generally nonsymmetric) can
also force multiple eigenvalues in a generic manner, and it determines, even at linear level, the
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kind of generic transitions from a synchronous equilibrium that can occur as the parameter
is varied (cf. Leite and Golubitsky [13]). In fact, it was observed in [13] and Aguiar et al. [1]
that most multiple eigenvalues arise as a result of interior symmetry, while the remaining are
multiple zero eigenvalues that come from colinear connectivity of two different cells to the
other cells of the network.

In this paper, we show that there is a definite relation between interior symmetry and
the occurrence of multiple eigenvalues. As an example, in homogeneous networks, an interior
symmetry ΣS on a subset S of k cells such that Dk ⊆ ΣS ⊆ Sk always forces multiple
eigenvalues (cf. Theorems 4.2 and 4.3). The main reason why interior symmetry may lead to
multiple eigenvalues is that it imposes restrictions on the network structure and thus on the
form of adjacency matrices of the network. For example, an interior symmetry (ij) on the
set of cells C = {1, . . . , n} of a regular network G given by the permutation of cells i and j
corresponds to the following constraints on the entries of the adjacency matrix AG :

aii = ajj, aij = aji and aik = ajk ∀k ∈ C \ {i, j}.

Moreover, as shown in Golubitsky, Pivato, and Stewart [6], interior symmetry induces ad-
ditional structure on the form of the linearization at synchrony-breaking bifurcations. Here,
we go further and show explicitly how interior symmetry forces additional constraints on the
linearization. Consider an n-cell homogeneous network G with s types of arrows, whose cell
internal dynamics is r-dimensional. Assume without loss of generality that the synchronous
equilibrium is at the origin. As shown for the case of regular networks in Leite and Golubit-
sky [13], the Jacobian of a homogeneous coupled cell system at a fully synchronized equilibrium
at the origin is determined by the cell internal dynamics and the adjacency matrices of differ-
ent types of arrows. Let Al, l = 1, 2, . . . , s, be the adjacency matrix of the lth type of arrows
in G. Let α be the linearized internal dynamics at the origin, and let βl be the linearized
internal coupling at the origin with the lth type of input for l = 1, 2, . . . , s. Note that α and
βl are r × r matrices. Then, the Jacobian at the origin is of the form

JG = α⊗ In + β1 ⊗A1 + · · ·+ βm ⊗As.

Results in Leite and Golubitsky [13] and Aguiar et al. [1] showed that when G is a regular
network (the case s = 1), the eigenvalues of JG are the union of the eigenvalues of the r × r
matrices α+μjβ for j = 1, . . . , n, including algebraic multiplicity, where μ1, . . . , μn denote the
eigenvalues of the adjacency matrix AG := A1. Thus, the problem of multiple eigenvalues of
the Jacobian is reduced to that of the adjacency matrix. On the contrary, if s > 1, it is unclear
how the spectrum of JG and that of the Al’s are related (cf. Golubitsky and Lauterbach [5]
for product networks of two regular networks). However, as we will see, interior symmetry
imposes a “universal” constraint on the form of the Al’s so that multiple eigenvalues of JG
can be related with those of the Al’s if the interior symmetry ΣS is at least Dk (cf. Theorem
4.3).

In the case of “smaller” interior symmetry, that is, Dk �⊂ ΣS , we obtain partial results
for regular uniform networks (cf. Corollaries 3.14 and 3.18). Following Stewart [16], we say
that a network is uniform if it has no multiple arrows or self-couplings. In other words, the
adjacency matrix AG of a uniform network is composed of 0’s and 1’s. On the other hand,
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interior symmetry forces integer eigenvalues of adjacency matrices (due to the integer entries
of adjacency matrices) of regular networks (cf. Theorems 3.13 and 3.17), and it is known that
all eigenvalues λ satisfy ||λ|| ≤ v, where v is the number of input arrows of each cell in the
regular network. Consequently, interior symmetry exerts an even stronger influence on the
multiplicity of eigenvalues of adjacency matrices for regular uniform networks.

We define variations of interior symmetry in a network such as reverse interior symmetry
and quotient interior symmetry, which may also result in multiple eigenvalues for the Jacobian
at the origin of the corresponding coupled cell systems. A reverse interior symmetry is an
interior symmetry of the reverse network, where the direction of arrows of G is reversed.
A quotient interior symmetry is a short-hand notion of an interior symmetry of a quotient
network of G, which is obtained by restricting G to a balanced equivalence relation on the cells.
If a quotient network has a reverse interior symmetry, then we call this symmetry a quotient
reverse interior symmetry. All results obtained in this paper about interior symmetry can be
easily extended to the above-mentioned variations of interior symmetry (cf. Remark 3.1).

The paper is organized as follows. Section 2 collects preliminary definitions and results
from coupled cell networks including definitions of various interior symmetries and some results
from linear algebra. In section 3, we discuss the case of regular networks for several important
interior symmetries, such as the cyclic group Zk, the dihedral group Dk, the alternating group
Ak, and the symmetric group Sk. Using Theorem 3.3 and Corollary 3.4, we can get results
on multiplicity of eigenvalues for interior symmetry groups given by products of these groups.
The case of regular uniform networks is discussed in subsection 3.6 for Z2 × · · · ×Z2- and V4-
interior symmetry. In section 4, we extend the results obtained in section 3 to homogeneous
networks. We give some concluding remarks in section 5. Throughout the paper, numerous
examples will be used to illustrate the results.

2. Preliminaries. In this section, we summarize necessary concepts from coupled cell
networks. We restrict our attention to homogeneous coupled cell networks since they are our
main case of study. For more general definitions and results on coupled cell networks, we refer
to Golubitsky and Stewart [8] and Golubitsky, Stewart, and Török [10] and the references
therein.

Definition 2.1. A coupled cell network consists of a finite set C = {1, . . . , n} of nodes
or cells and a finite set E = {(c, d) : c, d ∈ C} of edges or arrows and two equivalence
relations, ∼C on cells in C and ∼E on edges in E, with the following consistency condition:
if e1 ∼E e2 for e1 = (c1, d1) ∈ E and e2 = (c2, d2) ∈ E, then c1 ∼C c2 and d1 ∼C d2. We
write G = (C, E ,∼C ,∼E).

For an edge e = (c, d) ∈ E , c is called the head cell and d is called the tail cell and e is
called an input edge of c. The set of all input edges of c is called the input set of c and is
denoted by I(c). Two cells c and d in a network are said to be input-equivalent if there is an
edge-type preserving isomorphism β : I(c) → I(d) between their input sets. Note that the
relation of input-equivalence refines the relation of cell-equivalence.

Definition 2.2. A homogeneous network is a coupled cell network with only one input-
equivalence class. A regular network is a homogeneous network with only one edge-equivalence
class. It follows that in a homogeneous network all cells are of identical type and receive the
same number (per type) of input edges. This number, which is the cardinality of the input set,
is called the valency of the network.
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Figure 1. A homogeneous network G with valency 4.

Example 2.3. Consider a five-cell homogeneous network G with two types of arrows and
valency 4, which is shown in Figure 1. This network will be repeatedly referred to by later
examples (cf. Examples 2.4, 2.8, 2.11, 2.14, 2.18). Let A1 (resp., A2) be the adjacency matrix
of the arrows with solid (resp., hollow) arrow head. Then,

(2.1) A1 =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
0 1 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Example 2.4. Consider the two subnetworks G1,G2 obtained from the network G in
Example 2.3 by keeping only all arrows with solid (resp., hollow) arrow head. Then, G1,G2

are regular networks, as shown in Figure 2, with the adjacency matrix given by A1, A2, re-
spectively (cf. (2.1)). Notice that G1 is an example of a uniform network, while G2 is not.

Figure 2. Regular networks G1,G2 obtained from G in Figure 1.

We follow the multiarrow formalism in Golubitsky, Stewart, and Török [10] and thus allow
multiple arrows of the same type between two cells and self-coupling arrows. We call the
networks without multiple arrows or self-coupling arrows uniform networks (cf. Stewart [16]).

2.1. Symmetry and symmetric groups. We adapt and simplify the definition of a sym-
metry of a general coupled cell network in Antoneli and Stewart [3] to a symmetry of a
homogeneous network.
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Definition 2.5. Let G = (C, E ,∼C ,∼E) be a homogeneous network. A symmetry of G is a
permutation σ on C such that there is a bijection between the edges (σ(a), σ(b)) and (a, b),
which preserves the edge-equivalence relation ∼E for all a, b ∈ C.

Let G be an n-cell homogeneous network with s edge-equivalence classes, whose adja-

cency matrices are given by A1, A2, . . . , As. Write Al = [a
(l)
ij ]n×n for l = 1, 2, . . . , s. Then, a

permutation σ is a symmetry of G if and only if

a
(l)
ij = a

(l)
σ(i)σ(j) ∀i, j = 1, 2, . . . , n, l = 1, 2, . . . , s.

It is clear that the set of all symmetries of an n-cell homogeneous network G forms a group,
which can be identified canonically with a subgroup of the symmetric group Sn, that is defined
as the group of all permutations of n symbols. Let i1, . . . , ik ∈ N be distinct positive integers.
We use the standard notation (i1 . . . ik) to denote a k-cycle in Sn, which is a permutation σ
defined by

σ : ij �→ ij+1 for j = 1, . . . k − 1

ik �→ i1

l �→ l for l /∈ {i1, . . . , ik}.
A 2-cycle is called a transposition. Every permutation can be written as a product of simple
transpositions. A permutation is called even (resp., odd) if it can be expressed as a product
of an even (resp., odd) number of transpositions. The subset of Sn consisting of all even per-
mutations is a subgroup called the alternating group An. A group generated by permutations
σ1, σ2, . . . , σm will be denoted by 〈σ1, σ2, . . . , σm〉.

Example 2.6. Consider the k-cycle (1 2 . . . k) in Sk and the cyclic group

Zk = 〈(1 2 . . . k)〉
generated by the k-cycle. Let G be a Zk-symmetric homogeneous network of k cells and
A1, A2, . . . , As be the adjacency matrices of G. Then, every Al is of the form

(2.2)

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1,k−1 a1k
a1k a11 a12 . . . a1,k−1

a1,k−1 a1k a11
. . . a1,k−2

...
. . .

. . .
. . .

...
a12 a13 . . . a1k a11

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where every row vector is obtained by shifting the preceding row vector to the right by one
element.

A matrix of the form (2.2) is called a circulant matrix, which is often written as

circ(a11, a12, . . . , a1k)

in shorthand form. Circulant matrices and their spectral information are needed for our later
discussions [18]. It is known that all circulant matrices of the form (2.2) share the same
eigenvectors,

(2.3) vj = (1, ωj , ω
2
j , . . . , ω

k−1
j ) for ωj = e

2πij
k , j = 0, 1, . . . , k − 1,
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which are eigenvectors of the following eigenvalues:

(2.4) λj = a11 + a12ωj + a13ω
2
j + · · ·+ a1kω

k−1
j , j = 0, 1, . . . , k − 1.

Another concept that we will need later is that of a centrosymmetric matrix, which is a
matrix that is symmetric about its center [14]. More formally, we have the following definition.

Definition 2.7. A square matrix A = [aij ]n×n is called centrosymmetric if it satisfies the
relation

aij = a(n+1−i)(n+1−j) ∀ i, j = 1, 2, . . . , n,

which is equivalent to the relation
A = JAJ,

where J = [eij ]n×n is the exchange matrix; that is, ei,n+1−i = 1 and eij = 0 for all j �= n+1−i,
i = 1, 2, . . . , n. In other words, it has 1 on the antidiagonal and 0 elsewhere.

Example 2.8. Consider the network G in Example 2.3. The symmetry group of G is

Z2 = 〈(1 5)(2 4)〉.
The adjacency matrices Al’s of any five-cell homogeneous network having this symmetry are
centrosymmetric matrices of the form⎡

⎢⎢⎢⎢⎣
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a32 a31
a25 a24 a23 a22 a21
a15 a14 a13 a12 a11

⎤
⎥⎥⎥⎥⎦ .

