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Abstract
We introduce a topological degree theory for the study of Hopf bifurcations
in coupled cell systems whose quotient systems (obtained by restricting
the system to its flow-invariant subspaces) possess various symmetries. To
describe the structure of these quotient symmetries, we introduce the concept
of a representation lattice, which is defined as a lattice of representation
spaces of (different) symmetry groups that satisfy a compatibility and a
consistence condition. Based on the (twisted) equivariant degree, we define
a lattice-equivariant degree for maps that are compatible with respect to this
representation lattice structure. We apply the lattice-equivariant degree to study
a synchrony-breaking Hopf-bifurcation problem in (homogeneous) coupled cell
systems and obtain a topological classification of all bifurcating branches of
oscillating solutions according to their synchrony types and their symmetric
properties.

Mathematics Subject Classification: 34D06, 34C23, 47H11, 34C25

1. Introduction

A coupled cell system is a finite collection of individual dynamical systems, or cells, that are
coupled together through interactions, in a sense that the output of a cell affects the time-
evolution of other cells. Coupled cell systems provide a large class of dynamical systems
which can be used to model collective and synchronized behavior of networks of coupled
units in different fields such as physics, biology, chemistry, engineering and social science
(see [7, 19, 26] and references therein).

The network architecture of a coupled cell system can be represented by a directed graph,
a coupled cell network, whose nodes correspond to cells and whose edges indicate interactions
between cells. More precisely, a coupled cell network consists of a finite set C of cells and a
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finite set E = {(c, d) : c, d ∈ C} of edges, together with two equivalence relations: ∼C on cells
in C and ∼E on edges in E such that if e1 ∼E e2, for e1 = (c1, d1) ∈ E and e2 = (c2, d2) ∈ E ,
then c1 ∼C c2 and d1 ∼C d2 (see [24]). Two cells c, d ∈ C are called input-equivalent, if
there is an edge-type preserving isomorphism between their input sets. Note that the input-
equivalence relation refines the relation of cell-equivalence. Various notions of symmetry on
coupled cell networks can be explored using symmetry among input-equivalent cells, such as
symmetry groupoid, interior symmetry and quotient symmetry.

A symmetry groupoid of a coupled cell network is a collection of input-equivalence
relations on cells, which formalizes the notion of ‘local symmetries’ on coupled cell networks.
Between the stringent symmetry and the groupoid symmetry, there is an intermediate notion
of symmetry, called interior symmetry. An interior symmetry (with respect to a subset of
cells) of a coupled cell network is a permutation on the subset together with all its input edges,
which preserves all its internal dynamics and types of the input edges (see [14]). Parallels exist
between coupled cell systems admitting interior symmetry and symmetrically coupled systems.
Indeed, analogue of equivariant bifurcation theory including the equivariant branching lemma
and the equivariant Hopf theorem has been established in [2, 14] for coupled cell systems with
interior symmetry.

A quotient symmetry is a shorthand notion for symmetry of a quotient network, which
in turn is a network obtained by restricting the total coupled cell system to one of its lower
dimensional flow-invariant subspaces. Quotient networks exist as a result of the network
structure of coupled cell systems. It was shown that the existence of quotient networks has
strong implications on synchronized dynamics in coupled cell systems (see [24]). Recent
findings in [15, 25] confirm that quotient symmetry is responsible for the existence of periodic
solutions with rigid phase-shifts and rigid multirhythms. In a sense, symmetric properties of
coupled cell networks characterized by the above mentioned forms of symmetry may give
us a key to understanding pattern formations in general coupled cell systems. It should be
mentioned that network architecture without any forms of symmetry can also lead to surprising
bifurcation behavior on coupled cell networks (see [10]).

A topological degree, in its simplest form, may be thought as a generalization of the
winding number of a continuous circle map, which counts how many times the image of the
map has travelled counterclockwise around the origin. This count remains unchanged, if the
map is perturbed slightly. Also the addition of winding numbers corresponds to the conjunction
of maps, and the negation of winding numbers can be realized by rewinding the direction of
maps. The topological degree is thus usually referred as ‘an algebraic count of the zeros of a
continuous map’.

Equivariant degree theory is a topological degree theory that is concerned with equivariant
maps, that is, maps that commute with the actions of a group on their space of domain and
image. A main objective of the equivariant degree theory is to attain the topological structure
of the zeros of an equivariant map and their algebraic properties induced by the equivariance.
The past two decades have witnessed continuous progress in the development of equivariant
degree, both in theory and in practice (see [6, 8, 11, 12, 17, 21] and references therein). Among
others, a twisted equivariant degree, which is a truncated part of the full equivariant degree
turns out to be the most ‘computable’ part of the equivariant degree, and serves as an effective
topological tool in the study of equivariant systems, including the symmetric Hopf-bifurcation
problems in equivariant dynamical systems.

The main advantage of using equivariant degree theory lies in both the topological
and algebraic properties of the equivariant degree. On the one hand, equivariant degree
is a topological invariant, which remains unchanged against all (admissible) equivariant
homotopies. This allows, in practice, flexibility and freedom in computations of the equivariant
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degree. A concrete example is that equivariant degree theory for studying equivariant
bifurcations can be also applied, in the case when critical eigenvalues of the Jacobian carry
higher multiplicity. In other words, as a topological invariant, equivariant degree sees no
additional complication in treating multiple eigenvalues. On the other hand, equivariant degree
is algebraic, in a sense that it is compatible with respect to homomorphisms between groups
(of symmetry). In application, this results in simplicity in treating change of equivariance in
systems, which is also what we will use in this paper. Further applications of degree theory
in coupled cell networks may be found in predicting periodic solutions in both variational and
non-variational systems (see [16, 20] for equivariant systems), as well as for studying global
bifurcations (see [3] for equivariant systems).

The main goal of this paper is to introduce a degree theory that is suitable for studying
general coupled cell systems with quotient symmetries, where different quotient symmetries
are brought together and fit in the integral picture of the total influence of quotient symmetries
on the network dynamics. It is known that the set of all balanced equivalence relations
(thus their induced synchrony subspaces) on a network forms a lattice (see [23]). Therefore,
we are interested in defining a degree theory for maps which keep a given lattice of linear
subspaces (that are also representations of individual symmetry groups) invariant and which
are equivariant with respect to these group actions on the subspaces.

More precisely, a finite collection L of closed linear subspaces of a Banach spaceX is called
a lattice, if X ∈ L and L is closed under set intersections. A lattice L is called a representation
lattice, if every U ∈ L is an isometric Banach representation of a compact Lie group GU such
that for every U1 � U2, there exists a group homomorphism hU1,U2 : GU2 → GU1 satisfying

g· x = hU1,U2(g)◦ x, ∀ x ∈ U1, g ∈ GU2 , (1)

where ‘·’ denotes the GU2 -action and ‘◦’ denotes the GU1 -action. Moreover, hU1,U2 ◦ hU2,U3 =
hU1,U3 for every U1 ⊆ U2 ⊆ U3. The compatibility condition (1) is essential for our
consideration, since it allows us to ‘lift’ a GU1 -orbit in U1 to GU2 -orbits in U2. As we will see
later, this enables an inductive definition of degree.

Let L be a representation lattice in Rn and R be a parameter space (on which all groups
act trivially). For our purpose1, we assume GU = �U × S1 for a finite group �U , for every
U ∈ L. Let � ⊂ R × Rn be an L-invariant open bounded set, that is, � ∩ (R × U) is GU -
invariant, for all U ∈ L. Consider a continuous map f : � → Rn such that f −1(0) ∩ ∂� = ∅
(in which case, we say the pair (f, �) is admissible) and f is L-equivariant, meaning that
f (� ∩ (R × U)) ⊂ U and

fU := f |�∩(R×U) : � ∩ (R × U) → U

is GU -equivariant, for all U ∈ L. Then, the twisted equivariant degree of fU on � ∩ (R × U)

is well-defined, for every U ∈ L.
A lattice-equivariant degree, denoted by L-Degt , is an assignment of a formal sum∑

U∈L(U, aU) to every admissible pair (f, �), where aU is inductively defined by

aU := GU -Degt (fU , � ∩ (R × U)) −
∑

U ′�U

HU ′,U (aU ′),

where ‘GU -Degt ’ stands for the twisted equivariant degree and HU ′,U is certain ring
homomorphism induced by hU ′,U , which ‘lift’ GU ′ -orbits in U ′ to GU -orbits in U . The
geometric meaning of aU is that it gives an algebraic count of those GU -orbits of zeros of f

that lie in � ∩ (R × U) but not in � ∩ (R × U ′) for any U ′ � U .

1 In the context of coupled cell systems with quotient symmetries, �U describes the coupling symmetry of the quotient
network obtained by restricting the system to U , and the unit circle group S1 describes the temporal symmetry of
possible periodic states of the quotient network.
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We show that the lattice-equivariant degree satisfies usual properties of a degree theory
such as the existence, homotopy invariance, additivity and the suspension. Further, we show
that it also has algebraic properties related to the inclusion and the product of lattices. Following
the standard procedure, we also extend this degree to infinite-dimensional Banach spaces for
compact vector fields.

Using the lattice-equivariant degree, we study the synchrony-breaking bifurcations
in homogeneous coupled cell systems. More precisely, a coupled cell system is called
homogeneous, if it consists of only one type of cell (in particular, every cell receives the
same types of input arrows); that is, it can be described by

ẋ1 = fo(x1; xi1 , . . . , xis ),

ẋ2 = fo(x2; xj1 , . . . , xjs
),

· · · (2)

ẋn = fo(xn; xk1 , . . . , xks
),

where xi ∈ Rk , fo : Rk × (Rk)s → Rk is of class C1 and k ∈ N is the dimension of internal
dynamics (the first argument in fo indicates the internal cell dynamics and the remaining
variables indicate external couplings). Then,

�0 = {x ∈ (Rk)n : x1 = x2 = · · · = xn}
is a flow-invariant subspace of (2), independent of specific forms of fo. Elements of �0 are
called fully synchronous. In general, depending on the network structure, (2) may have a
number of flow-invariant subspaces of partial synchrony, that is, they are given by equalities
of the internal state of some of the cells. A synchrony-breaking bifurcation refers to a type of
bifurcation, where a fully synchronous equilibrium loses its stability and bifurcates to states
of less synchrony. If the bifurcating states are all oscillating, then it is called a synchrony-
breaking Hopf bifurcation. We show how the lattice-equivariant degree can be used to give a
topological treatment of synchrony-breaking Hopf bifurcations (see theorem 5.3).

As an example, we consider a 5-cell homogeneous coupled cell system which admits a
large variety of symmetric quotient networks and show that these quotient symmetries lead to
25 bifurcating branches of oscillating states, characterized by their distinct synchrony types
and symmetric properties.