2.2. Interior symmetry. The concept of interior symmetry of a coupled cell network is
a generalized notion of a symmetry of a coupled cell network. Roughly speaking, it is a
permutation of the cells that preserves a certain amount of input structure. The notion of
interior symmetry was first introduced by Golubitsky, Pivato, and Stewart [6]. We adapt
and simplify the definition in [6] to define an interior symmetry of a homogeneous network as
follows.

Definition 2.9. Let G = (C, E ,∼C ,∼E) be a homogeneous network. Let S ⊆ C be a subset.
An interior symmetry of G on S is a permutation σ on C such that σ fixes every element
in C \ S, and there is a bijection between edges (σ(a), σ(b)) and (a, b), which preserves edge-
equivalence relation ∼E for a ∈ S, b ∈ C.

Note that in the case S = C, an interior symmetry on C is precisely a symmetry of G. In
what follows, when referring to interior symmetry, we also include the case of symmetry.

Let G be an n-cell homogeneous network with s edge-equivalence classes, whose adja-

cency matrices are given by A1, A2, . . . , As. Write Al = [a
(l)
ij ]n×n for l = 1, . . . , s. Then, a

permutation σ is an interior symmetry of G on S if and only if

(2.5) a
(l)
ij = a

(l)
σ(i)σ(j) ∀i ∈ S, j ∈ C, l = 1, . . . , s.

Following the formulation in Antoneli, Dias, and Paiva [2], one can characterize the interior
symmetry using symmetry of subnetworks. Given a network G and a subset S ⊆ C, define
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GS = (C, I(S),∼C ,∼E) to be the subnetwork of G whose set of cells is C (together with its
cell-equivalence relation ∼C) and whose set of arrows is the input set I(S) of S. The edge-
equivalence relation on I(S) is given by the restriction of the edge-equivalence ∼E of E to
I(S).

Proposition 2.10 (cf. [2]). Let G be a coupled cell network and S ⊆ C be a subset of cells of
the set of cells of G. Consider the network GS as defined above. Then the group of interior
symmetries of the network G on S can be canonically identified with the group of symmetries
of the network GS .

Example 2.11. Consider the homogeneous network G in Example 2.3. Let S = {2, 3, 4}.
Then, the network GS has an S3-symmetry, as shown in Figure 3. Thus, G has an interior
symmetry S3 on S.

Figure 3. An S3-symmetric network GS for S = {2, 3, 4}.

Indeed, adjacency matrices Al’s of any five-cell homogeneous networks with S3 interior sym-
metry on S = {2, 3, 4} are of the form⎡

⎢⎢⎢⎢⎣
a11 a12 a13 a14 a15
a21 a22 a23 a23 a25
a21 a23 a22 a23 a25
a21 a23 a23 a22 a25
a51 a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎦ .

2.3. Reverse interior symmetry. We introduce a new concept of symmetry for coupled
cell networks, the reverse interior symmetry. To do so, we need the notion of the reverse
network GR of a coupled cell network G, which is a network defined on the same set of cells
but with all the edges in the reversed direction.

Definition 2.12. Let G = (C, E ,∼C ,∼E) be a coupled cell network. Define

ER := {(d, c) : (c, d) ∈ E}

and an equivalence relation ∼ER on ER by

(b, a) ∼ER (d, c) ⇔ (a, b) ∼E (c, d).

The reverse network GR of G is the network given by GR = (C, ER,∼C ,∼ER).
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Figure 4. The reverse network of the homogeneous network G in Figure 1.

Note that the adjacency matrices of GR are given by the transpose of the adjacency
matrices of G. Also, a reverse network of a homogeneous (resp., regular) network may not be
homogeneous (resp., regular) again.

Definition 2.13. Let G = (C, E ,∼C ,∼E) be a coupled cell network and GR be its reverse
network. Let S ⊆ C be a subset. A permutation σ is called a reverse interior symmetry of G
on S if σ is an interior symmetry of GR on S.

That is, the group of reverse interior symmetries of G on S can be canonically identified
with the group of interior symmetries of GR on S. Roughly speaking, a reverse interior
symmetry is a permutation of the cells that preserves a certain amount of output structure.

Let G be a homogeneous network with s type arrows whose adjacency matrices are
A1, A2, . . . , As. Then, a permutation σ is a reverse interior symmetry of G on S if and only if

aij = aσ(i)σ(j) ∀i ∈ C and ∀j ∈ S,

for l = 1, . . . , s.
Example 2.14. Consider the homogeneous network G in Example 2.3. Then, the reverse

network GR is as shown in Figure 4. It can be verified that GR has an interior symmetry (15)
on S = {1, 5}. Thus, (1 5) is a reverse interior symmetry of G.

Note that a symmetry of a coupled cell network G is both an interior symmetry and a
reverse interior symmetry of G, but the reverse may not be true.

Example 2.15. Consider the two networks in Figure 5, which are reverse to each other.
Both networks have S3 as an interior symmetry on S = {1, 2, 3}; thus S3 is a reverse interior
symmetry of both networks on S. However, neither network has an S3-symmetry.

2.4. Balanced equivalence relation. Given an equivalence relation �� on the set of cells
of a coupled cell network, we can color the nodes of the network in the following way: two
cells i, j receive the same color precisely when they belong to the same ��-equivalence class.
The coloring is called balanced, or equivalently, �� is called a balanced equivalence relation if
any pair of cells with the same color have the same number and type of input arrows from
cells of color b for every b.

More formally, we have the following definition.
Definition 2.16 (cf. [10]). Given a coupled cell network G = (C, E ,∼C ,∼E), an equivalence

relation �� on the set C is called balanced if for every c, d ∈ C with c �� d there exists a bijection
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Figure 5. Two networks that are reverse to each other.

β : I(c) → I(d) between their input sets, which preserves the edge-equivalence relation ∼E

and is such that for all i ∈ I(c), the tail cells of i and β(i) are in the same ��-class.
The next proposition states that every interior symmetry permutation determines a bal-

anced equivalence relation.
Proposition 2.17. Let G be an n-cell homogeneous network and σ be an interior symmetry

of G on a subset S ⊆ C. If �� is an equivalence relation on the cells C of G such that

c �� d ⇔ c, d belong to the same orbit under σ,

then �� is balanced.
Proof. Let c, d be such that c �� d. Then, σm(c) = d for some m ∈ N. Note that σm is

an interior symmetry of G on S for all m ∈ N. Thus, by the definition of interior symmetry,
there exists an edge-equivalence preserving bijection between the edges (σm(c), σm(x)) and
(c, x) for every input arrow (c, x). Thus, there exists a bijection between the input sets of
d = σm(c) and c, which preserves the edge-equivalence relation. On the other hand, the tail
cells x and σm(x) are in the same orbit by σ, and thus are in the same ��-class. Therefore, ��
is a balanced equivalence relation.

Let ΣS be the group of all interior symmetries of G on a subset S ⊆ C. Let K ⊆
ΣS be a subgroup. By Proposition 2.17, every permutation in K determines a balanced
equivalence relation on G. In fact, the set of all these equivalence relations forms a sublattice
of the total lattice of balanced equivalence relations on G (cf. Stewart [15]). Moreover, the
balanced equivalence relation ��K determined by the subgroup K is given by the join of all the
equivalence relations determined by permutations in K and corresponds to the top element
of this sublattice.

2.5. Quotient networks and quotient interior symmetry. Given a balanced equivalence
relation �� on a coupled cell network G, a quotient network G�� = (C��, E��,∼C�� ,∼E��) can
be defined naturally as follows: the cells in C�� are the ��-equivalence classes of the cells of
G and the edges in E�� from quotient cell [c]�� to quotient cell [d]��, where [c]�� denotes the
��-equivalence class of c, are in correspondence with the edges (c′, d′) of G for all c′ �� c, d′ �� d.
The cell-equivalence ∼C�� and edge-equivalence ∼E�� relations for G�� are induced from those
of G. Since �� is balanced, the quotient network G�� is well defined. See Golubitsky, Stewart,
and Török [10].
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Let G be a homogeneous network of n-cells with s edge-equivalence classes whose adjacency
matrices are A1, A2, . . . , As. Let �� be a balanced equivalence relation which divides the
cells of G into p equivalence classes. Then, G�� is a homogeneous network of p-cells with s
edge-equivalence classes. Denote the adjacency matrices of G�� by A1�� , A2�� , . . . , As�� . Let

Al�� = [ā
(l)
αβ ]p×p. Then, for α = [i]��, β = [j]�� in C��, we have (cf. Proposition 2.3 of [1])

(2.6) ā
(l)
αβ =

∑
k∈[j]��

a
(l)
ik .

Example 2.18. Let G be the homogeneous network in Example 2.3. As shown in Examples
2.8 and 2.11, G has a symmetry Z2 = 〈(15)(24)〉 and an interior symmetry S3 on S = {2, 3, 4}.
Consider ��1= {{1}, {2, 3, 4}, {5}} and ��2= {{1, 5}, {2, 4}, {3}}. As seen in subsection 2.4,
both ��1, ��2 are balanced equivalence relations on G. Let G1 (resp., G2) be the quotient
network induced by ��1 (resp., ��2). Then, the adjacency matrices of G1 are

A1��1
=

⎡
⎣ 0 2 0

1 0 1
0 2 0

⎤
⎦ , A2��1

=

⎡
⎣ 1 1 0

0 2 0
0 1 1

⎤
⎦ ,

and the adjacency matrices of G2 are

A1��2
=

⎡
⎣ 0 1 1

2 0 0
2 0 0

⎤
⎦ , A2��2

=

⎡
⎣ 1 1 0

0 1 1
0 2 0

⎤
⎦ .

The networks G1,G2 are shown in Figure 6.

Figure 6. Quotient networks for G in Figure 1 given by the S3-interior symmetry (left) and Z2 =
〈(15)(24)〉-symmetry (right).

Note that a quotient network of a uniform network is a regular network which may not
be uniform in general.

One can also consider interior symmetry and reverse interior symmetry of quotient net-
works.

Definition 2.19. Let G be a coupled cell network. We say that a permutation σ is a quotient
(interior) symmetry of G if G has a quotient network G��1 which has σ as an (interior)
symmetry for some balanced equivalence relation ��1. Similarly, we say that a permutation γ
is a quotient reverse (interior) symmetry of G if G has a quotient network G��2 which has γ
as a reverse (interior) symmetry for some balanced equivalence relation ��2.
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Example 2.20. Based on Example 2.18, we conclude that the homogeneous network in
Figure 1 has a quotient symmetry 〈(1 5)〉, since G1 is symmetric with respect to (1 5) in
Figure 6 (left).

In many cases, symmetric properties of the total network may be inherited by quotient
networks. Yet, the following example shows that there is no definite relation between the
(interior) symmetry of the total network and the (interior) symmetry of its quotient networks.

Example 2.21. Consider the three-cell bidirectional ring pictured in Figure 7 (left) which
is S3-symmetric and whose quotient networks have no symmetry or interior symmetry.

Figure 7. Left: an S3-symmetric network which has no quotient (interior) symmetries. Right: a non-
(interior)-symmetric network which has an S3-symmetric quotient network.

Consider the six-cell regular network in Figure 7 (right). It can be verified that it has no
nontrivial symmetry or interior symmetry, but it quotients to the three-cell bidirectional ring
for the balanced equivalence relation {{1, 2}, {3, 4}, {5, 6}}.

However, networks that quotient to (interior) symmetric networks tend to have (interior)
symmetry. Examples are five-cell networks given by Figures 8, 9, and 10, all of which have
a quotient network which is isomorphic to the S3-symmetric network in Figure 7 (left), for
the balanced equivalence relation {{1}, {2, 3}, {4, 5}}. At the same time, they all have interior
symmetries. More examples of this kind can be found in Aguiar et al. [1], where all the five-cell
regular networks admitting the three-cell bidirectional ring as a quotient network are listed.

2.6. Direct sum decomposition of R
n. Let G be an n-cell homogeneous network with

adjacency matrices A1, A2, . . . , As and �� be a balanced equivalence relation on G. As seen
in the previous subsection, there is an associated quotient network G��, whose adjacency
matrices are given by A1�� , A2�� , . . . , As�� (cf. (2.6)). Based on results on regular networks
(cf. section 4 of Golubitsky, Pivato, and Stewart [6]), one can show that �� induces a direct
sum decomposition of Rn such that every Al has a form of block matrix containing Al�� for
l = 1, 2, . . . , s (cf. Theorem 2.9 in Aguiar et al. [1] for regular networks).

More precisely, given a balanced equivalence relation ��, define

Δ��(R
n) = {x ∈ R

n : xc = xd if c �� d ∀c, d ∈ C} ,

which is a linear subspace of Rn. Then, Δ��(R
n) is Al-invariant for every l = 1, 2, . . . , s, since

�� is balanced (cf. Theorem 4.3 in Golubitsky, Stewart, and Török [10]). Let I1, . . . , Ip be the
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��-equivalence classes of order greater than one and let I =
⋃p

l=1 Il. Define

W =

{
x ∈ R

n : xj = 0 ∀j ∈ C \ I and
∑
i∈Il

xi = 0 for 1 ≤ l ≤ p

}
,(2.7)

U = Δ��(R
n).(2.8)

Note that if �� is defined by an interior symmetry σ (cf. subsection 2.4), then both W and U
are σ-invariant subspaces. Since W ∩ U = {0}, we can decompose R

n as a direct sum

(2.9) R
n = W ⊕ U.

Then, with respect to a basis adapted to (2.9), every adjacency matrix Al has a block form

Al =

[
A 0
C Al��

]
,

where Al�� is the lth matrix of the quotient network G�� associated to the balanced equivalence
relation ��.

3. Interior symmetries and multiple eigenvalues: Regular networks. In what follows,
we analyze how the interior symmetry of a homogeneous network may affect the multiplicity
of eigenvalues of the Jacobian at a fully synchronized equilibrium of the associated coupled cell
system. In this section, we discuss the case of regular networks and in section 4, we generalize
the results to homogeneous networks.

Beyond the notion of interior symmetry introduced by Golubitsky, Pivato, and Stewart [6],
we defined in section 2 two further concepts of interior symmetry: the reverse interior symme-
try, which is the interior symmetry of the reverse network, and the quotient interior symmetry,
which is the symmetry of a quotient network.

Remark 3.1. The results presented in the following two sections are stated for interior
symmetry, but they can be easily extended for reverse interior symmetry and quotient interior
symmetry. This follows from the fact that all the arguments we will use are based on the special
form of the adjacency matrices of the networks, which is forced by interior symmetry. Since
analogous forms of adjacency matrices can be also induced by reverse interior symmetry and
quotient interior symmetry, the results also apply to networks with reverse interior symmetry
and quotient interior symmetry. More technically, note that each adjacency matrix Al, for
l = 1, . . . , s, of a homogeneous network G corresponds to the transpose of the adjacency
matrix AR

l of the reverse network GR. Thus, the eigenvalues of Al coincide with those of AR
l .

Consequently, multiple eigenvalues of Al may appear not only due to the interior symmetry of
G, but also due to its reverse interior symmetry. As seen in subsection 2.6, for each quotient
network G�� there is a special basis such that each adjacency matrix Al, for l = 1, . . . , s, of G
has a block lower-triangular form with the adjacency matrix Al�� of the quotient network at
one of the diagonal blocks. Thus, the eigenvalues of the adjacency matrix Al�� of a quotient
network G�� are also eigenvalues of Al. Therefore, multiple eigenvalues of Al may appear not
only due to the interior symmetry of G, but also due to its quotient interior symmetry.
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In summary, from the results presented in the following two sections, it follows that the
interior symmetries, reverse interior symmetries, and quotient interior symmetries of regu-
lar and homogeneous networks favor multiple eigenvalues of the Jacobian matrix at a fully
synchronized equilibrium for the associated coupled cell systems.

Let G be an n-cell regular network with r-dimensional cell internal dynamics. Let μ1, . . . , μn

be the eigenvalues of the adjacency matrix AG of G. As shown in Leite and Golubitsky [13]
and Aguiar et al. [1], the eigenvalues of the Jacobian JG of the associated coupled systems at
a fully synchronized equilibrium are the union of the eigenvalues of the r × r matrices

α+ μjβ for j = 1, . . . , n,

including algebraic multiplicity.
Remark 3.2. It follows that if AG has one eigenvalue with multiplicity ma, then JG has

r eigenvalues with multiplicity at least ma (note that it can also happen that some of the r
eigenvalues are equal).

As mentioned before, interior symmetry imposes restrictions on the network structure and
thus on the entries of the adjacency matrix. By Remark 3.2, to analyze the effect of interior
symmetries on the multiplicity of the eigenvalues of the Jacobian, it is sufficient to concentrate
on the influence of interior symmetries on the multiplicity of the eigenvalues of AG .

As we will see, interior symmetries force the existence of integer eigenvalues for the adja-
cency matrix AG of a regular network G. Moreover, all the eigenvalues λ of AG satisfy ||λ|| ≤ v,
where v is the valency of G. Thus, for regular networks with valency 2, the eigenvalues −1, 0,
and 1 will arise very often in the presence of interior symmetry.

3.1. Product interior symmetry. We show that the case of product interior symmetries
can be inferred from their component symmetries.

Let G be an n-cell regular network having interior symmetry groups ΣSj
for j = 1, . . . , r

on disjoint subsets Sj of cells of G. We say that G has a product interior symmetry

ΣS = ΣS1 × · · · × ΣSr ,

where S =
⋃r

j=1 Sj . Let ��j be the balanced equivalence relation induced by ΣSj for j =
1, . . . , r. Then, the balanced equivalence relation �� induced by ΣS is given by

(3.1) c �� d ⇔ c ��j d for some j.

Set U = Δ��(R
n). Let Ij1 , I

j
2 , . . . , I

j
pj be the ��j -equivalence classes of order greater than one

and let Ij =
⋃pj

l=1 I
j
l . Define

Wj =

⎧⎪⎨
⎪⎩x ∈ R

n : xi = 0 ∀i ∈ C \ Ij and
∑
i∈Ijl

xi = 0 for 1 ≤ l ≤ pj

⎫⎪⎬
⎪⎭ , j = 1, 2 . . . , r.

Let I =
⋃r

j=1 I
j . Note that dimWj = |Sj|−pj , dimU = |C \I|+∑r

j=1 pj and Wi∩Wj = {0},
U ∩Wj = {0} for i �= j, j = 1, 2, . . . , r. Thus, we have

(3.2) R
n = W1 ⊕ · · · ⊕Wr ⊕ U.
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Theorem 3.3. Let G be an n-cell regular network having a product interior symmetry ΣS =
ΣS1 × · · · × ΣSr on disjoint subsets Sj of cells of G. Then, with respect to the decomposition
(3.2), the adjacency matrix AG of G takes the form⎡

⎢⎢⎢⎢⎢⎣

A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ar 0
B1 B2 · · · Br A��

⎤
⎥⎥⎥⎥⎥⎦ ,

where Aj is a matrix of order (|Sj|−pj)×(|Sj|−pj) for j = 1, . . . , r, and A�� is the adjacency
matrix of the quotient network associated with �� (cf. (3.1)).

Proof. LetW be the linear subspace induced by �� (cf. (2.7)). Note thatW = W1⊕· · ·⊕Wr.
Then, as discussed in section 2.6, with respect to the decomposition

R
n = W ⊕ U,

AG takes the form [
A 0
C A��

]
.

It remains to show that A is a block matrix of diagonal form with respect to the dimensions
of the Wj’s, j = 1, . . . , r. Observe that to show that the entries of the jth column of A are all
zeros except those on the diagonal block, it is enough to show that (Wj ⊕U) is AG-invariant.
Let x ∈ Wj for a j ∈ {1, 2, . . . , r} and let y = AGx. We need to show that y ∈ Wj ⊕ U , i.e.,

yi = yl ∀i ��k l, ∀k �= j.

Since x ∈ Wj , the ith component xi of x is zero except when i ∈ Sj. Thus, the value of yi
(resp., yl) depends only on the (i,m)th (resp., (l,m)th) entries of AG , where m ∈ Sj . When
i ��k l and k �= j, we have i, l �∈ Sj . Thus, the (i,m)th entry of AG is equal to the (l,m)th
entry of AG for all m ∈ Sj . It follows that yi = yl for all i ��k l, k �= j.

Therefore, we have AGWj ⊆ Wj⊕U . Combined with the fact AGU ⊆ U , we conclude that
(Wj ⊕ U) is AG -invariant for j = 1, 2, . . . , r.

Corollary 3.4. Under the assumptions of Theorem 3.3, we have that the set of eigenvalues
of the adjacency matrix AG of G is given by the disjoint union of the set of eigenvalues of Aj

and the set of eigenvalues of A�� for j = 1, 2, . . . , r.
Taking into account Theorem 3.3 and Corollary 3.4, in what follows, we shall concentrate

on interior symmetry groups that cannot be written as a product of subgroups. We will
certainly not consider here all subgroups of Sn with this property, as the number of subgroups
increases exponentially with n (cf. Holt [11] for an enumeration of subgroups and conjugacy
classes of the subgroups of Sn for n ≤ 18).

In this paper, we will be primarily interested in the following subgroups of Sn:
(i) the symmetric groups Sk = 〈(i1 . . . ik), (i1 i2)〉, with 2 ≤ k ≤ n;
(ii) the alternating groups Ak, with 2 ≤ k ≤ n;
(iii) the dihedral groups Dk = 〈(i1 . . . ik), (i2 ik)(i3 ik−1) . . . (ij ik+2−j)〉, with 2 ≤ k ≤ n;
(iv) the cyclic groups Zk = 〈(i1 . . . ik)〉, with 2 ≤ k ≤ n.
Note that S2 � D2 � Z2 and S3 � D3.
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3.2. Sk- and Ak-interior symmetry. We show that the following theorem holds.
Theorem 3.5. Let G be an n-cell regular network having an interior symmetry group Sk

or Ak on a subset S ⊆ C of k cells of G for 2 ≤ k ≤ n. Let i and j be any two different
cells in S. Then, the adjacency matrix AG = [aαβ]1≤α,β≤n of G has the eigenvalue aii − aij
with algebraic multiplicity at least k − 1. As a result, the Jacobian JG has r eigenvalues with
algebraic multiplicity at least k − 1.

Proof. Without loss of generality, we can assume S = {1, . . . , k}. First notice that for any
i, j, l,m ∈ S, the product (i j)(l m) of two transpositions is an element in Ak ⊂ Sk. Since G
has an interior symmetry Sk (resp., Ak), the entries of AG satisfy (cf. (2.5))

aii = ajj ∀i, j ∈ S,
ail = ajm ∀i, j, l,m ∈ S, with i �= l and j �= m,
ail = ajl ∀i, j ∈ S and ∀l ∈ C \ S.

Consider the balanced equivalence relation �� induced by Sk (resp., Ak):

�� = {{1, 2, . . . , k}, {k + 1}, . . . , {n}}.

Let W,U be given by (2.7)–(2.8). Then, with respect to (2.9), the adjacency matrix AG takes
the form [

A 0
C A��

]
,

where A is a scalar matrix of order (k−1) with the element (a11−a12) on the diagonal. Thus,
the adjacency matrix AG has the eigenvalue (a11 − a12) with algebraic multiplicity at least
(k − 1). It follows from Remark 3.2 that the Jacobian JG has r eigenvalues with algebraic
multiplicity at least k − 1.