2. Preliminaries

In this section, we give a brief review on compact Lie groups and their representations. We
elaborate on the Euler ring associated with compact Lie groups, which is related to the range
of lattice-equivariant degrees.

2.1. Compact Lie Groups and the Euler Ring

Definition 2.1 (see [9]). A topological group G is a group together with a topology on G such
that the binary operation and the inverse operation of G are continuous with respect to this
topology. Let G be a topological group and X be a topological space. A (left) action of G on
X is a continuous map ϕ : G × X → X such that

(i) ϕ(g, ϕ(h, x)) = ϕ(gh, x) for all g, h ∈ G and x ∈ X;
(ii) ϕ(e, x) = x for all x ∈ X, where e is the identity element of G.

A (left) G-space is a pair (X, ϕ) consisting of a space X together with a (left) action ϕ of G on
X. We usually denote (X, ϕ) just by the underlying topological space X. It is also convenient
to denote ϕ(g, x) by gx.
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Let G be a topological group and X be a G-space. For a closed subgroup L ⊂ G, denote
by (L) the conjugacy class of L, X/G the orbit space, G/L the left coset of L and N(L) the
normalizer of L in G. Note that (L) � G/L are canonically isomorphic. Write (L1) � (L2),
if L1 ⊇ gL2g

−1 for some g ∈ G. Set

XL := {x : gx = x ⇐⇒ g ∈ L} (3)

XL := {x : gx = x, if g ∈ L} (4)

X(L) := {gx : x ∈ XL, g ∈ G}. (5)

Let x ∈ X. If x ∈ XL, then L is called the isotropy type of x. If x ∈ XL, then x is called an
L-fixed point. By orbit of x, we mean {gx : g ∈ G}. If x ∈ X(L), then (L) is called the orbit
type of x. Note that X(L) is a G-invariant subspace of X.

Example 2.2. Let G be a topological group and H ⊂ G be a closed subgroup. Then,
(H) � G/H is a G-space with respect to the action given by

G × G/H → G/H, (g′, gH) �→ (g′g)H. (6)

The isotropy type of the element gH ∈ G/H is given by gHg−1. Similarly, let K ⊂ G be
another closed subgroup. Consider the action defined on the product G-space G/H ×G/K by

G × (
G/H × G/K

) → G/H × G/K,
(
g′, (g1H, g2K)

) �→ (
(g′g1)H, (g′g2K)

)
.

(7)

The isotropy type of the element (g1H, g2K) ∈ G/H × G/K is then given by

g1Hg−1
1 ∩ g2Kg−1

2 . ♦

Definition 2.3. A Lie group G is a group which is also a finite-dimensional smooth manifold,
in which the binary operation and the inverse operation of G are smooth maps. A Lie group
G which is also compact with respect to this smooth structure is called a compact Lie group.

Definition 2.4 (see [9]). Let G be a compact Lie group and �(G) be the set of conjugacy
classes of closed subgroups of G. Let A(G) := Z[�(G)] be the free Z-module generated by
�(G). The Euler ring of G is the set A(G), together with the following ring multiplication

(H) ∗ (K) =
∑

(L)∈�(G)

nL(L), for (H), (K) ∈ �(G), (8)

where

nL := χc((G/H × G/K)(L)/G), (9)

for χc being the Euler characteristic taken in Alexander–Spanier cohomology with compact
support (cf [22]). The set G/H × G/K in (9) is considered as a G-space under the action
given by (7). ♦

Example 2.5. Let G = D3, where D3 = Z3 ∪ κZ3 and Z3 = 〈ξ〉. Then,

A(D3) = {(D3), (D1), (Z3), (Z1)},
where D1 = 〈κ〉. The Euler ring multiplication is listed in table 1 (see [6]). The geometric
meaning of (H) ∗ (K) is that it counts the G-orbits in the product G-space G/H × G/K

according to their orbit types. For example, consider

(D1) ∗ (D1) = (D1) + (Z1).

Note that D3/D1 = {D1, ξD1, ξ
2D1}. Thus, the product space D3/D1 × D3/D1 consists

of 9 elements, which are represented by hollow squares and triangles in figure 1. As shown
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Table 1. Multiplication table for the Euler ring A(D3).

∗ (D3) (D1) (Z3) (Z1)

(D3) (D3) (D1) (Z3) (Z1)

(D1) (D1) (D1) + (Z1) (Z1) 3(Z1)

(Z3) (Z3) (Z1) 2(Z3) 2(Z1)

(Z1) (Z1) 3(Z1) 2(Z1) 6(Z1)

Figure 1. Interpretation of (D1) ∗ (D1).

in example 2.2, the isotropy of the element (ξaD1, ξ
bD1) ∈ D3/D1 × D3/D1 is given by

ξaD1ξ
−a ∩ ξbD1ξ

−b, for a, b ∈ {0, 1, 2}, as indicated in figure 1. These isotropies give rise
to two orbit types in D3/D1 × D3/D1:

(D1) = {D1, ξD1ξ
−1, ξ 2D1ξ

−2},
(Z1) = {Z1},

corresponding to the hollow triangles and squares in figure 1, respectively. Moreover, all the
hollow triangles (respectively, all the hollow squares) consist of 1 orbit under the D3-action
on D3/D1 × D3/D1. Therefore, D3/D1 × D3/D1 consists of 1 orbit of orbit type (D1) and 1
orbit of orbit type (Z1), or equivalently written as

(D1) ∗ (D1) = (D1) + (Z1). ♦

Given two compact Lie groups G1, G2 and a group homomorphism h : G2 → G1, one
can define a ring homomorphism H : A(G1) → A(G2) induced by h.

Definition 2.6. Let G1, G2 be compact Lie groups, X be a G1-space and h : G2 → G1 be a
group homomorphism. Define a G2-action on X by

g2x := h(g2)x, for g2 ∈ G2, x ∈ X,

and call it the induced action of G2 on X through h. Then, X is also a G2-space.

In particular, consider G1/K as a G1-space, for any closed subgroup K ⊂ G1. Then,
there is an induced action of G2 on G1/K through h, where the isotropy of gK under this
G2-action is given by

h−1(gKg−1).
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Define a map

H : A(G1) → A(G2)

(K) �→
∑

(K̃)∈�(G2)

χc((G1/K)(K̃)/G2)(K̃), (10)

where G1/K is considered as a G2-space with the induced action through h. In a sense, H ‘lifts’
a G1-orbit of orbit type (K) to several G2-orbits of orbit types (K̃), where K̃ = h−1(gKg−1)

for some g ∈ G1.
Based on the fact that the Euler ring is a universal additive invariant, we have:

Theorem 2.7 (see [5, 9]). Let Gi be a compact Lie group for i = 1, 2, 3 and hi : Gi → Gi+1

a group homomorphism for i = 1, 2. Let Hi be defined by (10) for i = 1, 2. Then, we have

(i) Hi is an Euler ring homomorphism, for i = 1, 2.
(ii) H2 ◦ H1 is precisely the Euler ring homomorphism induced by h2 ◦ h1.

We call H defined by (10) the the Euler ring homomorphism induced by h.

Example 2.8. Let G1 = D3, G2 = D1. Consider the inclusion homomorphism

h : D1 ↪→ D3.

Let H : A(D3) → A(D1) be the induced Euler ring homomorphism. Then, we have

H : (D3) �→ (D1), (Z3) �→ (Z1)

(D1) �→ (D1) + (Z1), (Z1) �→ 3(Z1).

The geometric meaning of H((K)) is that it counts the G2-orbits in the G2-space G1/K

according to their orbit types. For example, consider K = D1. Then, the space D3/D1

consists of 3 elements: D1, ξD1, ξ 2D1 (following the notations in example 2.2). Note that
all of them have the same orbit type (D1), under the D3-action. Now consider the D1-action
(induced through h). Then, they have the following isotropies

h−1(D1) = D1, h−1(ξD1ξ
−1) = Z1, h−1(ξ 2D1ξ

−2) = Z1,

respectively (cf figure 2). Moreover, the elements ξD1, ξ
2D1 belong to the same orbit, since

h(κ)ξD1 = κξD1 = ξ 2κD1 = ξ 2D1.

Therefore, the space D3/D1 (with respect to the induced D1-action) consists of 1 orbit of orbit
type (D1) and 1 orbit of orbit type (Z1), i.e.

H((D1)) = (D1) + (Z1).

2.2. Representations of compact lie groups

Representations of a group G are vector spaces that are also G-spaces, in which every group
element acts linearly.

Definition 2.9. Let V be a finite-dimensional real (respectively complex) vector space and G

be a Lie group. A representation of G on V is a continuous action

ϕ : G × V → V

such that for every g ∈ G, the map ϕ(g, ·) : V → V is linear. The pair (V , ϕ) is called a
real (respectively complex) representation. We usually denote (V , ϕ) just by the underlying
representation space V .
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Figure 2. Left: the space D3/D1 considered as D3-space; Right: the space D3/D1 considered as
D1-space.

Definition 2.10. Let W be a Banach space over reals (respectively complex numbers) and
G be a Lie group. Let (W, ϕ) be a representation of G on W . If for every g ∈ G, the
map ϕ(g, ·) : W → W is bounded linear, then the pair (W, ϕ) is called a real (respectively
complex) Banach representation of G. A Banach representation (W, ϕ) is called isometric, if
‖ϕ(g, w)‖ = ‖w‖, for all g ∈ G, w ∈ W . We also denote (W, ϕ) just by W .

Using the Haar measure of G, one can show that every Banach representation is equivalent
to an isometric Banach representation. Throughout the paper, every Banach representation is
assumed to be isometric.

Example 2.11. Let n ∈ N be a positive integer and C([0, T ]; Rn) be the set of all continuous
T -periodic functions defined on [0, T ] and valued in Rn. Then, C([0, T ]; Rn) is a vector space
over reals. Moreover, it is a real Banach space with respect to the supremum norm ‖ · ‖, which
is defined by

‖f ‖ := supx∈[0,T ]|f (x)|, ∀ f ∈ C([0, T ]; Rn).

Let G = S1 be the set of all complex numbers of length 1. Then, S1 is a Lie group. Define an
action of S1 on C([0, T ]; Rn) by

(eiθf )(t) := f

(
t +

θT

2π

)
, ∀ f ∈ C([0, T ]; Rn), eiθ ∈ S1, t ∈ [0, T ], (11)

which is clearly continuous. Note that ‖eiθf ‖ = ‖f ‖ for all eiθ ∈ S1, f ∈ C([0, T ]; Rn).
Thus, C([0, T ]; Rn) is a real isometric Banach representation of S1 with respect to the
action (11).

2.3. Twisted subgroups in � × S1

Let � be a finite group and S1 be the group of complex numbers of unit length. The twisted
subgroups of � × S1 are in short, closed subgroups that are not of form K × S1 for some
subgroup K of �. We follow the definition in [6].