Example 3.6. Let G be a five-cell regular network that quotients to the three-cell bidirec-
tional ring R (cf. Figure 7). Examples of G are networks given in Figures 8, 9, and 10. By
Theorem 3.5, the adjacency matrix of R has −1 as an eigenvalue with algebraic multiplicity 2,
as a result of the S3 (interior) symmetry of R. Thus, due to the S3 quotient interior symmetry
of G, the adjacency matrix of G has −1 as an eigenvalue with algebraic multiplicity at least 2.

3.3. Dk-interior symmetry. We prove the following theorem.
Theorem 3.7. Let G be an n-cell regular network having an interior symmetry group Dk

for some k ∈ {3, . . . , n}. Set

m =

{
(k − 1)/2 if k is odd,

k/2 if k is even.

Then, the adjacency matrix AG = [aij]1≤i,j≤n of G has m eigenvalues with algebraic multiplic-
ity at least 2 if k is odd; AG has (m− 1) eigenvalues with algebraic multiplicity at least 2 if k
is even. As a result, if k is odd (resp., even), then the Jacobian JG has mr (resp., (m− 1)r)
eigenvalues with algebraic multiplicity at least 2.

The following lemma will be needed for the proof of Theorem 3.7.
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Lemma 3.8. Let m ∈ N. Consider the following two matrices of order m×m:

(3.3)

B1 =

⎡
⎢⎢⎢⎣

a11 − a13 a12 − a14 a13 − a15 · · · a1,m−1 − a1,m+1 a1m − a1,m+1

a12 − a14 a11 − a15 a12 − a16 · · · a1,m−2 − a1,m+1 a1,m−1 − a1m
a13 − a15 a12 − a16 a11 − a17 · · · a1,m−3 − a1m a1,m−2 − a1,m−1

· · · · · ·
a1,m−1 − a1,m+1 a1,m−2 − a1,m+1 a1,m−3 − a1m · · · a11 − a14 a12 − a13
a1m − a1,m+1 a1,m−1 − a1m a1,m−2 − a1,m−1 · · · a12 − a13 a11 − a12

⎤
⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎣

a11 + a13 a12 + a14 a13 + a15 · · · a1,m−1 + a1,m+1 a1m + a1,m+1

a12 + a14 a11 + a15 a12 + a16 · · · a1,m−2 + a1,m+1 a1,m−1 + a1m
a13 + a15 a12 + a16 a11 + a17 · · · a1,m−3 + a1m a1,m−2 + a1,m−1

· · · · · ·
a1,m−1 + a1,m+1 a1,m−2 + a1,m+1 a1,m−3 + a1m · · · a11 + a14 a12 + a13
a1m + a1,m+1 a1,m−1 + a1m a1,m−2 + a1,m−1 · · · a12 + a13 a11 + a12

⎤
⎥⎥⎥⎦ ,

+

⎡
⎢⎢⎢⎣

−2a12 −2a12 · · · −2a12 −2a12
−2a13 −2a13 · · · −2a13 −2a13
−2a14 −2a14 · · · −2a14 −2a14

· · ·
−2a1m −2a1m · · · −2a1m −2a1m

−2a1,m+1 −2a1,m+1 · · · −2a1,m+1 −2a1,m+1

⎤
⎥⎥⎥⎦ .

(3.4)

Then, B1 and B2 are similar.
Proof. Notice that any matrix M = (xij)m×m is similar to the matrix (xm−i+1,m−j+1) by

exchanging rows Ri with Rm−i+1 and exchanging columns Ci with Cm−i+1 for 1 ≤ i ≤ m. We
will denote by B̃1 the matrix obtained in this way from B1.

For r = 1, 2, . . . ,m− 1, denote by Or the row operation

Rr � Rr +Rr+1 + · · ·+Rm,

where the rth row is replaced by the sum of the jth row for r ≤ j ≤ m. It suffices to show
that

(3.5) Om−1Om−2 · · ·O2O1B2O
−1
1 O−1

2 · · ·O−1
m−2O

−1
m−1 = B̃1.

Write B2 = (bij)m×m, and denote by C = (cij)m×m the left-hand side of (3.5). We first show
that

(3.6) cij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
p=i

bp1 if j = 1,

m∑
p=i

(bpj − bp,j−1) if 1 < j ≤ m.

Notice that O−1
r represents the column operations

Cr+1 � Cr+1 − Cr, Cr+2 � Cr+2 − Cr, . . . , Cm � Cm − Cr.
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Thus, it is clear that column operations and rth row operations Or for r �= i do not change
the value of the (i, 1)th element. Thus, ci1 is equal to the (i, 1)th element of OiB2, i.e.,

ci1 =

m∑
p=i

bp1.

Assume j > 1. Then, column operations for i ≥ j and row operations for i �= j do
not change the value of the (i, j)th element. Thus, cij is equal to the (i, j)th element of
OiB2O

−1
1 O−1

2 · · ·O−1
j−1. We need to differentiate the cases i < j and i ≥ j, since this deter-

mines the order of the operations.

Case I. i ≥ j. Let c
(l)
ij denote the (i, j)th element of B2O

−1
1 O−1

2 · · ·O−1
j−l for 1 ≤ l ≤ j − 1.

Then,

cij =

m∑
p=i

c
(1)
pj =

m∑
p=i

(c
(2)
pj − c

(2)
p,j−1)

=
m∑
p=i

((c
(3)
pj − c

(3)
p,j−2)− (c

(3)
p,j−1 − c

(3)
p,j−2)) =

m∑
p=i

(c
(3)
pj − c

(3)
p,j−1) = · · ·

=

m∑
p=i

(c
(j−1)
pj − c

(j−1)
p,j−1) =

m∑
p=i

(bpj − bp,j−1).

Case II. i < j. Let c
(l)
ij denote the (i, j)th element of OiB2O

−1
1 O−1

2 · · ·O−1
j−l−1 for 1 ≤ l ≤

j − i, and let c
(l)
ij denote the (i, j)th element of B2O

−1
1 O−1

2 · · ·O−1
j−l for j − i+ 1 ≤ l ≤ j − 1.

Then,

cij = c
(1)
ij − c

(1)
i,j−1

= (c
(2)
ij − c

(2)
i,j−2)− (c

(2)
i,j−1 − c

(2)
i,j−2) = c

(2)
ij − c

(2)
i,j−1 = · · ·

= c
(j−i)
ij − c

(j−i)
i,j−1

=
m∑
p=i

(c
(j−i+1)
pj − c

(j−i+1)
p,j−1 ) =

m∑
p=i

((c
(j−i+2)
pj − c

(j−i+2)
p,j−2 )− (c

(j−i+2)
p,j−1 − c

(j−i+2)
p,j−2 ))

=

m∑
p=i

(c
(j−i+2)
pj − c

(j−i+2)
p,j−1 ) = · · ·

=
m∑
p=i

(c
(j−1)
pj − c

(j−1)
p,j−1) =

m∑
p=i

(bpj − bp,j−1).

Therefore, (3.6) is proved. It remains to show C = B̃1. Recall that aij denotes the (i, j)th
element of the adjacency matrix AG . Consider the vector

v = (a11, a12, a13, . . . , a1m, a1,m+1, a1,m+1, a1m, . . . , a13, a12)
T
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and the shifting operator ρ,

ρv = (a12, a11, a12, a13, . . . , a1m, a1,m+1, a1,m+1, a1m, . . . , a13)
T .

Notation. In the rest of the proof of Lemma 3.8, we use vp to denote the p′th element of
v, with p′ = p (mod k), for p ∈ Z and v ∈ R

k. Also, we use a short-hand notation for (ρv)p:
ρvp.

Due to the symmetric form of v, we have

(3.7) vm+q = vm−q+3, q ∈ Z,

and

(3.8) vp = ρvp+1, vp = ρ−1vp−1, p ∈ Z.

In terms of v and ρ, the matrix B1 consists of the first m rows of the matrix

(v − ρ−2v, ρv − ρ−3v, ρ2v − ρ−4v, . . . , ρm−2v − ρ−mv, ρm−1v − ρ−(m+1)v),

and B2 consists of the first m rows of the matrix

(v + ρ−2v, ρv + ρ−3v, ρ2v + ρ−4v, . . . , ρm−2v + ρ−mv, ρm−1v + ρ−(m+1)v)− 2(ρ−1v, . . . , ρ−1v).

Assume that 1 ≤ i ≤ m, 1 < j ≤ m. By (3.6), we have

cij =

m∑
p=i

(bpj − bp,j−1) =

m∑
p=i

(
(ρj−1vp + ρ−j−1vp)− (ρj−2vp + ρ−jvp)

)
(3.8)
= ρj−1vi − ρ−jvi + ρ−j−1vm − ρj−2vm

(3.8)
= vi−j+1 − vi+j + vm+j+1 − vm−j+2

(3.7)
= vi−j+1 − vi+j .(3.9)

On the other hand, the (i, j)th element of B̃1 is equal to the (m− i+1,m− j +1)th element
of B1, which is equal to

(3.10) ρm−jvm−i+1 − ρ−m+j−2vm−i+1
(3.8)
= vj−i+1 − v2m−i−j+3.

By (3.7), we also have

(3.11) vi−j+1 = vk+i−j+1 = v2m+1+i−j+1 = vm+(m+i−j+2)
(3.7)
= vj−i+1

and

(3.12) v2m−i−j+3 = vm+(m−i−j+3)
(3.7)
= vi+j.

It follows from (3.9)–(3.12) that the (i, j)th element of C coincides with the (i, j)th element
of B̃1 for 1 ≤ i ≤ m, 1 < j ≤ m.
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The case of j = 1 can be similarly proved. By (3.6), we have

ci1 =

m∑
p=i

bp1 =

m∑
p=i

(vp + ρ−2vp − 2ρ−1vp)

(3.8)
= vi − ρ−1vi + ρ−2vm − ρ−1vm

(3.8)
= vi − vi+1 + vm+2 − vm+1

(3.7)
= vi − vi+1

(3.11)–(3.12)
= v2−i − v2m−i+2

(3.8)
= ρm−1vm−i+1 − ρ−m−1vm−i+1,

which is the (i, 1)th element of B̃1.
Consequently, we showed that C = B̃1 and thus (3.5) holds.
Proof of Theorem 3.7. Without loss of generality, assume G has an interior symmetry Dk

on the cells {1, . . . , k}. Due to this interior symmetry, the entries of AG satisfy

aij = al(j+l−i)(mod k) for i, j, l ∈ {1, . . . , k},
aij = alj for i, l ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n},
a1j = a1(k−j+2) for j ∈ {2, . . . ,m,m+ 1}.

Thus, AG has the form

(3.13) AG =

[
A D
E F

]
,

where D is a k × (n− k) matrix with all rows equal and A is a (symmetric) circulant matrix

A =

{
circ(a11a12a13 . . . a1m+1a1m+1 . . . a13a12) if k is odd,

circ(a11a12a13 . . . a1ma1m+1a1m . . . a13a12) if k is even.

It follows from (2.4) that the eigenvalues λj, j = 0, . . . , k − 1, of A are real and satisfy
λj = λk−j for j = 1, . . . ,m. That is, A has m eigenvalues with algebraic multiplicity at least
2 if k is odd; A has (m− 1) eigenvalues with algebraic multiplicity at least 2 if k is even. Our
goal is to prove the same property for AG .

Case I. Assume that k is odd. Consider the balanced equivalence relation ��= {{1, 2, . . . , k},
{k+1}, . . . , {n}} induced by Dk. Motivated by the direct sum decomposition (2.9), we define
a basis B = {b1, b2, . . . , bn} in R

n by

(3.14) bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ei+1 − ek−i+1 for 1 ≤ i ≤ m,

−2e1 + ei−m+1 + ek−i+m+1 for m+ 1 ≤ i ≤ 2m,

e1 + e2 + · · · + ek for i = k,

ei for k + 1 ≤ i ≤ n,

where {e1, e2, . . . , en} denote the standard basis in R
n (cf. Example 3.9 for k = 7). Then, the

adjacency matrix AG in the basis B has the form

B−1AGB =

⎡
⎣ B1 0

0 B2
0

C A��

⎤
⎦ ,
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where B1, B2 are matrices of order m×m given by (3.3)–(3.4) and A�� is the adjacency matrix
of the quotient network induced by ��. By Lemma 3.8, B1 and B2 are similar matrices and
thus have the same eigenvalues. Consequently, AG has m eigenvalues of multiplicity at least 2.
It follows from Remark 3.2 that the Jacobian JG hasmr eigenvalues with algebraic multiplicity
at least 2.