Definition 2.12. A subgroup H ⊂ � × S1 is called a twisted l-folded subgroup, if there exists
a subgroup K ⊂ �, an integer l � 0 and a group homomorphism ϕ : K → S1 such that

H = Kϕ,l := {(γ, z) : ϕ(γ ) = zl}.
It can be verified that every closed subgroup H ⊂ � × S1 is either twisted or of form

K×S1 for some subgroup K of �. In the context of applications, where � stands for symmetry
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of a system in the phase space and S1 describes the temporal symmetry of possible periodic
states, twisted subgroups are precisely the symmetry of nontrivial periodic states.

Let X be a G-space and x ∈ X of orbit type (H). It is known that the orbit of x is
diffeomorphic to G/H . Thus, to study elements of twisted orbit types, it is sufficient to
describe the structure of � × S1/H for twisted subgroups H .

Lemma 2.13. Let � be a finite group and H = Kϕ,l be a twisted l-folded subgroup in � ×S1.
Then, �×S1/H is diffeomorphic to a disjoint union of |�/K| copies of circles, whose isotropy
types (under the action of � × S1) are γHγ −1, for γ ∈ �/K .

Proof. It is clear that �×S1/H is a disjoint union of finite circles, since it is a one-dimensional
compact manifold. Also every element of � × S1/H has an isotropy type γHγ −1, for some
γ ∈ �. What we need to show is that these circles are precisely indexed by their isotropy types
γHγ −1, as γ runs through �/K .

Let X = � × S1/H . Consider an S1/Zl-action on X given by

ψ : S1/Zl × X → X, (ω, (γ, z)H) �→ (γ, ωz)H,

for ω ∈ S1/Zl , γ ∈ � and z ∈ S1. The action is a well-defined, since the multiplication
on the second component of H is abelian. Also, if (γ, ωz)H = (γ, z)H , then (1, ω) ∈ H ,
which implies that ωl = 1, i.e. ω ∈ Zl . Thus, ψ is a free action. Consequently, X is a one-
dimensional compact manifold with a free S := S1/Zl-action. Therefore, S ↪→ X → X/S is
a principal bundle (cf [18]) over a finite set, that is,

X � S × X/S.

For x ∈ X, write [x] as the S-orbit of x. Then, we have

X/S = {[(γ, 1)H ] : γ ∈ �} = {[(γ, 1)H ] : γ ∈ �/K},
where the last equality used the fact that [(γ, 1)H ] = [H ] if and only if γ ∈ K . Finally, the
isotropy type of [(γ, 1)H ] ∈ X/S is γHγ −1, for all γ ∈ �/K . �

Example 2.14. Let � = D3, where D3 = Z3 ∪ κZ3 and Z3 = 〈ξ〉. Then, up to conjugacy,
D3 × S1 has the following twisted 1-folded subgroups: Z1, Z3, D1, D3 and (cf [6])

Zt
3 = {(1, 1), (ξ, ξ), (ξ 2, ξ 2)}, Dz

1 = {(1, 1), (κ, −1)},
Dz

3 = {(1, 1), (ξ, 1), (ξ 2, 1), (κ, −1), (κξ, −1), (κξ 2, −1)}.
Let D3 act on R3 as the permutation group S3 � D3. Let C([0, T ]; R3) be given by
example 2.11. Define a D3 × S1-action on C([0, T ]; R3) by

(
(γ, eiθ )f

)
(t) := γ·f

(
t +

θT

2π

)
,

where ‘·’ stands for the D3-action on R3. Then, a function u ∈ C([0, T ]; R3) has an isotropy
type Zt

3 under this action if and only if

(ξ, ξ)u(t) := (ξ, ξ)


x(t)

y(t)

z(t)


 =




z

(
t +

T

3

)

x

(
t + T

3

)

y

(
t +

T

3

)




=

x(t)

y(t)

z(t)


 , ∀ t ∈ [0, T ].
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Thus, x(t) = y(t + 2T
3 ) = z(t + T

3 ) and u is of form

u(t) =
(

x(t), x

(
t +

T

3

)
, x

(
t +

2T

3

))
, ∀ t ∈ [0, T ].

That is, knowing the (twisted) isotropy types of a periodic function u helps determine the form
of u. More examples of this kind can be found in table 2.

3. Representation lattices

In this section, we give the definition of representation lattices. Besides the basic properties
derived from the lattice structure, we discuss algebraic properties of representation lattices that
are related to the inclusion and the product of lattices.

Definition 3.1. Let X be a real (respectively complex) Banach space and L be a finite set of
closed linear subspaces of X. We say that L is a lattice in X, if X ∈ L and

U1 ∩ U2 ∈ L, ∀ U1, U2 ∈ L.

We write U1 � U2 (respectively U1 < U2), if U1 ⊂ U2 (respectively U1 � U2). A subset
S ⊂ L is called a sublattice of L, if it is a lattice on its own right.

Definition 3.2. Let X be a real (respectively complex) Banach space and L be a lattice in X.
Assume that

(i) (REPRESENTATION) U is a real (respectively complex) isometric Banach representation of a
compact Lie group GU , for every U ∈ L;

(ii) (COMPATIBILITY) there exists a group homomorphism

hU1,U2 : GU2 → GU1 ,

for every U1, U2 with U1 � U2 such that

g2x = h1,2(g2)x, ∀ g2 ∈ GU2 , x ∈ U1;
(iii) (CONSISTENCE) hU1,U2 ◦ hU2,U3 = hU1,U3 for every U1 � U2 � U3.

Then, L is called a real (respectively complex) representation lattice in X. The collection

{(Ui, GUi
, hUi,Uj

) : Ui, Uj ∈ L, Ui � Uj }
is called a structure of representation lattice ofL. ♦

Note that a sublattice S of a representation lattice L is again a representation lattice, which
we call a representation sublattice of L.

Example 3.3. Let X = R5 and L be a lattice of 10 elements in X given in figure 3, where
the pair (�∗, �∗) indicates that �∗ is a representation of �∗ and �∗ is the linear subspace
composed of vectors of form indicated below the pair (�∗, �∗). The arrows give the direction
of homomorphisms between �∗. The structure of the representation lattice L is specified as
follows:

Representations. Z1 acts on �, �21, R5 trivially; Z2 = 〈κ〉 acts on �00, �02, �03, �2 by
κ : (a, b, c, d, e) �→ (a, b, e, d, c); and D3 � S3 acts on �4, �1, �01 by the natural action of
S3 on symbols a, b, c.
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Figure 3. A representation lattice L in R
5.

Homomorphisms. Z1 → �x are given by the inclusion; homomorphisms �x → Z1 are given
by the projection; and homomorphisms Z2 → Z2 are given by the identity homomorphism.

It can be verified that L is a real representation lattice in X, with respect to this
structure. ♦

3.1. Basic properties of lattices

We discuss some basic properties of representation lattices, when viewed as lattices (without
representation structure).

Let L be a lattice in a Banach space X and U1, U2 ∈ L. If U1 < U2, then U2 is called a
descendant of U1. A minimal descendant is called an immediate descendant. Denote by

L� := {U ∈ L : U has a unique immediate descendant in L}.
Lemma 3.4. Let X be a Banach space and L be a lattice in X. Then,

(i) L has a unique minimal element;
(ii) for U ∈ L, the set L \ {U} is a sublattice of L if and only if U ∈ L�;

(iii) Let S ⊂ L be a sublattice and set k := |L \ S|, where | · | is the count of elements. Then
there exists a flag of lattices of length k

L = L0 ⊃ L1 ⊃ · · · ⊃ Lk = S

such that Li+1 = Li \ {Ui} for certain Ui ∈ Li , i = 0, 1, . . . , k − 1;
(iv) Let X′ be another Banach space and M be a lattice in X′. Then,

L × M := {U × M : U ∈ L, M ∈ M}
is a lattice in X × X′.

Proof.

(i) Since L is closed under set intersections, the minimal element is given by the intersection
of all elements of L.
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(ii) Let S = L \ {U}. If U ∈ L�, then U �= X and U = U1 ∩ U2 for some U1, U2 ∈ L only if
U ∈ {U1, U2}. It follows that X ∈ S and U �= U1 ∩ U2 for any U1, U2 ∈ S. Thus, S is a
sublattice. If U �∈ L�, then U has more than one immediate descendants. Let U1, U2 be
two distinct immediate descendants of U in L. Then, U = U1 ∩ U2 for U1, U2 ∈ S. But
U �∈ S, which implies that S is not a sublattice.

(iii) We claim that

P� \ S �= ∅, for every lattice P s.t. L ⊃ P � S. (12)

Assume to the contrary and let U be a maximal element of P \ S. In particular, since
U �= X, U has descendants. By assumption, U has at least two distinct immediate
descendants in P , say U1, U2. Then, U = U1 ∩ U2. Moreover, since U is a maximal
element of P \ S, we have U1, U2 ∈ S. It follows that U = U1 ∩ U2 ∈ S, which is a
contradiction to the fact that U �∈ S. Thus, (12) holds.
It follows from (12) that there exists U0 ∈ L� \ S. By (ii), L1 := L \ {U0} is a sublattice.
By applying (12) inductively to Li+1 = Li \ {Ui}, for Ui ∈ L�

i \ S, i = 1, . . . , k − 1, we
obtain the desired flag of lattices.

(iv) It follows from the fact that

(U1 × Q1) ∩ (U2 × Q2) = (U1 ∩ U2) × (Q1 ∩ Q2)

for Ui ∈ L, Qi ∈ M, i = 1, 2. �

In analogue, we have

Corollary 3.5. The properties (i)–(iv) in lemma 3.4 hold for representation lattices.

Proof. Let L be a representation lattice. Then, (i) clearly holds. Moreover, since representation
sublattices are precisely sublattices of representation lattices, (ii) and (iii) also hold.

Let X′ be another Banach space and M be a lattice in X′. Then,

{(U × Q, GU × GQ, hU,V × hQ,P ) : U, V ∈ L, Q, P ∈ M, U ⊂ V, Q ⊂ P } (13)

gives L × M a structure of representation lattice. �

We call L × M together with (13) the product representation lattice of L and M.

3.2. Algebraic properties of representation lattices

We associate to a representation lattice an algebraic structure based on the Euler ring of compact
Lie groups, which will be the range of the lattice degree introduced in the next section. Our
goal in this subsection is to extend the usual lattice operation such as the inclusion and product,
to the representation lattices with respect to this algebraic structure.