Notice that we can obtain an “optimal” basis B̃ by applying the operations specified in
the proof of Lemma 3.8 to B, so that AG has two copies of B1 lying on the diagonal. More
precisely, let R = Om−1Om−2 · · ·O2O1 be the total row operation on B2 and S the total row
switching operation such that SB1S

−1 = B̃1. Then, we have

SRB2R
−1S−1 = B1.

Set

O =

⎡
⎣ Im 0 0

0 SR 0
0 0 In−2m

⎤
⎦ ,

where Ii stands for the identity matrix of order i× i. Define a new basis by

B̃ = BO−1.

Then, the adjacency matrix AG has the form

B̃−1
AGB̃ =

⎡
⎣ B1 0

0 B1
0

C ′ A��

⎤
⎦ .

A precise formula of B̃ = {b̃1, b̃2, . . . , b̃n} is given by

(3.15) b̃i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ei+1 − ek−i+1 for 1 ≤ i ≤ m,

−ek−i + ek−i+1 + ei+1 − ei+2 for m+ 1 ≤ i ≤ 2m− 1,

−2e1 + e2 + ek for i = 2m,

e1 + e2 + · · ·+ ek for i = 2m+ 1 = k,

ei for k + 1 ≤ i ≤ n

(cf. Example 3.9 for k = 7).
Case II. Assume that k is even. Similar to the case of odd k, we try to find an optimal

basis for the diagonal form of AG . Motivated by the direct sum decomposition (2.9), define
the following basis B:

(3.16) bi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ei+1 − ek−i+1 for 1 ≤ i ≤ m− 1,

e1 − e2 + e3 − e4 + · · ·+ ek−1 − ek for i = m,

−2e1 + ei−m+1 + ek−i+m+1 for m+ 1 ≤ i ≤ 2m− 1,

e1 + e2 + · · ·+ ek for i = 2m = k,

ei for k ≤ i ≤ n
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(cf. Example 3.10 for k = 8). Then, the adjacency matrix AG in the basis B has the form

B−1AGB =

⎡
⎢⎢⎣

B1 0

0
a ∗
0 B2

0

C A��

⎤
⎥⎥⎦ ,

where B1, B2 are matrices of order (m− 1)× (m− 1),

(3.17) a = a11 − 2a12 + 2a13 − 2a1,4 + · · ·+ (−1)m−12a1,m + (−1)ma1,m+1,

and A�� is the adjacency matrix of the quotient network. More precisely,

B1 =

⎡
⎢⎢⎢⎢⎣

a11 − a13 a12 − a14 a13 − a15 · · · a1,m−1 − a1,m+1

a12 − a14 a11 − a15 a12 − a16 · · · a1,m−2 − a1,m
a13 − a15 a12 − a16 a11 − a17 · · · a1,m−3 − a1,m−1

· · · · · · · · · · · ·
a1,m−1 − a1,m+1 a1,m−2 − a1,m a1,m−3 − a1,m−1 · · · a11 − a13

⎤
⎥⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎢⎣

a11 + a13 a12 + a14 a13 + a15 · · · a1,m−1 + a1,m+1

a12 + a14 a11 + a15 a12 + a16 · · · a1,m−2 + a1,m
a13 + a15 a12 + a16 a11 + a17 · · · a1,m−3 + a1,m−1

· · · · · · · · · · · ·
a1,m−1 + a1,m+1 a1,m−2 + a1,m a1,m−3 + a1,m−1 · · · a11 + a13

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

2a1m − 2a1,m+1 2a1,m−1 − 2a1,m+1 · · · 2a12 − 2a1,m+1

−2a1m + 2a1,m+1 −2a1,m−1 + 2a1,m+1 · · · −2a12 + 2a1,m+1

2a1m − 2a1,m+1 2a1,m−1 − 2a1,m+1 · · · 2a12 − 2a1,m+1

· · · · · · · · ·
(−1)m(2a1m − 2a1,m+1) (−1)m(2a1,m−1 − 2a1,m+1) · · · (−1)m(2a12 − 2a1,m+1)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

−2a12 −2a12 · · · −2a12
−2a13 −2a13 · · · −2a13
−2a14 −2a14 · · · −2a14
· · · · · · · · ·

−2a1m −2a1m · · · −2a1m

⎤
⎥⎥⎥⎥⎦ .

Analogously to Lemma 3.8, one can show that B1 and B2 are similar. Indeed, denote by
Or the row operation

Rr � Rr + 2Rr+1 − 2Rr+2 + · · ·+ (−1)m−r2Rm−1, r = 1, 2, . . . ,m− 2.

Then,

(3.18) O1O2 · · ·Om−3Om−2B2O
−1
m−2O

−1
m−3 · · ·O−1

2 O−1
1 = B1.

By applying the operations specified in (3.18) to B, we can obtain a new basis B̃. Let R =
O1O2 · · ·Om−3Om−2. Define

O =

⎡
⎣ Im 0 0

0 R 0
0 0 In−2m+1

⎤
⎦ , B̃ = BO−1.
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Then, the adjacency matrix AG in the basis B̃ has the form

B̃−1
AGB̃ =

⎡
⎢⎢⎣

B1 0

0
a ∗′
0 B1

0

C ′′ A��

⎤
⎥⎥⎦ .

It follows that AG has (m− 1) eigenvalues of multiplicity at least 2 and thus, by Remark 3.2,
the Jacobian JG has (m− 1)r eigenvalues with algebraic multiplicity at least 2.

A precise formula of B̃ = {b̃1, . . . , b̃n} is given by

(3.19) b̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei+1 − ek−i+1 for 1 ≤ i ≤ m− 1,

e1 − e2 + e3 − e4 + · · ·+ ek−1 − ek for i = m,

(−1)i−m2(e1 − e2 + · · · + (−1)i−m−1ei−m) + ei−m+1 + ek−i+m+1

for m+ 1 ≤ i ≤ 2m− 1,

e1 + e2 + · · · + ek for i = 2m = k,

ei for k + 1 ≤ i ≤ n

(cf. Example 3.10 for k = 8).
Example 3.9. Let G be a nine-cell regular network with an interior symmetry D7 on the

cells {1, 2, 3, 4, 5, 6, 7}. Then, with respect to the basis (cf. (3.14))

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2 −2 −2 1 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0 0
0 0 −1 0 0 1 1 0 0
0 −1 0 0 1 0 1 0 0
−1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the adjacency matrix AG has the form

B−1AGB =

⎡
⎣ B1 0

0 B2
0

C1 C2 A��

⎤
⎦ ,
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where

B1 =

⎡
⎣ a11 − a13 a12 − a14 a13 − a14

a12 − a14 a11 − a14 a12 − a13
a13 − a14 a12 − a13 a11 − a12

⎤
⎦ ,

B2 =

⎡
⎣ a11 − 2a12 + a13 −a12 + a14 a13 − 2a12 + a14

a12 − 2a13 + a14 a11 − 2a13 + a14 a12 − a13
a13 − a14 a12 − 2a14 + a13 a11 − 2a14 + a12

⎤
⎦ ,

A�� =

⎡
⎣ a11 + 2a12 + 2a13 + 2a14 a18 a19

a81 + a82 + a83 + a84 + a85 + a86 + a87 a88 a89
a91 + a92 + a93 + a94 + a95 + a96 + a97 a98 a99

⎤
⎦

and

C1 =

⎡
⎣ 0 0 0

a82 − a87 a83 − a86 a84 − a85
a92 − a97 a93 − a96 a94 − a95

⎤
⎦ ,

C2 =

⎡
⎣ 0 0 0

−2a81 + a82 + a87 −2a81 + a83 + a86 −2a81 + a84 + a85
−2a91 + a92 + a97 −2a91 + a93 + a96 −2a91 + a94 + a95

⎤
⎦ .

Consider a new basis (cf. (3.15))

B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −2 1 0 0
1 0 0 0 −1 1 1 0 0
0 1 0 −1 1 0 1 0 0
0 0 1 1 0 0 1 0 0
0 0 −1 1 0 0 1 0 0
0 −1 0 −1 1 0 1 0 0
−1 0 0 0 −1 1 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the adjacency matrix AG is of the form

B̃−1
AGB̃ =

⎡
⎣ B1 0

0 B1
0

C ′
1 C ′

2 A��

⎤
⎦ ,

where

C ′
1 =

⎡
⎣ 0 0 0

a82 − a87 a83 − a86 a84 − a85
a92 − a97 a93 − a96 a94 − a95

⎤
⎦ ,

C ′
2 =

⎡
⎣ 0 0 0

−a83 + a84 + a85 − a86 −a82 + a83 + a86 − a87 −2a81 + a82 + a87
−a93 + a94 + a95 − a96 −a92 + a93 + a96 − a97 −2a91 + a92 + a97

⎤
⎦ .
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Example 3.10. Let G be a 10-cell regular network with an interior symmetry D8 on the
cells {1, 2, 3, 4, 5, 6, 7, 8}. Then, with respect to the basis (cf. (3.16))

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 −2 −2 −2 1 0 0
1 0 0 −1 1 0 0 1 0 0
0 1 0 1 0 1 0 1 0 0
0 0 1 −1 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 0
0 0 −1 −1 0 0 1 1 0 0
0 −1 0 1 0 1 0 1 0 0
−1 0 0 −1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the adjacency matrix AG has the form

B−1AGB =

⎡
⎢⎢⎣

B1 0

0
a a1
0 B2

0

C1 C2 C3 A��

⎤
⎥⎥⎦ ,

where a = a11 − 2a12 + 2a13 − 2a1,4 + a15,

a1 = [2a14 − 2a15, 2a13 − 2a15, 2a12 − 2a15],

B1 =

⎡
⎣ a11 − a13 a12 − a14 a13 − a15

a12 − a14 a11 − a15 a12 − a14
a13 − a15 a12 − a14 a11 − a13

⎤
⎦ ,

B2 =

⎡
⎣ a11 − 2a12 + a13 + 2a14 − 2a15 −a12 + 2a13 + a14 − 2a15 a13 − a15

a12 − 2a13 − a14 + 2a15 a11 − 4a13 + 3a15 −a12 − 2a13 + a14 + 2a15
a13 − a15 a12 + 2a13 − a14 − 2a15 a11 + 2a12 + a13 − 2a14 − 2a15

⎤
⎦,

A�� =

⎡
⎣ a11 + 2a12 + 2a13 + 2a14 + a15 a19 a1,10

a91 + a92 + a93 + a94 + a95 + a96 + a97 + a98 a99 a9,10
a10,1 + a10,2 + a10,3 + a10,4 + a10,5 + a10,6 + a10,7 + a10,8 a10,9 a10,10

⎤
⎦ ,

and

C1 =

⎡
⎣ 0 0 0

a92 − a98 a93 − a97 a94 − a96
a10,2 − a10,8 a10,3 − a10,7 a10,4 − a10,6

⎤
⎦ ,

C2 =

⎡
⎣ 0

a91 − a92 + a93 − a94 + a95 − a96 + a97 − a98
a10,1 − a10,2 + a10,3 − a10,4 + a10,5 − a10,6 + a10,7 − a10,8

⎤
⎦ ,

C3 =

⎡
⎣ 0 0 0

−2a91 + a92 + a98 −2a91 + a93 + a97 −2a91 + a94 + a96
−2a10,1 + a10,2 + a10,8 −2a10,1 + a10,3 + a10,7 −2a10,1 + a10,4 + a10,6

⎤
⎦ .
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Consider a new basis (cf. (3.19))

B̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 −2 2 −2 1 0 0
1 0 0 −1 1 −2 2 1 0 0
0 1 0 1 0 1 −2 1 0 0
0 0 1 −1 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 0
0 0 −1 −1 0 0 1 1 0 0
0 −1 0 1 0 1 −2 1 0 0
−1 0 0 −1 1 −2 2 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the adjacency matrix AG is of the form

B̃−1
AGB̃ =

⎡
⎢⎢⎣

B1 0

0
a a′1
0 B1

0

C ′
1 C ′

2 C ′
3 A��

⎤
⎥⎥⎦ ,

where a′1 = [2a14 − 2a15, 2a13 − 4a14 + 2a15, 2a12 − 4a13 + 4a14 − 2a15],

C ′
1 =

⎡
⎣ 0 0 0

a92 − a98 a93 − a97 a94 − a96
a10,2 − a10,8 a10,3 − a10,7 a10,4 − a10,6

⎤
⎦ ,

C ′
2 =

⎡
⎣ 0

a91 − a92 + a93 − a94 + a95 − a96 + a97 − a98
a10,1 − a10,2 + a10,3 − a10,4 + a10,5 − a10,6 + a10,7 − a10,8

⎤
⎦ ,

C ′
3 =

⎡
⎣ 0 0 0

−2a91 + a92 + a98 2a91 − 2a92 + a93 + a97 − 2a98 −2a91 + 2a92 − 2a93 + a94 + a96 − 2a97 + 2a98
−2a10,1 + a10,2 + a10,8 2a10,1 − 2a10,2 + a10,3 + a10,7 − 2a10,8 −2a10,1 + 2a10,2 − 2a10,3 + a10,4 + a10,6 − 2a10,7 + 2a10,8

⎤
⎦ .

3.4. ΣS-interior symmetry with Dk ⊆ ΣS ⊆ Sk. In this subsection, we consider regular
networks G with an interior symmetry group ΣS with Dk ⊆ ΣS ⊆ Sk. Besides the result of
Theorem 3.7 that applies to G, we show that the multiplicity of the eigenvalues of the adjacency
matrix AG can be directly analyzed using the eigenvalues of the circulant part A of AG .

As shown in subsection 3.3, the adjacency matrix of a regular network having an interior
symmetry at least Dk is of the form

(3.20) AG =

[
A D
E F

]
,

where D is a k× (n− k) matrix with all rows equal and A is a circulant matrix of order k× k
being of the form

(3.21) A =

{
circ(a11a12a13 . . . a1m+1a1m+1 . . . a13a12) if k is odd,

circ(a11a12a13 . . . a1ma1m+1a1m . . . a13a12) if k is even.
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It follows from (2.4) that the eigenvalues λj, j = 0, . . . , k − 1, of A are real and satisfy
λj = λk−j for j = 1, . . . ,m. That is, A has m eigenvalues with algebraic multiplicity at least
2 if k is odd; A has (m− 1) eigenvalues with algebraic multiplicity at least 2 if k is even. In
Theorem 3.7 we proved the same property for AG .

Now, using the proof of Theorem 3.7, we show that the following theorem holds.
Theorem 3.11. Let G be an n-cell regular network with an interior symmetry ΣS such that

Dk ⊆ ΣS ⊆ Sk. Let AG be the adjacency matrix of G, let A be given by (3.21), and let λj

be eigenvalues of A for j = 0, . . . , k − 1 given by (2.4). Then, there exists a basis B of R
n,

which is independent of entries of AG , such that

(3.22) B−1AGB =

[
Λ 0
C A��

]
for Λ =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
. . .

...
0 0 · · · λk−1

⎤
⎥⎥⎥⎦ ,

where A�� is the adjacency matrix of the quotient network induced by ΣS.
Proof. Consider the k-cell regular network Go whose adjacency matrix is given by A in

(3.20). Since G is ΣS -interior symmetric, Go is ΣS -symmetric. Let B̃o be a basis in R
k given

by (3.15) for odd k and (3.19) for even k. As shown in the proof of Theorem 3.7, we have

B̃−1
o AB̃o =

[
M 0
0 λ0

]
,

where M is a matrix of order (k − 1)× (k − 1) of the form

M =

[
B1 0
0 B1

]
or

⎡
⎣ B2 0

0
a ∗′
0 B2

⎤
⎦

for odd k or even k, respectively.
Let vj be the eigenvector of λj given by (2.3) for j = 0, 1, . . . , k−1. Set V = {v1, . . . , vk−1, v0}.

Then,

V −1AV =

[
Λ 0
0 λ0

]
.

Thus, we have (B̃−1
o V

)−1
[
M 0
0 λ0

] (B̃−1
o V

)
=

[
Λ 0
0 λ0

]
.

Moreover, it can be verified that

B̃−1
o V =

[
X 0
0 1

]

for a matrix X of order (k − 1)× (k − 1). Consequently, we have

X−1MX = Λ.
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On the other hand, let B̃ be a basis in R
n given by (3.15) for odd k and by (3.19) for even k.

Then,

B̃−1
AGB̃ =

[
M 0
C ′ A��

]
.

Now set

X̃ =

[
X 0
0 In−k+1

]
, B := B̃X̃.

Then, B is a basis such that (3.22) holds for C = C ′X. Moreover, B is also independent of
the entries of AG , since both B̃o and V are independent of the entries of AG .

Consequently, the influence of ΣS on the eigenvalues of AG , and thus of JG , can be directly
examined by looking at the eigenvalues of A.

Example 3.12. Let k = 12, m = 6, and n > 12. Consider an n-cell regular network
G with an interior symmetry at least D12 on the set of cells {1, 2, . . . , 12}. Let AG be the
adjacency matrix, A be the circulant part of AG (cf. (3.20)), and λj be the eigenvalues of A
for j = 0, 1, . . . , 11. By (2.4), λj = λ12−j for j = 1, 2, . . . , 5, and, denoting by λi,j both the
eigenvalues λi and λj , we have

λ0 = a11 + 2a12 + 2a13 + 2a14 + 2a15 + 2a16 + a17(= a��),

λ1,11 = a11 + r1a12 + r2a13 − r2a15 − r1a16 − a17,

λ2,10 = a11 + r2a12 − r2a13 − 2a14 − r2a15 + r2a16 + a17,

λ3,9 = a11 − 2a13 + 2a15 − a17,

λ4,8 = a11 − r2a12 − r2a13 + 2a14 − r2a15 − r2a16 + a17,

λ5,7 = a11 − r1a12 + r2a13 − r2a15 + r1a16 − a17,

λ6 = a11 − 2a12 + 2a13 − 2a14 + 2a15 − 2a16 + a17(= a),

where r1 = 2Reω1 =
√
3, r2 = 2Reω2

1 = 1. Note that
(i) if a12 = a16, then λ1,11 = λ5,7;
(ii) if a12 = a16 and a13 = a15, then λ1,11 = λ3,9 = λ5,7;
(iii) if a12 = a13 = a14 = a16 = a17 and a11 = a15, then λ1,11 = λ2,10 = λ5,7 and λ3,9 = λ6;
(iv) if a11 = a12 = a13 = a15 = a16 = a17, then λ1,11 = λ3,9 = λ5,7 and λ2,10 = λ6;
(v) if a12 = a13 = a15 = a16 and a14 = a17, then λ1,11 = λ2,10 = λ3,9 = λ5,7;
(vi) if a12 = a13 = a14 = a15 = a16 = a17, then λ1,11 = λ2,10 = λ3,9 = λ4,8 = λ5,7 = λ6.

Thus, by Theorem 3.11, the following hold for any n-cell regular network G with n ≥ 12 having
a ΣS -interior symmetry:

(i) if ΣS = 〈D12, (2 6 8 12)(3 11)(4 10)(5 9)〉, then AG has 3 eigenvalues of multiplicity at
least 2 and 1 eigenvalue of multiplicity at least 4;

(ii) if ΣS = 〈D12, (2 6 8 12)(3 5 9 11)(4 10)〉, then AG has 2 eigenvalues of multiplicity at
least 2 and 1 eigenvalue of multiplicity at least 6;

(iii) if ΣS = 〈D12, (1 5 9)(2 3 4 6 7 8 10 11 12)〉, then AG has 1 eigenvalue of multiplicity
at least 2, 1 eigenvalue of multiplicity at least 3, and 1 eigenvalue of multiplicity at
least 6;
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(iv) if ΣS = 〈D12, (4 10)(1 2 3 5 6 7 8 9 11 12)〉, then AG has 1 eigenvalue of multiplicity
at least 2, 1 eigenvalue of multiplicity at least 3, and 1 eigenvalue of multiplicity at
least 6;

(v) if ΣS = 〈D12, (2 3 5 6 8 9 11 12)(4 7 10)〉, then AG has 1 eigenvalue of multiplicity at
least 2 and 1 eigenvalue of multiplicity at least 8;

(vi) if ΣS = 〈D12, (2 3 4 5 6 7 8 9 10 11 12)〉 = S12, then AG has 1 eigenvalue of multiplicity
at least 11.

3.5. Zk-interior symmetry. Consider an n-cell regular network G with adjacency matrix
AG = [aij ]1≤i,j≤n, which has an interior symmetry Zk for some 3 ≤ k < n on some subset of
k cells which, up to a reordering of the cells, we can assume to be the first k cells. Then,

AG =

[
A D
E F

]
,

where D is a k × (n− k) matrix with all rows equal and A is a circulant matrix,

A = circ(a11, a12, a13, . . . , a1k).

Examples show that in general, AG does not have multiple eigenvalues due to Zk-interior
symmetry. In fact, even with additional equalities on {a12, a13, . . . a1k}, as long as the resulting
symmetry is less than Dk, AG seems to be free of multiple eigenvalues in general.

3.6. Cyclic interior symmetry of regular uniform networks. Despite the fact that cyclic
interior symmetries are not sufficient for the adjacency matrix of regular networks to have
multiple eigenvalues, this may become different if they are uniform networks.

Recall that uniform regular networks are regular networks without multiple arrows or self-
coupling arrows (cf. Stewart [16]). In the next two subsections, we analyze two particular types
of cyclic interior symmetry groups and show their influence on the multiplicity of eigenvalues
of adjacency matrices of uniform networks. As we will see, for regular uniform networks,
interior symmetry forces the existence of eigenvalues in {−2,−1, 0, 1}.

3.6.1. Z2 × · · · × Z2-interior symmetry. We show that the following theorem holds.
Theorem 3.13. Let G be an n-cell regular network with a product interior symmetry Z2 ×

· · · × Z2 on r disjoint subsets Sk = {ik, jk} of cells of G for k = 1, 2, . . . , r. Then, the
adjacency matrix AG = [aij ]1≤i,j≤n of G has r eigenvalues (aikik − aikjk) for k = 1, 2, . . . , r.
Moreover, if G is a uniform network, then (aikik − aikjk) ∈ {−1, 0, 1} for k = 1, 2, . . . , r.

Proof. Without loss of generality, we assume Sk = {2k − 1, 2k} for k = 1, 2, . . . , r. Then,

Z2 × · · · × Z2 = 〈(1 2), . . . , (2r − 1 2r)〉.
Due to this interior symmetry, the entries of AG satisfy

aii = ai+1,i+1, ai,i+1 = ai+1,i, and ail = ai+1,l

for all i = 1, 3, . . . , 2r − 1 and for all l �= i, i+ 1.
Consider the balanced equivalence relation

��= {{1, 2}, {3, 4}, . . . , {2r − 1, 2r}, {2r + 1}, . . . , {n}}
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induced by Z2 × · · · × Z2 and the basis B = {b1, b2, . . . , bn} given by

bk =

⎧⎪⎨
⎪⎩
e2k−1 − e2k if 1 ≤ k ≤ r,

e2(k−r)−1 + e2(k−r) if r + 1 ≤ k ≤ 2r,

ek if 2r + 1 ≤ k ≤ n,

adapted to the decomposition in (3.2). It follows from Theorem 3.3 that

B−1AGB =

[
A 0
B A��

]
,

where

A =

⎡
⎢⎢⎢⎢⎣

a11 − a12 0 0 · · · 0
0 a33 − a34 0 · · · 0
0 0 a55 − a56 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · a2r−1,2r−1 − a2r−1,2r

⎤
⎥⎥⎥⎥⎦ .