Definition 3.6. Let L be a representation lattice with structure {U, GU, hU,V }. For U ∈ L,
denote by A(GU) the Euler ring of GU (see definition 2.4). Let

R(L) :=
{ ∑

U∈L
(U, aU) : aU ∈ A(GU)

}
, (14)

which is a Z-module with respect to∑
U∈L

(U, aU) +
∑
U∈L

(U, bU) :=
∑
U∈L

(U, aU + bU), aU , bU ∈ A(GU),

k
∑
U∈L

(U, aU) :=
∑
U∈L

(U, kaU), k ∈ Z.
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Define a ring multiplication on R(L) by∑
U∈L

(U, aU) ·
∑
U∈L

(U, bU) :=
∑
U∈L

(U, aU ∗ bU), aU , bU ∈ A(GU), (15)

where ‘∗’ stands for the Euler ring multiplication in A(GU). The Z-module R(L) together
with (15) is called the associated ring of L.

3.2.1. Reduction map. Let L be a representation lattice and S ⊂ L be a representation
sublattice. Then, every U ∈ L \ S has a unique minimal descendant in S, which is given by
the intersection of all the descendants of U in S.

Definition 3.7. Let L be a representation lattice with structure {U, GU, hU,V } and S ⊂ L be a
representation sublattice. Define the reduction map from R(L) to R(S) by

�L
S : R(L) → R(S)

(U, a) �→
{
(Ud, HU,Ud

(a)), if U ∈ L \ S,

(U, a), if U ∈ S,
(16)

where U ∈ L, a ∈ A(GU), Ud stands for the unique minimal descendant of U in S and HU,Ud

is the Euler ring homomorphism induced by hU,Ud
(see (10)).

We show that the reduction map is compatible with the inclusion of lattices.

Lemma 3.8. Let L be a representation lattice, S, P ⊂ L be representation sublattices such
that L ⊃ P ⊃ S. Then, we have �L

S = �P
S ◦ �L

P .

Proof. Let U ∈ L and a ∈ A(GU). If U ∈ S, then (U, a) is a fixed point of �L
S , �P

S and �L
P .

Thus, the statement holds.
Let U ∈ L \ S and Ud be the unique minimal descendant of U in S. Then,

�L
S
(
(U, a)

) = (
Ud, HU,Ud

(a)
)
.

If U ∈ P , then (U, a) is a fixed point of �L
P and �P

S ((U, a)) = (Ud, HU,Ud
(a)). So

�P
S ◦ �L

P
(
U, a)

)
agrees with �L

S
(
(U, a)

)
.

Otherwise if U ∈ L \ P , then �L
P((U, a)) = (Uc, HU,Uc

(a)), where Uc is the unique
minimal descendant of U in P . In the case Uc ∈ S, we have Uc = Ud , by the uniqueness of
minimal descendant. In the case Uc ∈ P \ S, Ud is the unique minimal descendant of Uc in S.
Consequently, in both cases, we have

�P
S ◦ �L

P
(
(U, a)

) = �P
S
(
(Uc, HU,Uc

(a))
) = (

Ud, HU,Ud
(a)

)
. �

Example 3.9. Let L be the representation lattice given in example 3.3 and S be a representation
sublattice given by S = L \ {�01} (see figure 4). Let �L

S be the reduction map defined
by (16). Let H�01,R5 be the ring homomorphism induced by the inclusion homomorphism
h�01,R5 : Z1 → Z2.

Then, �L
S fixes all generators of R(L) except

�L
S
(
�01, (Z2)

) = (
R5, H�01,R5

(
(Z2)

)) = (
R5, (Z1)

)
,

�L
S
(
�01, (Z1)

) = (
R5, H�01,R5

(
(Z1)

)) = (
R5, 2(Z1)

)
. ♦
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Figure 4. A representation sublattice S ⊂ L, where S = L \ {�01} and the dashed arrows are
removed.

3.2.2. Product map. Let L be a representation lattice with structure {U, GU, hU,V } and M
be a representation lattice with structure {P, GP , hP,Q}. The projection homomorphisms on
groups

projU : GU × GP → GU, projP : GU × GP → GP

induce the inclusion homomorphisms on Euler rings (see (10))

incU : A(GU) ↪→ A(GU × GP ),

incP : A(GP ) ↪→ A(GU × GP ).

Thus, we can define a product of a ∈ A(GU) and b ∈ A(GP ) through

A(GU) × A(GP ) ↪→ A(GU × GP ) × A(GU × GP )
∗→ A(GU × GP ),

where ∗ is the ring multiplication in A(GU × GP ), i.e.

a � b := incU(a) ∗ incP (b). (17)

We show that the product ‘�’ is compatible with the structure of the representation lattices.

Lemma 3.10. Let L be a representation lattice with structure {U, GU, hU,V } and M be a
representation lattice with structure {P, GP , hP,Q}. Then, the following diagram commutes

A (GU) × A (GP) A (GU × GP)

A (GV ) × A (GQ) A (GV × GQ)

★

★

H HU,V × HP,Q U×P,V×Q

where ‘�’ is defined by (17) and H∗ is the induced homomorphism through h∗ (see (10)).

Proof. By theorem 2.7, HU×P,V ×Q is an Euler ring homomorphism. Thus, it suffices to show
that the following diagram commutes.
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A (GU) A (GU × GP)

A (GV ) A (GV × GQ)

incU

incV

HU,V HU×P,V×Q

Let (K) ∈ A(GU). It follows from the definition of H∗ that (see (10))

HU,V

(
(K)

) =
∑

(K̃)∈�(GV )

χc((GU/K)(K̃)/GV )(K̃),

HU×P,V ×Q

(
(K × GP )

) =
∑

(K ′)∈�(GV ×GQ)

χc((GU × GP /K × GP )(K ′)/GV × GQ)(K ′).

Note that GP acts trivially on GU × GP /K × GP , which implies that GQ also acts trivially
on GU × GP /K × GP through hU×P,V ×Q. Therefore, (GU × GP /K × GP )(K ′) �= ∅
if and only if (K ′) = (K̃ × GP ) for some K̃ such that (GU/K)(K̃) �= ∅. Moreover,
(GU ×GP /K ×GP )(K ′)/GV ×GQ is GV -homeomorphic to (GU/K)(K̃)/GV . Thus, we have

HU×P,V ×Q

(
(K × GP )

) = HU,V

(
(K)

)
, ∀ (K) ∈ A(GU). �

Definition 3.11. Let L be a representation lattice with structure {U, GU, hU,V } and M be a
representation lattice with structure {P, GP , hP,Q}. Consider the product lattice L × M with
the product structure (see (13)). Let R(L), R(M) and R(L × M) be the associated rings
defined by (14). Define a product map by

· : R(L) × R(M) → R(L × M)

((U, a), (P, b)) �→ (U × P, a � b), (18)

where U ∈ L, P ∈ M, a ∈ A(GU), b ∈ A(GP ) and a � b is defined by (17).

4. A degree theory for lattice-equivariant maps

In this section, we give the definition of lattice- equivariant maps and formulate a degree
theory for these maps, which we call the lattice-equivariant degree. We show that this degree
satisfies usual topological properties expected from a degree theory, and moreover, it has
algebraic properties compatible with the inclusion and the product of representation lattices.

In what follows, R stands for a parameter space, in which all groups act trivially.

Definition 4.1. Let L be a representation lattice in Rn with structure {U, GU, hU,V }. An open
bounded subset � ⊂ R × Rn is called L-invariant, if � ∩ (R × U) is GU -invariant, for every
U ∈ L. A continuous map f : � → Rn is called L-equivariant, if f (� ∩ (R × U)) ⊂ U

and f |�∩(R×U) is GU -equivariant for every U ∈ L. The map f is called �-admissible, if
f −1(0) ∩ ∂� = ∅. In this case, we say that the pair (f, �) is an admissible pair. Similarly,
one defines �-admissible and L-equivariant homotopies.

Our goal is to define a degree theory for �-admissible L-equivariant maps f . Motivated
by the study of synchrony-breaking Hopf bifurcations in coupled cell networks, we consider
representation lattices L with a structure {U, GU, hU,V }, where GU is of form GU = �U × S1

for a finite group �U and S1 stands for the group of complex numbers of unit length.
Let G := � × S1 for a finite group � and V be a G-representation. Given an open

bounded G-invariant subset O ⊂ R × V and a continuous G-equivariant map f : O → V
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such that f−1(0) ∩ ∂O = ∅, the twisted G-equivariant degree is a function assigning to (f, O)

a finite sequence of integers indexed by conjugacy classes of twisted subgroups in G such that
it satisfies usual properties of a degree theory (see [4]).

More precisely, let W(H) denote the Weyl group of H in G and

�k(G) = {(H) : dim W(H) = k}, for k = 0, 1.

It can be verified that �0(G) consists of all subgroups of form K × S1 for some subgroups
K ⊂ � and �1(G) is composed of twisted subgroups (see definition 2.12). Let

Ak(G) := Z
[
�k(G)

]
(19)

be the free Z-module generated by �k(G), for k = 0, 1. Then, the twisted G-equivariant
degree, usually denoted by G-Degt , is a function assigning to every admissible equivariant
pair (f, O) an element in A1(G) such that it satisfies properties like the existence, homotopy
invariance, additivity, normalization, suspension and Hopf property (see [4]). In particular,
the twisted equivariant degree G-Degt (f, O) has the form of

G-Degt (f, O) =
∑

(H)∈�1(G)

nH (H), nH ∈ Z. (20)

4.1. Definition and basic properties

Let L be a representation lattice with structure {U, GU, hU,V }, where GU = �U × S1 for a
finite group �u. Recall that (see (14))

R(L) :=
{ ∑

U∈L
(U, aU) : aU ∈ A(GU)

}
,

where A(GU) is the Euler ring of GU . Denote by

Rk(L) :=
{ ∑

U∈L
(U, aU) ∈ R(L) : aU ∈ Ak(GU)

}
, for k = 0, 1,

where Ak(G) is defined by (19).

Definition 4.2. Let L be a representation lattice in Rn with the structure given by
{U, GU, hU,V }, where GU = �U × S1 for a finite group �U . Let � ⊂ R × Rn be an open
bounded L-invariant subset and f : � → Rn be an �-admissible L-equivariant map. Using
the twisted equivariant degree, we define for each U ∈ L, an element aU in A1(GU). Let
Umin ∈ L be the minimal element and define

aUmin := �Umin × S1-Degt (f |�∩(R×Umin), � ∩ (R × Umin)). (21)

Suppose that aU ′ is defined for all U ′ < U . Then, define

aU := �U × S1-Degt (f |�∩(R×U), � ∩ (R × U)) −
∑
U ′<U

HU ′,U (aU ′), (22)

where HU ′,U is the Euler ring homomorphism induced by hU ′,U (see (10)). The lattice-
equivariant degree of f in � is then defined by

L-Degt (f, �) :=
∑
U∈L

(U, aU) ∈ R1(L). (23)

Notice that in the case the representation lattice L is composed of a single element Rn as
a representation of � × S1, the lattice-equivariant degree L-Degt coincides with the twisted
equivariant degree � × S1-Degt.
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The lattice-equivariant degree satisfies the following basic properties.

Theorem 4.3. Let L be a representation lattice in Rn with the structure given by {U, GU, hU,V },
where GU = �U ×S1 for a finite group �U . Then, the function L-Degt defined by (23) satisfies:

(i) (Existence) Suppose that L-Degt (f, �) = ∑
(U, aU) and aU �= 0 for some U ∈ L. Write

aU = ∑
nH (H). If (H) is such that nH �= 0, then

f −1(0) ∩ (
�H ∩ (R × U)

) �= ∅,

where the meaning of �H is given in (4).
(ii) (Homotopy Invariance) If H : [0, 1] × � → Rn is an �-admissible L-equivariant

homotopy, then

L-Degt (H(t, ·), �) = constant, ∀t ∈ [0, 1].

(iii) (Additivity) If �1, �2 ⊂ � are disjoint open bounded L-invariant subsets such that
f −1(0) ∩ � ⊂ �1 ∪ �2 and f is �i-admissible for i = 1, 2, then

L-Degt (f, �) = L-Degt (f, �1) + L-Degt (f, �2).

(iv) (Suspension) Let M be a representation lattice in Rm, Id : V ′ → V ′ be the identity
map and �′ ⊂ Rm be an open bounded M-invariant neighborhood of 0. Then,
L × M-Degt (f × Id, � × �′) is well-defined. Moreover,

L × M-Degt (f × Id, � × �′) = L-Degt (f, �),

under the identification: U �→ U × Pmin and (H) �→ (H × �Pmin) for every U ∈ L and
(H) ∈ �1(�U × S1), where Pmin ∈ M is the minimal element.

Proof. (ii) and (iii) follow immediately from the corresponding properties of the twisted
equivariant degree (see [4]).

To show (i), assume that f −1(0) ∩ (
�H ∩ (R × U)

) = ∅. If U = Umin,
then by the existence property of the twisted equivariant degree, we have that aUmin =
�U × S1-Degt (f |�∩(R×Umin), � ∩ (R × Umin)) has a zero (H)-coefficient, which is a
contradiction. Assume that the statement holds for all U ′ < U . By assumption, aU has
a nonzero (H)-coefficient. By the existence property of the twisted equivariant degree,
�U × S1-Degt (f |�∩(R×U), � ∩ (R × U)) has a zero (H)-coefficient. It follows from the
definition of aU that there exists U ′ < U such that HU ′,U (aU ′) has a nonzero (H)-coefficient.
Thus, there exists an H ′ ⊂ �U ′ × S1 such that H = h−1

U ′,U (H ′) and the (H ′)-coefficient in aU ′

is nonzero. By the induction assumption, we have

f −1(0) ∩ (
�H ′ ∩ (R × U ′)

) �= ∅.

Let x ∈ f −1(0) ∩ (
�H ′ ∩ (R × U ′)

)
and g ∈ H . Then, hU ′,U (g) ∈ H ′, so hU ′,U (g)x = x. By

the definition of representation lattice (see definition 3.2(ii)), we have then

gx = hU ′,U (g)x = x.

It follows that x ∈ f −1(0) ∩ (
�H ∩ (R × U)

)
. In particular, f −1(0) ∩ (

�H ∩ (R × U)
) �= ∅,

which is a contradiction to our initial assumption.
To show (iv), let

L × M-Degt (f × Id, � × �′) =
∑

(U × P, bU×P )

L-Degt (f, �) =
∑

(U, aU).
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Let Umin ∈ L and Pmin ∈ M be the minimal element, respectively. Let �Umin act trivially on
Pmin and �Pmin act trivially on R × Umin. Then, � ∩ (R × Umin) becomes �Umin × �Pmin × S1-
invariant and the restricted f is a �Umin × �Pmin × S1-equivariant map. Similarly, �′ ∩ Pmin

becomes �Umin × �Pmin -invariant and the Id is �Umin × �Pmin -equivariant. By the suspension
property of the twisted equivariant degree, we have

bUmin×Pmin = �Umin × �Pmin × S1-Degt (f × Id, (� ∩ (R × Umin)) × (�′ ∩ Pmin))

= �Umin × �Pmin × S1-Degt (f, � ∩ (R × Umin))

� aUmin ,

where ‘�’ means identifying (H ×�Pmin) with (H), for H ⊂ �Umin ×S1. Using the suspension
property of the twisted equivariant degree inductively, one shows

bU×Pmin � aU , bUmin×P = 0, for P > Pmin. (24)

Let U > Umin and P > Pmin. We show that bU×P = 0. Assume that bU ′×P ′ = 0 for all
U ′ × P ′ < U × P and P ′ > Pmin. Then, we have

bU×P = �U × �P × S1-Degt (f, (� ∩ (R × U)) −
∑

U ′×P ′<U×P

HU ′×P ′,U×P (bU ′×P ′)

(24)= �U × �P × S1-Degt (f, (� ∩ (R × U)) −
∑

U ′�U

HU ′×Pmin,U×P (bU ′×Pmin)

(24)� �U × S1-Degt (f, (� ∩ (R × U)) −
∑

U ′�U

HU ′,U (aU ′) = 0.

Thus, (iv) holds. �

Remark 4.4. Recall that for a finite group �, an equivariant degree without parameters is a
function �-Deg assigning to every admissible pair (g, �′), where �′ ⊂ V is open bounded
�-invariant and g : �

′ → V is �-equivariant, an element in A(�) such that it satisfies the
usual properties of a degree theory (see [6]). Let M be a representation lattice in Rm. In
a similar way, one can define a lattice-equivariant degree without parameters for admissible
pairs (g, �′), denote by M-Deg(g, �′), where �′ ⊂ Rm is an open bounded M-invariant
subset and g : �

′ → Rm is an M-equivariant map.

4.2. Algebraic properties

We show that the lattice-equivariant degree is compatible with the reduction homomorphism
defined in definition 3.7. Moreover, it has a product property with respect to product lattices.

Proposition 4.5 (Reduction homomorphism). Let L be a representation lattice in Rn and
S ⊂ L be a representation sublattice. Let �L

S be the reduction homomorphism from L to S
defined by (16). Then, we have

�L
S(L-Degt (f, �)) = S-Degt (f, �), (25)

for every admissible L-equivariant pair (f, �).

Proof. Let (f, �) be an admissible L-equivariant pair. By lemma 3.8 and lemma 3.4(iii), we
can assume without loss of generality, that S = L \ {Uo} for some Uo ∈ L�. Let

L-Degt (f, �) =
∑
U∈L

(U, aU), S-Degt (f, �) =
∑
U∈S

(U, bU).
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By the definition of aU , we have bU = aU if Uo �< U . Let U ∈ L be such that Uo < U and
U+ be the unique immediate descendant of Uo. Then, U+ � U . In case U = U+, we have

bU+ = �U+ × S1-Degt (f, � ∩ (R × U+)) −
∑

U ′ < U+
U ′ ∈ S

HU ′,U+(bU ′)

= aU+ +
∑

U ′ < U+
U ′ ∈ L

HU ′,U+(aU ′) −
∑

U ′ < U+
U ′ ∈ S

HU ′,U+(bU ′)

= aU+ + HUo,U+(aUo
) +

∑
U ′ < U+
U ′ ∈ S

HU ′,U+(aU ′) −
∑

U ′ < U+
U ′ ∈ S

HU ′,U+(bU ′)

= aU+ + HUo,U+(aUo
). (26)

For U > U+, suppose that aU ′ = bU ′ for all U+ < U ′ < U , then we have

bU = �U × S1-Degt (f, � ∩ (R × U)) −
∑

U ′ < U
U ′ ∈ S

HU ′,U (bU ′)

= aU +
∑

U ′ < U
U ′ ∈ L

HU ′,U (aU ′) −
∑

U ′ < U
U ′ ∈ S

HU ′,U (bU ′)

= aU + HU+,U (aU+) + HUo,U (aUo
) − HU+,U (bU+)

(26)= aU + HUo,U (aUo
) − HUo,U+ HU+,U (aUo

),

which implies that bU = aU by theorem 2.7(ii). �
We show that multiplication properties of the twisted equivariant degree can be extended

to the lattice-equivariant degree. Recall that the twisted � × S1-equivariant degree has a
multiplication property corresponding to the A(�)-module structure on the set A1(� × S1),
which coincides with the Euler ring multiplication in A(� × S1) (see [6, 20]).

Proposition 4.6 (Product property). Let L be a representation lattice with structure {U, �U×
S1, hU,V } in Rn and M be a representation lattice with structure {P, �P , hP,Q}, where �∗
are finite groups. Suppose that � ⊂ R × Rn (respectively �′ ⊂ Rm) is an open bounded
L-invariant (respectively M-invariant) subset and f : � → Rn (respectively g : �

′ → Rm)
is an �-admissible L-equivariant (respectively �′-admissible M-equivariant) map. Then,
we have

L × M-Degt (f × g, � × �′) = L-Degt (f, �) · M-Deg(g, �′), (27)

where ‘·’ is defined by (18).

Proof. Let L×M-Degt (f ×g, �×�′) = ∑
(U ×P, aU×P ), L-Degt (f, �) = ∑

U∈L(U, bU)

and M-Deg(g, �′) = ∑
P∈M(P, cP ). It sufficies to show

aU×P = bU � cP .

Denote by Umin and Pmin the minimal element of L and M respectively. Then,

aUmin×Pmin = �Umin × �Pmin × S1-Degt (f × g, (� ∩ (R × Umin)) × (�′ ∩ Pmin))

= �Umin × �Pmin × S1-Degt (f, � ∩ (R × Umin))) ∗ �Umin

× �Pmin -Deg(g, �′ ∩ Pmin)

= �Umin × S1-Degt (f, � ∩ (R × Umin))) � �Pmin -Deg(g, �′ ∩ Pmin)

= bUmin � cPmin .
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Assume that aU ′×P ′ = bU ′ � cP ′ for all U ′, P ′ such that U ′ × P ′ < U × P . Then, we have

aU×P =
∑

U ′�U

bU ′ �
∑

P ′�P

cP ′ −
∑

U ′×P ′<U×P

HU ′×P ′,U×P (aU ′×P ′)

=
∑

U ′�U

bU ′ �
∑

P ′�P

cP ′ −
∑

U ′×P ′<U×P

HU ′×P ′,U×P (bU ′ � cP ′)

=
∑

U ′�U

bU ′ �
∑

P ′�P

cP ′ −
∑

U ′×P ′<U×P

HU ′,U (bU ′) � HP ′,P (cP ′),

(cf lemma3.10)

= bU � cP . �

4.3. Extension to infinite-dimensional vector spaces

In this subsection, we extend the lattice-equivariant degree to infinite-dimensional lattice
representations for compact lattice-equivariant vector fields. The desired approximation of
compact maps by finite-dimensional maps is based on an equivariant version of the Schauder
projection.