Thus, (a2k−1,2k−1 − a2k−1,2k) are eigenvalues of AG for k = 1, 2, . . . , r.
If G is a uniform network, then aij ∈ {0, 1} and, consequently, (a2k−1,2k−1 − a2k−1,2k) ∈

{−1, 0, 1} for k = 1, 2, . . . , r.
Corollary 3.14. Let G be an n-cell uniform network with a product interior symmetry Z2×

· · · × Z2 on r disjoint subsets Sk of cells of G for k = 1, 2, . . . , r. Assume that r ≥ 4. Then,
the adjacency matrix AG of G has at least one multiple eigenvalue.

Proof. By Theorem 3.13, AG = [aij ]1≤i,j≤n has r eigenvalues λk := aikik−aikjk ∈ {−1, 0, 1}
for k = 1, 2, . . . , r. Thus, if r ≥ 4, values of λk’s must be duplicated for some k.

Example 3.15. Let G be the five-cell uniform network given in Figure 8 and let AG =
[aij]5×5 be the adjacency matrix.

Figure 8. The five-cell uniform network G in Example 3.15.

The network G has an interior symmetry group Z2 × Z2 = 〈(2 3), (4 5)〉. It follows from
Theorem 3.13 that a22 − a23 = 0 and a44 − a45 = 0 are eigenvalues of AG . Thus, 0 is an
eigenvalue of algebraic multiplicity at least 2 for AG .

Moreover, consider the balanced equivalence relation ��= {{1}, {2, 3}, {4, 5}} induced by
Z2 × Z2 = 〈(2 3), (4 5)〉. Then, the quotient network G�� has an interior symmetry S3 on the
set C�� = {[1]��, [2]��, [3]��} for [1]�� = {1}, [2]�� = {2, 3}, and [3]�� = {4, 5}. Let A�� = [āij ]3×3

be the adjacency matrix of G��. By Theorem 3.5, ā11 − ā12 = −1 is an eigenvalue of algebraic
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multiplicity at least 2 for the adjacency matrix A��. Thus, by Theorem 3.3 and Corollary 3.4,
−1 is an eigenvalue of algebraic multiplicity 2 for AG .

Last, the remaining eigenvalue of AG is given by the valency 2 of the network.
Example 3.16. Let G be the five-cell uniform network given in Figure 9 and let AG =

[aij]5×5 be the adjacency matrix. Using Theorem 3.3, Corollary 3.4, and Theorem 3.13, we
show that besides the valency 2 of the network, AG has 0 and −1 as eigenvalues, both with
algebraic multiplicity 2.

Figure 9. The five-cell uniform network G in Example 3.16.

We first consider the interior symmetry group Z2 = 〈(2 3)〉 of G. Then, the eigenvalues
of AG are a22 − a23 = 0 with algebraic multiplicity at least 1 and those of the quotient
network G��1 induced by the balanced equivalence relation ��1= {[1]��1 , [2]��1 , [3]��1 , [4]��1} for
[1]��1 = {1}, [2]��1 = {2, 3}, [3]��1 = {4}, and [4]��1 = {5}.

The quotient network G��1 , in turn, has an interior symmetry Z2 = 〈([2]��1 [4]��1)〉. Let
A��1 = (ā1ij)4×4 be the adjacency matrix of G��1 . Then, the eigenvalues of A��1 are ā122− ā124 =
(a22+a23)−a25 = −1 with algebraic multiplicity at least 1 and those of the quotient network
G��2 induced by the balanced equivalence relation ��2= {[1]��2 , [2]��2 , [3]��2} for [1]��2 = {[1]��1},
[2]��2 = {[2]��1 , [4]��1}, and [3]��2 = {[3]��1}.

Further, the quotient network G��2 has an interior symmetry Z2 = 〈([1]��2 [3]��2)〉. Let
A��2 = (ā2ij)3×3 be the adjacency matrix of G��2 . Then, the eigenvalues of A��2 are ā211− ā213 =
a11 − a14 = −1 with algebraic multiplicity at least 1 and those of the quotient network
G��3 for the balanced equivalence relation ��3= {[1]��3 , [2]��3} with [1]��3 = {[1]��2 , [3]��2} and
[2]��3 = {[2]��2}.

The quotient network G��3 also has an interior symmetry Z2 = 〈([1]��3 [2]��3)〉. Let A��3 =
(ā3ij)2×2 be the adjacency matrix of G��3 . By Theorem 3.13, ā311 − ā312 = (a11 + a14)− (a12 +
a13 + a15) = 0 is an eigenvalue of algebraic multiplicity 1 for A��3 .

3.6.2. V4-interior symmetry. In this subsection we discuss n-cell uniform networks with
an interior symmetry group

V4 := 〈(i j)(k l), (i k)(j l)〉 ⊂ Sn,

where i, j, k, l are distinct cells of G.
Theorem 3.17. Let G be an n-cell uniform network having an interior symmetry group

V4 = 〈(i j)(k l), (i k)(j l)〉 ⊂ Sn on a subset {i, j, k, l} of cells of G. Then, the adjacency
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matrix AG = [aαβ ]1≤α,β≤n has the 3 eigenvalues

−aij + aik − ail,
−aij − aik + ail,
aij − aik − ail,

which take value in {−2,−1, 0, 1}.
Proof. Due to the interior symmetry Z2 = 〈(i j)(k l)〉, the entries of AG satisfy

aii = ajj, aij = aji, aik = ajl, ail = ajk, and aim = ajm ∀m �= i, j, k, l,
akk = all, akl = alk, aki = alj , akj = ali, and akm = alm ∀m �= i, j, k, l.

Due to the interior symmetry Z2 = 〈(i k)(j l)〉, they satisfy

aii = akk, aik = aki, aij = akl, ail = akj, and aim = akm ∀m �= i, j, k, l,
ajj = all, ajl = alj, aji = alk, ajk = ali, and ajm = alm ∀m �= i, j, k, l.

Thus, due to the interior symmetry V4, the entries of AG satisfy

(3.23)
aii = ajj = akk = all, aij = aji = akl = alk, aik = ajl = aki = alj ,
ail = ajk = akj = ali, aim = ajm = akm = alm ∀m �= i, j, k, l.

Without loss of generality, we assume i = 1, j = 2, k = 3, and l = 4. Let �� be the balanced
equivalence relation induced by Z2 = 〈(1, 2)(3, 4)〉, i.e.,

��= {{1, 2}, {3, 4}, {5}, . . . , {n}}.
Let W,U be given by (2.7)–(2.8). Then, we have

R
n = W ⊕ U.

A basis B = {b1, b2, . . . , bn} adapted to this decomposition is given by

bk =

⎧⎪⎨
⎪⎩
e2k−1 − e2k if 1 ≤ k ≤ 2,

e2(k−2)−1 + e2(k−2) if 3 ≤ k ≤ 4,

ek if 5 ≤ k ≤ n.

Then, the adjacency matrix AG in the basis B has the form

B−1AGB =

[
A 0
C A��

]
,

where

A =

[
a11 − a12 a13 − a14
a13 − a14 a11 − a12

]
.

Since G is uniform, we have a11 = 0. Thus, A has eigenvalues (−a12 ± (a13 − a14)), which are
also eigenvalues of AG . Similarly, using symmetry Z2 = 〈(13)(24)〉, one can show that AG has
eigenvalues (−a13 ± (a12 − a14)). Thus, altogether AG has the following 3 eigenvalues:

−a12 + a13 − a14, −a12 − a13 + a14, a12 − a13 − a14,
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which take value in {−2,−1, 0, 1}, since aαβ ∈ {0, 1}.
Corollary 3.18. Let G be an n-cell uniform network with adjacency matrix AG = [aαβ ]1≤α,β≤n

having an interior symmetry group V4 � Z2 = 〈(i j)(k l), (i k)(j l), (a b)〉 ⊂ Sn on a subset
S = {i, j, k, l} of cells of G, with a �= b in S. If (a b) = (i j) or (a b) = (k l), then
−aij ∈ {−2,−1, 0, 1} is an eigenvalue of AG with algebraic multiplicity at least 2. Analo-
gously, if (a b) = (i k) or (a b) = (j l), then −aik ∈ {−2,−1, 0, 1} is an eigenvalue of AG
with algebraic multiplicity at least 2; if (a b) = (i l) or (a b) = (j k), then −ail ∈ {−2,−1, 0, 1}
is an eigenvalue of AG with algebraic multiplicity at least 2.

Proof. Consider AG as a network having V4 as an interior symmetry group. Then, by
Theorem 3.17, AG has the following 3 eigenvalues:

−aij + aik − ail, −aij − aik + ail, aij − aik − ail.

We give the proof only for the case of (a b) = (i j) or (a b) = (k l). The other two cases can
be proved in a similar way. Due to the interior symmetry (i j) or (k l), we have aik = ail.
Thus, −aij is an eigenvalue of algebraic multiplicity 2 in {−2,−1, 0, 1}.

Example 3.19. Let G be the five-cell uniform network given in Figure 10 and AG =
[aij]1≤i,j≤5 the adjacency matrix.

Figure 10. The five-cell uniform network G in Example 3.19.

The network G has an interior symmetry group V4 �Z2 = 〈(2 3)(4 5), (2 4)(3 5), (a b)〉 on
the set of cells S = {2, 3, 4, 5} for (a b) = (2 5), as well as for (a b) = (3 4). By Corollary 3.18,
the adjacency matrix AG has the eigenvalue −a25 = −1 with algebraic multiplicity at least 2.

In fact, using Theorem 3.3, Corollary 3.4, and Theorem 3.5, we can show that the algebraic
multiplicity of the eigenvalue −1 is at least 3. Note that G has an interior symmetry group
Z2 = 〈(2 3)(4 5)〉. Let ��= {{1}, {2, 3}, {4, 5}}. Then, with respect to the basis

b = ((0, 1,−1, 0, 0), (0, 0, 0, 1,−1), (1, 0, 0, 0, 0), (0, 1, 1, 0, 0), (0, 0, 0, 1, 1)),

AG is given by [
A 0
C A��

]
,

where A�� is the adjacency matrix of the quotient network associated with �� and

A =

[
a22 − a23 a24 − a25
a42 − a43 a44 − a45

]
.

Since the quotient network is isomorphic to the (S3-symmetric) three-cell bidirectional ring in
Figure 7, by Theorem 3.5, A�� has a11−a12 = −1 as an eigenvalue with algebraic multiplicity at
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least 2. On the other hand, due to the fact that G also has an interior symmetry (2 4)(3 5) and
(3 4), we have a23 = a24 = a42 = a45 and a25 = a43. Also, since G is uniform, a22 = a44 = 0.
Thus, the eigenvalues of A are −a23 ± (a23 − a25), one of which is equal to −a25 = −1.
Therefore, −1 is an eigenvalue of AG with algebraic multiplicity at least 3.

4. Interior symmetries and multiple eigenvalues: Homogeneous networks. We gener-
alize our results on regular networks to homogeneous networks. Recall that a homogeneous
network is a coupled cell network in which all cells are identical but which may have multiple
types of arrows. Let G be an n-cell homogeneous network with s types of arrows, whose ad-
jacency matrices are A1, . . . , As. Let r be the dimension of the cell internal dynamics. Then,
the Jacobian at a fully synchronized equilibrium has the form

(4.1) JG = α⊗ In +

s∑
l=1

βl ⊗Al,

where α is the linearized internal dynamics and βl is the linearized internal coupling for the
lth-type arrow for l = 1, . . . , s.