In what follows, W is an infinite-dimensional real Banach space. Recall that for a bounded
subset X ⊂ R × W , a continuous map F : X → W is called compact, if F(X) is compact in
W ; and F is called finite dimensional, if F(X) is contained in a finite dimensional subspace
of W . Let π : R × W → W be the projection on W and F : X → W be a compact map, then
π − F is called a compact vector field.

Definition 4.7. Let G be a compact Lie group and W be a Banach representation of G. Let
N = {c1, c2, . . . , cn} ⊂ W be a finite set. For any fixed ε > 0, let

U(N, ε) =
⋃n

i=1

⋃
g∈G

gB(ci, ε), (28)

where the symbol gA means the union of all elements gx for x ∈ A and B(ci, ε) stands for
the open ε-disc around ci in W . For x, y ∈ W , define ρε(x, y) = max{0, ε − ‖x − y‖}. We
call the map pN,ε : U(N, ε) → W defined by

pN,ε(x) =

n∑
i=1

∫
G

ρε(g
−1x, ci)gci dµ(g)

n∑
i=1

∫
G

ρε(g
−1x, ci) dµ(g)

, (29)

for µ being the Haar measure of G, the equivariant Schauder projection.

Note that the denominator of pN,ε is never zero. For every x ∈ U(N, ε), there exists
i ∈ {1, 2, . . . , n}, g ∈ G such that x = gy for some y ∈ B(ci, ε). That is, x ∈ U(N, ε) if and
only if ‖g−1x − ci‖ < ε, which implies that ρε(g

−1x, ci) > 0.
The equivariant Schauder projection has the following properties.

Lemma 4.8. Let G be a compact Lie group and W be an isometric Banach representation of
G. Let N = {c1, c2, . . . , cn} ⊂ W be a finite set and ε > 0. Let U(N, ε) be given by (28) and
pN,ε be given by (29). Then,

(i) pN,ε is G-equivariant;
(ii) pN,ε is a finite-dimensional map;

(iii) ‖x − pN,ε(x)‖ < ε, for all x ∈ U(N, ε).
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Proof.

(i) Let a(x) be the numerator of pN,ε(x) and b(x) be the denominator of pN,ε(x). We show
that the map a is G-equivariant and b is G-invariant. Let go ∈ G. Then,

a(g−1
o x) =

n∑
i=1

∫
G

ρε(g
−1g−1

o x, ci)gci dµ(g)=
n∑

i=1

∫
G

ρε((gog)−1x, ci)g
−1
o gogci dµ(g)

= g−1
o

n∑
i=1

∫
G

ρε((gog)−1x, ci)(gog)ci dµ(g) = g−1
o a(x),

and

b(g−1
o x) =

n∑
i=1

∫
G

ρε(g
−1g−1

o x, ci) dµ(g) =
n∑

i=1

∫
G

ρε((gog)−1x, ci) dµ(g) = b(x).

Thus, pN,ε is G-equivariant.
(ii) Note that the G-orbit of ci is a finite-dimensional smooth manifold of W , thus is contained

in a subspace Wi ⊂ W with dim Wi < ∞, for i = 1, 2, . . . , n. It follows that∫
G

ρε(g
−1x, ci)gci dµ(g) ∈ Wi and pN,ε(x) ∈ span{W1, W2, . . . , Wn} for all x ∈ W .

(iii) Let x ∈ U(N, ε). Assume that ρε(g
−1x, ci) �= 0. Then, ‖g−1x − ci‖ < ε. Thus,

‖x − gci‖ < ε, since G acts isometrically on W . Therefore,

‖x − pN,ε(x)‖ =

∥∥∥∥∥∥∥∥∥∥

n∑
i=1

∫
G

ρε(g
−1x, ci)(x − gci) dµ(g)

n∑
i=1

∫
G

ρε(g
−1x, ci) dµ(g)

∥∥∥∥∥∥∥∥∥∥

�

n∑
i=1

∫
G

ρε(g
−1x, ci) ‖x − gci‖ dµ(g)

n∑
i=1

∫
G

ρε(g
−1x, ci) dµ(g)

< ε.

�

We have the following approximation theorem.

Proposition 4.9. Let W be an infinite-dimensional real Banach space and T be representation
lattice with structure {Y, GY , hY,Y ′ } in W . Let X ⊂ R × W be a bounded T -invariant subset
and F : X → W be a T -equivariant compact map. Then, for every ε > 0, there exists a
T -equivariant finite-dimensional map Fε : X → W such that

‖F(x) − Fε(x)‖ < ε, for all x ∈ X.

Proof. For convenience, we numerate the elements of T as Y1, Y2, . . . , Ym such that

Yi ⊂ Yj �⇒ i � j.

Based on lemma 4.8, we define Fε inductively on Y = Yi using the equivariant Schauder
projection. Set ε = ε1.

For Y = Y1, since F is a compact map, F(X ∩ (R × Y1)) is a compact set in W . Thus,
there exists a finite set N1 = {c1, c2, . . . , cn1} ⊂ Y1 such that the set U(N1, ε1) defined by (28)
covers F(X ∩ (R × Y1)). Let pN1,ε1 be given by (29) and define

Fε1(x) = pN1,ε1(F (x)), ∀ x ∈ X ∩ (R × Y1).
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For Y = Y2, choose ε2 > 0 such that ε2 < ε1 and

{y ∈ Y2 : dist (y, F (X ∩ (R × Y1)) < ε2} ⊂ U(N1, ε1).

Since F(X ∩ (R × Y2)) is compact, there exists a finite set N2 = {cn1+1, cn1+2, . . . , cn1+n2} ⊂
Y2 \U(N1, ε1) such that U(N2, ε2) defined by (28) covers F(X ∩ (R × Y2))\U(N1, ε1). Note
that by the choice of ε2, we have

dist (cn1+j , F (X ∩ (R × Y1)) � ε2, ∀ j = 1, 2, . . . , n2. (30)

Define pN2,ε2 : U(N1, ε1) ∪ U(N2, ε2) → W by

pN2,ε2(x) =

n1∑
i=1

∫
GY1

ρε1(g
−1x, ci)gci dµ(g) +

n2∑
j=1

∫
GY2

ρε2(g
−1x, cn1+j )gcn1+j dµ(g)

n1∑
i=1

∫
GY1

ρε1(g
−1x, ci) dµ(g) +

n2∑
j=1

∫
GY2

ρε2(g
−1x, cn1+j ) dµ(g)

.

It can be verified that pN2,ε2 is GY2 -equivariant in Y2 (noting the compatibility condition (ii) of
definition 3.2), finite-dimensional and satisfies ‖x − pN2,ε2(x)‖ < ε1 = ε. Let

Fε2(x) = pN2,ε2(F (x)), ∀ x ∈ X ∩ (R × Y2).

It should be noted that by (30), Fε2 coincides with Fε1 on X ∩ (R × Y1). Thus, Fε2 is a
finite-dimensional ε-approximation of F such that Fε2 is lattice equivariant with respect to the
representation sublattice {Y1, Y2} of T .

By iterating the above procedure until Y = Ym, we obtain the desired map Fε given
by Fεm

. �
Let T be a representation lattice in W . Let O ⊂ R × W be a T -invariant open bounded

subset and F : O → W be a T -equivariant compact map. By proposition 4.9, for given
ε > 0, F has a T -equivariant finite-dimensional approximation Fε : O → W such that
‖Fε(x) − F1(x)‖ < ε, for x ∈ O. Suppose that Fε(O) ⊂ W∗ for a finite-dimensional
subspace W∗ ⊂ W . Set

T∗ := {Y ∩ W∗ : Y ∈ T }.
We define the lattice-equivariant degree of π − F in O by

T -Degt (π − F, O) := T∗-Degt (π − Fε|O∩(R×W∗), O ∩ (R × W∗)), (31)

where the function T∗-Degt on the right-hand side is defined by (23).
By a standard argument, one shows that the definition is independent of the choice of

approximation Fε and W∗. Moreover, the defined lattice-equivariant degree by (31) satisfies
similar properties as listed in theorem 4.3 with f replaced by compact vector fields.

5. Synchrony-breaking bifurcations in coupled cell systems

In this section, we adopt the standard degree-theoretical approach and use the lattice-equivariant
degree to study synchrony-breaking Hopf bifurcations in homogeneous coupled cell systems.

5.1. Statement of the problem

Consider a homogeneous coupled cell system given by

ẋ1 = fo(λ; x1; xi1 , . . . , xis )

ẋ2 = fo(λ; x2; xj1 , . . . , xjs
),

· · · (32)

ẋn = fo(λ; xn; xk1 , . . . , xks
),
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where λ ∈ R is a parameter, xi ∈ Rk and fo : R × Rk × (Rk)s → Rk of class C1. Let
x = (x1, . . . , xn)

T ∈ (Rk)n and f : R × (Rk)n → (Rk)n be the right-hand side of (32). Then,
(32) can be written as

ẋ = f (λ, x). (33)

Assume that x = xo ∈ (Rk)n is an equilibrium of (33), i.e.

(E1) f (λ, xo) = 0, ∀ λ ∈ R.

Let J (λ) := Dfx(λ, xo) be the Jacobian of f at xo. We say that (λo, xo) is a bifurcation
centre of (33), if J (λo) has a purely imaginary eigenvalue iβo. Assume that

(B1) (λo, xo) is an isolated bifurcation centre, i.e. (λo, xo) is the only bifurcation centre in
some neighborhood of (λo, xo) in R × (Rk)n.

To avoid steady-state bifurcation around (λo, xo), we assume

(B2) J (λo) : (Rk)n → (Rk)n is an isomorphism.

In many cases, due to the external couplings among the cells, (33) may admit a number
of flow-invariant subspaces given by equalities of cell coordinates. As an example, every
homogeneous coupled cell system admits

�0 = {x : x1 = x2 = · · · = xn}
as a flow-invariant subspace (independent of the specific form of f ). In general, let �� be a
partition on the set {1, 2, . . . , n} and

��∼ be the induced equivalence relation. Then, �� defines
a polydiagonal subspace

��� = {x : xc = xd, if c
��∼ d} ⊂ (Rk)n,

characterized by the partial synchrony among the cells. A polydiagonal subspace of (33) is
called robust, if it is invariant for every vector field f of the form (32). We assume that

(L1) L is a lattice of (robust) polydiagonal subspaces admitted by (33), which is independent
of λ ∈ R;

(L2) L is a representation lattice with structure {�, ��, h�,�′ } for finite groups ��;

(F) f is L-equivariant;

In what follows, we are interested in studying synchrony-breaking Hopf bifurcations
around (λo, xo), where xo loses its stability and bifurcates to oscillating states of less synchrony.
For simplicity2, we assume that

(E2) xo ∈ �0.

Definition 5.1. Let x ∈ (Rk)n and L be a lattice of robust polydiagonal subspaces of (33).
If x ∈ � for some � ∈ L, then we say that x is of synchrony type �. If moreover, � is
the smallest element in L that contains x, then we say that x is of proper synchrony type �.
Similarly, a function x : R → (Rk)n is of (proper) synchrony type �, if x(t) is of (proper)
synchrony type �, for all t ∈ R.

2 It is also possible to consider synchrony-breaking bifurcation around a partial synchronous equilibrium xo. In this
case, additional assumptions are needed to prevent synchrony-preserving bifurcations.
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5.2. Functional reformulation

Let p > 0 be the unknown period of the bifurcating solution x of (33). Let β := 2π
p

and

u(t) := x( 1
β
t). Then, finding a p-periodic solution x of (33) is equivalent to solving


u̇ = 1

β
f (λ, u),

u(0) = u(2π).

(34)

It is clear that L is a representation lattice of robust polydiagonal subspaces admitted by (34).
Let W := H 1(S1; (Rk)n) be the first Sobolev space of (Rk)n-valued functions defined on S1.
Then, L induces a representation lattice T in W as follows. Let

�̆ := H 1(S1; �), (35)

be the first Sobolev space of �-valued functions defined on S1, for � ∈ L. Let �� be the
group of action on � (cf (L2)). Define an (isometric) �� × S1-action on �̆ by

((γ, eiθ )u)(t) := γ u(t + θ), γ ∈ ��, eiθ ∈ S1. (36)

Let

T = {�̆ : � ∈ L}, (37)

where �̆ is defined by (35). Then, with respect to the structure

{�̆, �� × S1, h�,�′ × IdS1},
T is a representation lattice, which will be called the induced lattice from L.

We reformulate (34) as a T -equivariant fixed point problem. Define

L : W → L2(S1; (Rk)n), L(u) = u̇

j : W → C(S1; (Rk)n), j (u) = ũ

Nf : R × C(S1; (Rk)n) → L2(S1; (Rk)n), (Nf (λ, v))(t) = f (λ, v(t)).

Then, (34) is equivalent to

Lu = 1

β
Nf (λ, j (u)).

Define K : W → L2(S1; (Rk)n) by Ku := 1
2π

∫ 2π

0 u(t) dt . Then, L + K is invertible and
we have

u = (L + K)−1

[
1

β
Nf (λ, j (u)) + Ku

]
:= F1(λ, β, u). (38)

Notice that F1 is a T -equivariant compact map.
Let (λo, xo) be the isolated bifurcation centre given by (B1) and iβo be the purely imaginary

eigenvalue of J (λo). Define a neighborhood O ⊂ R2 × W of (λo, βo, uo) by

O := {(λ, β, u) :
√

(λ − λo)2 + (β − βo)2 < ε, ‖u‖ < r} ⊂ R2 × W, (39)

where R2 is considered as a parameter space (on which all groups act trivially). Note that O

is T -invariant, since every group �� × S1 acts isometrically on �̆.
Let ζ : O → R be an auxiliary function such that ζ(λ, β, u) > 0 for ‖u‖ = r and

ζ(λ, β, u) < 0 for ‖u‖ = 0. For example,

ζ(λ, β, u) :=
√

(λ − λo)2 + (β − βo)2(‖u‖ − r) + ‖u‖ − r

2
.

Define a map Fζ : O → R × W by

Fζ (λ, β, u) = (ζ(λ, β, u), u − F1(λ, β, u)). (40)
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Then, solutions of (34) around (λo, xo) are zeros of Fζ in O. It can be verified that Fζ is a
T -equivariant compact vector field. By (B1), Fζ is also O-admissible. Therefore, (Fζ , O) is
an admissible pair and the lattice-equivariant degree of Fζ in O

ω(λo, βo, xo) := T -Degt (Fζ , O)

is well-defined, which we call the bifurcation invariant around (λo, xo).

5.3. Classification result

Using the bifurcation invariant around the bifurcation centre (λo, xo), we can describe the
topological structure of bifurcating branches of periodic solutions of (33) from xo and classify
them according to their synchrony types and symmetric properties.

Definition 5.2 (see [6]). Let � ∈ L and H ⊂ �� × S1 be a twisted l-folded subgroup such
that (H) is an orbit type of W . Then, (H) is called dominating, if it is maximal in the class of
all twisted l-folded orbit types of W .

We show that:

Theorem 5.3. Let L be a representation lattice of robust synchrony subspaces of (33) satisfying
(L1)–(L2) and f such that (F) holds. Consider an equilibrium xo ∈ (Rk)n of (33) satisfying
(E1)–(E2) and a bifurcation centre (λo, xo) satisfying (B1)–(B2). Let T be the induced lattice
from L given by (37) and O, Fζ be defined by (39) and (40). Assume that

T -Degt (Fζ , O) =
∑

(�̆, a�̆), for some a�̆ �= 0.

Then,

(i) there exists a branch of non-constant periodic solutions of (33) bifurcating from xo that
are of synchrony type �;

(ii) if moreover, iβo is not an eigenvalue of J (λo)|�′ , for any �′ < �, then this branch of
non-constant periodic solutions of (33) is of proper synchrony type �;

(iii) if a�̆ contains a nonzero (H)-coefficient for a dominating orbit tpye (H) = (Kϕ,l),
then there exist at least |��/K| different bifurcating branches of non-constant periodic
solutions of (33), which have isotropy subgroups γHγ −1, for γ ∈ ��/K .

Proof.

(i) follows from the existence property of the lattice-equivariant degree (see theorem 4.3(i)),
and a standard argument using parametrized auxiliary functions (see [6]).

(ii) We need to show that the bifurcating solutions given by (i) do not belong to �̆′, for any
�′ < �. Let �′ ∈ L be such that �′ < �. If iβo is not an eigenvalue of J (λo)|�′ , then

Id − DuF1(λo, βo, ·) : �̆′ → �̆′

is an isomorphism. By the implicit function theorem, uo is the unique zero of Fζ in
O ∩ (R2 × �̆′). Thus, the bifurcating solutions can not belong to �̆′.

(iii) This is a property of twisted equivariant degree (see [6]). For completeness, we give a brief
proof here. Since (H) is a dominating orbit type, there is a bifurcating solution u ∈ �̆,
whose orbit type is precisely (H). The orbit of u is thus diffeomorphic to �� × S1/H .
By lemma 2.13, �� × S1/H is a disjoint union of |��/K| copies of circles, which can
be indexed by their isotropy types γHγ −1 (under the action of �� × S1), for γ ∈ �/K .
Since every circle represents a (distinct) periodic solution, thus there exist at least |��/K|
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Figure 5. A regular coupled cell network of 5 cells.

different bifurcating branches of non-constant periodic solutions of (33), whose isotropy
types are γHγ −1, for γ ∈ ��/K , respectively. �

5.4. Example

We investigate a synchrony-breaking Hopf bifurcation in a regular3 coupled cell system, which
supports a large number of polydiagonal subspaces and nontrivial quotient symmetries on
these polydiagonal subspaces. This network has been firstly studied in [1] as one of the
twelve 5-cell regular networks which admit a S3-symmetric quotient network, indexed as
the network 6. We analyse the synchrony-breaking Hopf bifurcation for systems associated
with this network in the case of non-simple eigenvalues) and give a classification of the
bifurcating branches of oscillating solutions up to their synchrony types and symmetric
properties.

Consider a 5-cell regular coupled cell network given in figure 5. The coupling structure
of N can be described by the following adjacency matrix

A =




0 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0


 ,

whose (i, j)th element is equal to the number of arrows from the j th cell to the ith cell. It can
be verified that A has the following spectrum

σ(A) = {
µ1 = 2, µ2 = 1, µ3 = µ4 = µ5 = −1

}
.

In what follows, we discuss a synchrony-breaking Hopf bifurcation in the coupled cell system
associated to N that is related to the non-simple eigenvalue −1 of the adjacency matrix A.

Define fo : R × R2 × (R2)2 → R2 by

fo(λ, x, y, z) := α(λ)x + βy + βz + xyz, (41)

where ‘xyz’ stands for the entry-wise multiplication of x, y, z and

α(λ) =
(

1 + λ −2
2 1 + λ

)
, β =

(
1 −1
1 1

)
.

3 A coupled cell system is called regular if it is homogeneous and contains only one type of coupling.
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Consider the coupled cell system on N (with two-dimensional internal dynamics) given by

ẋ1 = fo(λ, x1, x2, x4)

ẋ2 = fo(λ, x2, x1, x4)

ẋ3 = fo(λ, x3, x1, x5) (42)

ẋ4 = fo(λ, x4, x1, x2)

ẋ5 = fo(λ, x5; x1, x3),

where xi ∈ R2, λ ∈ R and fo is defined by (41). Then, x = 0 is an equilibrium.

5.4.1. The spectrum of the Jacobian. Let f : R × (R2)5 → (R2)5 be the right-hand side of
(42). It was shown in [13] that the linearization J (λ) = Dfx(λ, 0) of f at (λ, 0) has the form

J (λ) = α(λ) ⊗ I5 + β ⊗ A,

where I5 : R5 → R5 is the identity matrix. Also, the eigenvalues of J (λ) are the union of the
eigenvalues of the 2 × 2-matrices Mµ := α(λ) + µβ, for all µ ∈ σ(A). Moreover, if v ∈ C5 is
an eigenvector of A and u ∈ C2 is an eigenvector of Mµ, then u ⊗ v is an eigenvector of J (λ)

(cf [13]). More precisely, J (λ) has the following eigenvalues and eigenvectors

M2, σ1,2 = 3 + λ ± 4i,

(−i

1

)
⊗ v1,

(
i

1

)
⊗ v1

M1, σ3,4 = 2 + λ ± 3i,

(
1
0

)
⊗ v2,

(
0
1

)
⊗ v2

M−1, σ5,6,7,8,9,10 = λ ± i,

(−i

1

)
⊗ vj ,

(
i

1

)
⊗ vj ,

where v1, v2, vj for 3 � j � 5 are eigenvectors of A corresponding to 2, 1, −1. Consequently,
(42) has three isolated bifurcation centres (−3, 0), (−2, 0) and (0, 0). We describe the
synchrony-breaking bifurcation around (0, 0), i.e.

(λo, βo, xo) = (0, 1, 0).

5.4.2. The polydiagonal subspaces. Invariant polydiagonal subspaces of the adjacency matrix
A were listed in [1], which form a lattice in figure 6, where a, b, c, d, e ∈ R. Note that R2 ⊗U

is J (λ)-invariant, for every A-invariant linear subspace U ⊂ R5. Thus, the lattice in figure 6
is the lattice of polydiagonal subspaces of (42), for a, b, c, d, e ∈ R2.