4.1. Sk- and Ak-interior symmetry. We show that the following theorem holds.
Theorem 4.1. Let G be an n-cell homogeneous network with s types of arrows with adja-

cency matrices A1, . . . , As. Let JG be given by (4.1). Assume that all matrices Al, l = 1, . . . , s,
have an interior symmetry Sk or Ak, on the same subset S ⊆ C of k cells of G, for some
k ∈ {3, . . . , n}. Then, the Jacobian JG has r eigenvalues of algebraic multiplicity at least k−1.

Proof. Without loss of generality, we assume S = {1, . . . , k}. Write Al = [a
(l)
ij ]1≤i,j≤n for

l = 1, . . . , s. It follows from the proof of Theorem 3.5 that there is a basis B such that

B−1AlB =

[
Āl 0
Cl A��l

]
∀l = 1, . . . , s,

where Āl is a scalar matrix of order k − 1, being equal to (a
(l)
11 − a

(l)
12 )Ik−1. For convenience,

we denote al := a
(l)
11 − a

(l)
12 .

Let B̂ = Ir ⊗ B. Then, we have

B̂−1
JGB̂ =

⎡
⎢⎢⎢⎢⎣

α⊗ Ik−1 +
s∑

l=1

βl ⊗ Āl 0

s∑
l=1

βl ⊗Cl α⊗ In−k+1 +
s∑

l=1

βl ⊗A��l

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(
α+

s∑
l=1

alβl

)
⊗ Ik−1 0

s∑
l=1

βl ⊗ Cl α⊗ In−k+1 +

s∑
l=1

βl ⊗A��l

⎤
⎥⎥⎥⎥⎦ .

Thus, every eigenvalue of α +
∑s

l=1 alβl is an eigenvalue of JG with algebraic multiplicity at
least k − 1. Therefore, JG has r eigenvalues of multiplicity at least k − 1.
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4.2. Dk-interior symmetry. We show that the following theorem holds.
Theorem 4.2. Let G be an n-cell homogeneous network with s types of arrows with ad-

jacency matrices A1, . . . , As. Let JG be given by (4.1). Assume that all matrices Al, l =
1, . . . , s, have an interior symmetry Dk, on the same subset S ⊆ C of k cells of G, for some
k ∈ {3, . . . , n}. Set

m =

{
(k − 1)/2 if k is odd,

k/2 if k is even.

Then, JG has mr eigenvalues with algebraic multiplicity at least 2 if k is odd; JG has (m−1)r
eigenvalues with algebraic multiplicity at least 2 if k is even.

Proof. For simplicity, we present the proof for s = 2. The general case can be proved
analogously.

Without loss of generality, we assume that the Dk-interior symmetry is on the cells S =
{1, . . . , k}. It follows from the proof of Theorem 3.7 that the adjacency matrices A1 and A2

can be diagonalized to a “double-block” form using the same basis B̃ given by (3.15) for odd
k and by (3.19) for even k.

By applying this basis to Al, l = 1, 2, in the case of odd k, we have

B̃−1
AlB̃ =

⎡
⎣ Bl 0

0 Bl
0

C ′
l A��l

⎤
⎦ , l = 1, 2,

where Bl is a matrix of order m×m. Consider the following basis for JG :

B̂ = Ir ⊗ B̃.

Then, we have

B̂−1
JGB̂ = α⊗ In + β1 ⊗

⎡
⎣ B1 0

0 B1
0

C ′
1 A��1

⎤
⎦+ β2 ⊗

⎡
⎣ B2 0

0 B2
0

C ′
2 A��2

⎤
⎦

=

⎡
⎣ α⊗ Im + β1 ⊗B1 + β2 ⊗B2 0

0 α⊗ Im + β1 ⊗B1 + β2 ⊗B2
0

β1 ⊗ C ′
1 + β2 ⊗ C ′

2 α⊗ In−2m + β1 ⊗A��1 + β2 ⊗A��2

⎤
⎦ .

Thus, every eigenvalue of (α⊗ Im+β1 ⊗B1 +β2 ⊗B2) is also an eigenvalue of JG . Therefore,
JG has mr eigenvalues with algebraic multiplicity at least 2.

In the case k is even, we have

B̃−1
AiB̃ =

⎡
⎢⎢⎣

Bi 0

0
ai ∗i
0 Bi

0

C ′′
i A��i

⎤
⎥⎥⎦ , i = 1, 2,
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where Bi is a matrix of order (m− 1)× (m− 1). Consider again the basis B̂ = Ir ⊗ B̃. Then,

B̂−1
JG B̂ = α⊗ In + β1 ⊗

⎡
⎢⎢⎣

B1 0

0
a1 ∗1
0 B1

0

C ′′
1 A��1

⎤
⎥⎥⎦+ β2 ⊗

⎡
⎢⎢⎣

B2 0

0
a2 ∗2
0 B2

0

C ′′
2 A��2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

α⊗ Im−1 + β1 ⊗B1 + β2 ⊗B2 0

0
α+ β1 ⊗ a1 + β2 ⊗ a2 β1 ⊗ ∗1 + β2 ⊗ ∗2

0 α⊗ Im−1 + β1 ⊗B1 + β2 ⊗B2

0

β1 ⊗ C ′′
1 + β2 ⊗ C ′′

2 α⊗ In−2m+1 + β1 ⊗A��1 + β2 ⊗A��2

⎤
⎥⎥⎦ .

Thus, every eigenvalue of (α⊗Im−1+β1⊗B1+β2⊗B2) is also an eigenvalue of JG . Therefore,
JG has (m− 1)r eigenvalues with algebraic multiplicity at least 2.

4.3. ΣS-interior symmetry with Dk ⊆ ΣS ⊆ Sk. Let G be an n-cell homogeneous
network with s types of arrows with adjacency matrices A1, . . . , As. Assume that every Al for
l = 1, . . . , s has an interior symmetry Σl

S on the same subset S ∈ C such that Dk ⊆ Σl
S ⊆ Sk.

Let Āl denote the upper left k × k submatrix of Al, l = 1, . . . , s (cf. (3.20)). Then, Āl is a
circulant matrix of the form (3.21). We show that the multiplicity of the eigenvalues of JG
can be directly analyzed by the eigenvalues of Ā1, . . . , Ās.

Theorem 4.3. Let G be an n-cell homogeneous network with s types of arrows, where every
adjacency matrix Al has an interior symmetry Σl

S on the same subset S ⊆ C such that
Dk ⊆ Σl

S ⊆ Sk for l = 1, 2, . . . , s. Let Āl be the upper left k × k submatrix of Al for

l = 1, 2, . . . , s. Let λ
(l)
j be the jth eigenvalue of Āl for j = 0, 1, . . . , k − 1, l = 1, 2, . . . , s (cf.

(2.4)). Then, every eigenvalue of (α+
∑s

l=1 λ
(l)
j βl) is an eigenvalue of JG for j = 1, . . . , k−1.

Proof. We present the proof only for the case s = 2. The general case can be proved
analogously. Without loss of generality we assume S = {1, . . . , k}.

Let B be the basis given by Theorem 3.11. Then, we have

B−1AlB =

[
Λl 0
Cl Ql

]
for Λl =

⎡
⎢⎢⎢⎢⎣

λ
(l)
1 0 · · · 0

0 λ
(l)
2 · · · 0

...
. . .

. . .
...

0 0 · · · λ
(l)
k−1

⎤
⎥⎥⎥⎥⎦ , l = 1, 2.

Consider the basis B̂ = Ir ⊗ B. Then,

B̂−1
JGB̂ =

[
α⊗ Ik−1 + β1 ⊗ Λ1 + β2 ⊗ Λ2 0

β1 ⊗ C1 + β2 ⊗ C2 α⊗ In−k+1 + β1 ⊗Q1 + β2 ⊗Q2

]
.

Let u ∈ R
r and let vj be the eigenvector of λ

(1)
j and λ

(2)
j given by (2.3) for some j ∈ {1, 2, . . . ,

k − 1}. Then,
(α⊗ Ik−1 + β1 ⊗ Λ1 + β2 ⊗ Λ2)(u⊗ vj) = αu⊗ vj + β1u⊗ Λ1vj + β2u⊗ Λ2vj

= αu⊗ vj + β1u⊗ λ
(1)
j vj + β2u⊗ λ

(2)
j vj

= (α+ λ
(1)
j β1 + λ

(2)
j β2)u⊗ vj.
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Thus, every eigenvalue of (α+λ
(1)
j β1+λ

(2)
j β2) is an eigenvalue of (α⊗Ik−1+β1⊗Λ1+β2⊗Λ2),

which is also an eigenvalue of JG .
Example 4.4. Let n > 12. Let G be an n-cell homogeneous network with 2 types of arrows

whose adjacency matrices A1, A2 have an interior symmetry, respectively, of

Σ1
S = 〈D12, (1 5 9)(2 3 4 6 7 8 10 11 12)〉,

Σ2
S = 〈D12, (4 10)(1 2 3 5 6 7 8 9 11 12)〉

on cells {1, 2, . . . , 12}. Note that D12 ⊂ Σi
S ⊂ S12 for i = 1, 2. An example of A1, A2 is

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The corresponding network is then as shown in Figure 11, where the arrows with solid
(resp., hollow) heads depict connections given by A1 (resp., A2).

Let Āl be the upper left 12 × 12 submatrix of Al and let λ
(l)
j be the jth eigenvalue of Āl

(cf. (2.4)) for j = 0, 1, . . . , 11, l = 1, 2. Then, we have (cf. Example 3.12(iii)–(iv))

λ
(1)
1,11 = λ

(1)
2,10 = λ

(1)
5,7, λ

(1)
3,9 = λ

(1)
6

and
λ
(2)
1,11 = λ

(2)
3,9 = λ

(2)
5,7, λ

(2)
2,10 = λ

(2)
6 .

Thus, by Theorem 4.3, for every homogeneous network G with interior symmetries Σ1
S and

Σ2
S , every eigenvalue of (α + λ

(1)
1,5,7,11β1 + λ

(2)
1,5,7,11β2) is an eigenvalue of JG of multiplicity at

least 4; every eigenvalue of (α + λ
(1)
2,10β1 + λ

(2)
2,10β2) is an eigenvalue of JG of multiplicity at

least 2; every eigenvalue of (α+ λ
(1)
3,9β1 + λ

(2)
3,9β2) is an eigenvalue of JG of multiplicity at least

2; every eigenvalue of (α+ λ
(1)
4,8β1 + λ

(2)
4,8β2) is an eigenvalue of JG of multiplicity at least 2.

5. Conclusions. Interior symmetry may be viewed as an appropriate generalization of
symmetry for coupled cell networks. Besides the original concept of interior symmetry, we
introduced further notions including quotient interior symmetry, reverse interior symmetry,
and quotient reverse interior symmetry.

For homogeneous coupled cell systems, we analyzed how multiple eigenvalues of the Jaco-
bian at fully synchronized equilibria may occur due to these different types of interior symme-
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Figure 11. The 12-cell homogeneous network G in Example 4.4 with interior symmetries Σ1
S =

〈D12, (1 5 9)(2 3 4 6 7 8 10 11 12)〉 and Σ2
S = 〈D12, (4 10)(1 2 3 5 6 7 8 9 11 12)〉 for S = {1, . . . , 12}.

try. The groups of interior symmetry that we focused on are symmetric groups, alternating
groups, dihedral groups, cyclic groups, and their products.

Based on our analysis, we concluded that the eigenvalue multiplicity of the Jacobian is
sensitively dependent on the interior symmetric properties of the underlying network structure,
and that symmetry alone is not sufficient to explain this dependence.

Indeed, in the examples we present throughout the paper, all the multiple eigenvalues
are a consequence of an interior symmetry, in one form or another. In the case of uniform
networks, even a relative weak interior symmetry may be sufficient to give rise to multiple
eigenvalues.

Since, very easily, a homogeneous network has some type of interior symmetry, we can say
that multiple eigenvalues of the Jacobian at a fully synchronous equilibrium are frequent for
homogeneous coupled cell systems.
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