Denote by

Ŭ := H 1(S1; U),

the first Sobolev space of 2π -periodic functions valued in U , for U ∈ L. Let

T := {Ŭ : U ∈ L}.
Then, T is a representation lattice with structure {Ŭ , �U ×S1, hU,U ′′ ×Id}, where Id : S1 → S1

is the identity homomorphism.

5.4.3. The representation lattice. Let L̃ be the lattice given by figure 6. For every U ∈ L̃,
there is a quotient network associated to U , whose network structure is given by A|U (the
adjacency matrix A restricted to U ). A quotient symmetry associated to U , say �U , is a
symmetry of the quotient network associated to U . It follows that �U is a symmetry of (42)
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Figure 6. The lattice L̃ of invariant subspaces.

when restricted to R2 ⊗ U . It can be verified that (42) has the following (nontrivial) quotient
symmetries:

��4 = ��1 = ��01 = S3 � D3, ��2 = ��00 = ��02 = ��03 = Z2,

where D3 acts as permutations on symbols a, b, c and Z2 = 〈κ〉 acts on �00, �02, �03 by
κ : (a, b, c, d, e) �→ (a, b, e, d, c).

However, for any choices of homomorphisms hU,U ′’s, {U, �U, hU,U ′ }U∈L̃ does not give
a valid structure of representation lattice to L̃. Indeed, a necessary condition for L̃ to
be a representation lattice is that U is �U ′ -invariant subspace of U ′, for all U ⊂ U ′

(see definition 3.2 (ii)). But we have that �43, �41, �13 are not D3-invariant in �4;
�13, �12, �11 are not D3-invariant in �1; and �3, �5, �6 are not D3-invariant in �01. In
fact, in each of these cases, the three subspaces form one orbit under D3-action.

Let L = L̃ \ {�43, �41, �13, �12, �11, �3, �5, �6} and �U be the quotient symmetry
related to U , for U ∈ L (see figure 7). The arrows in figure 7 stand for homomorphisms,
where h∗,∗ : Z1 → �x are given by the inclusion, h∗,∗ : �x → Z1 are given by the projection
and h∗,∗ : Z2 → Z2 are the identity homomorphism. As shown in example 3.3, L is a real
representation lattice in V = R2 ⊗ R5, with respect to this structure.

5.4.4. The bifurcation invariant. It can be verified that the assumptions (E1)–(E2), (B1)–(B2),
(L1)–(L2) and (F) are satisfied by (42) with fo given by (41) and xo = 0. Thus, the bifurcation
invariant

ω(λo, βo, xo) = T -Degt (Fζ , O)

is well-defined. We compute this bifurcation invariant around (λo, βo, xo) = (0, 1, 0). Write

T -Degt (Fζ , O) =
∑

U∈L
(Ŭ , aŬ ).

Let D3 = Z3 ∪ κZ3, where Z3 = 〈ξ〉. Define

Zt
3 = {(1, 1), (ξ, ξ), (ξ 2, ξ 2)}, D1 = {(1, 1), (κ, 1)},

Dz
1 = {(1, 1), (κ, −1)},
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Figure 7. A representation lattice L in R
2 ⊗ R

5.

which are subgroups of D3 × S1. Define

Z−
2 := {(1, 1), (−1, −1)} ⊂ Z2 × S1.

Then, we obtain (see the appendix for details of computations)

T -Degt (Fζ , O) = (
∆̆1, −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1)

)
+

(
∆̆2, −(Z−

2 )
)

+
(
∆̆4, −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1)

)
+

(
∆̆01, −2(Zt

3)

−2(D1) − 2(Dz
1) + 2(Z1)

)
+

(
�̆00, −(Z−

2 )
)

+
(
�̆02, −(Z−

2 )
)

+
(
�̆03, −(Z−

2 )
)

+ (W, 13(Z1)),

where the highlighted �1, �2, �4, �01 satisfy the condition of theorem 5.3(ii) and the
dominating orbit types in these polydiagonal subspaces are in the bold font.

Consider � = ∆1 � R3 (thus �� = D3) and

a�̆1
= −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1).

Since a�̆1
contains a nontrivial (Zt

3)-term, by theorem 5.3(iii), there exist at least |D3/Z3| = 2
different branches of non-constant periodic solutions of (42), whose isotropy types are Zt

3
and κZt

3κ
−1, respectively. More precisely, the branch with the isotropy type Zt

3 has the form
(see example 2.14)

u(t) =
(

x(t), x

(
t +

T

3

)
, x

(
t +

2T

3

))
,

and the branch with the isotropy type κZt
3κ

−1 is of form

v(t) =
(

x(t), x

(
t +

2T

3

)
, x

(
t +

T

3

))
.

By theorem 5.3(ii), these branches of solutions are of proper synchrony type �1. Similarly,
since a�̆1

contains a nontrivial (D1)-term, there exist at least |D3/D1| = 3 branches of
non-constant periodic solutions of (42), whose isotropy types are D1, ξD1ξ

−1, ξ 2D1ξ
−2,

respectively, and they have a proper synchrony type �1. Also, the nontrivial (Dz
1)-term

indicates the existence of |D3/D1| = 3 branches of non-constant periodic solutions of (42),



2710 H Ruan

Table 2. The summary of synchrony type and symmetric properties of all topological bifurcating
branches of solutions from xo = 0 of system (42).

Synchrony Symmetry Form of Periodic Solutions (for some period T )

�1
(a,b,b,c,c)

Z
t
3

(
x(t), x(t + T

3 ), x(t + T
3 ), x(t + 2T

3 ), x(t + 2T
3 )

)

κZ
t
3κ

−1
(
x(t), x(t + 2T

3 ), x(t + 2T
3 ), x(t + T

3 ), x(t + T
3 )

)

D1

(
x(t), y(t), y(t), x(t), x(t)

)
∈ �12

ξD1ξ
−1

(
x(t), x(t), x(t), y(t), y(t)

)
∈ �11

ξ2D1ξ
−2

(
x(t), y(t), y(t), y(t), y(t)

)
∈ �13

Dz
1

(
x(t), y(t), y(t), x(t + T

2 ), x(t + T
2 )

)
, for y(t) = y(t + T

2 )

ξDz
1ξ

−1
(
x(t), x(t + T

2 ), x(t + T
2 ), y(t), y(t)

)
, for y(t) = y(t + T

2 )

ξ2Dz
1ξ

−2
(
x(t), y(t), y(t), y(t + T

2 ), y(t + T
2 )

)
, for x(t) = x(t + T

2 )

�2
(a,a,b,a,c)

Z
−
2

(
x(t), x(t), y(t), x(t), y(t + T

2 )
)

�4
(a,b,c,c,b)

Z
t
3

(
x(t), x(t + T

3 ), x(t + 2T
3 ), x(t + 2T

3 ), x(t + T
3 )

)

κZ
t
3κ

−1
(
x(t), x(t + 2T

3 ), x(t + T
3 ), x(t + T

3 ), x(t + 2T
3 )

)
D1

(
x(t), y(t), x(t), x(t), y(t)

)
∈ �43

ξD1ξ
−1

(
x(t), x(t), y(t), y(t), x(t)

)
∈ �41

ξ2D1ξ
−2

(
x(t), y(t), y(t), y(t), y(t)

)
∈ �13

Dz
1

(
x(t), y(t), x(t + T

2 ), x(t + T
2 ), y(t)

)
, for y(t) = y(t + T

2 )

ξDz
1ξ

−1
(
x(t), x(t + T

2 ), y(t), y(t), x(t + T
2 )

)
, for y(t) = y(t + T

2 )

ξ2Dz
1ξ

−2
(
x(t), y(t), y(t + T

2 ), y(t + T
2 ), y(t)

)
, for x(t) = x(t + T

2 )

�01
(a,b,d,c,d)

Z
t
3

(
x(t), x(t + T

3 ), y(t), x(t + 2T
3 ), y(t)

)

κZ
t
3κ

−1
(
x(t), x(t + 2T

3 ), y(t), x(t + T
3 ), y(t)

)

D1

(
x(t), y(t), z(t), x(t), z(t)

)
∈ �5

ξD1ξ
−1

(
x(t), x(t), z(t), y(t), z(t)

)
∈ �6

ξ2D1ξ
−2

(
x(t), y(t), z(t), y(t), z(t)

)
∈ �3

Dz
1

(
x(t), y(t), z(t), x(t + T

2 ), z(t)
)

, for y(t) = y(t + T
2 )

ξDz
1ξ

−1
(
x(t), x(t + T

2 ), z(t), y(t), z(t)
)

, for y(t) = y(t + T
2 )

ξ2Dz
1ξ

−2
(
x(t), y(t), z(t), y(t + T

2 ), z(t)
)

, for x(t) = x(t + T
2 )

whose isotropy types are Dz
1, ξDz

1ξ
−1, ξ 2Dz

1ξ
−2, respectively (see table 2), and they are of a

proper synchrony type �1.
An analogous analysis can be applied to ∆2, ∆4 and ∆01. A summary of these bifurcating

solutions can be found in table 2. In brief, we predict 8 different branches of non-constant
periodic solutions of proper synchrony type �1; 1 branch of non-constant periodic solutions of
proper synchrony type �2; 8 different branches of non-constant periodic solutions of proper
synchrony type �4; and 8 different branches of non-constant periodic solutions of proper
synchrony type �01.

Note that we do not exclude the possibility of additional periodic solutions bifurcating from
xo = 0, besides those listed in table 2, since as a topological invariant, the lattice degree gives
only a lower estimate of the number of solutions. In other words, other non-constant periodic
solutions (also possibly symmetric and/or partially synchronized) may bifurcate from xo = 0.
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6. Conclusions

We introduce representation lattices in Banach spaces and maps that are compatible with
respect to this structure—lattice-equivariant maps. We define a degree theory, called the
lattice-equivariant degree, for lattice-equivariant maps on lattice invariant domains, using
an alternating-sum type of formula and the twisted equivariant degree (see definition 4.2).
Based on an equivariant version of the Schauder projection, we extend this degree to infinite-
dimensional lattice representations for compact lattice-equivariant vector fields.

We study a synchrony-breaking Hopf bifurcation in homogeneous coupled cell systems,
using the lattice-equivariant degree. In this case, the representation lattice is given by the lattice
of partial polydiagonal subspaces admitted by the system and the action group is given by the
symmetry of the corresponding quotient network. We associate a bifurcation invariant to
bifurcation points using the lattice-equivariant degree, and show that the bifurcation invariant
gives a topological classification of all bifurcating branches of oscillating solutions according
to their synchrony types and symmetric properties (see theorem 5.3). As an example, we
investigate a ten-dimensional coupled system of 5-cells, which has quotient symmetries of
Z2 and S3. We obtain a synchrony- and symmetry-classification of the total 25 bifurcating
branches of oscillating solutions (see table 2).
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Appendix: Computation of the bifurcation invariant

We give the details of the computation of the bifurcation invariant

ω(λo, βo, xo) = T -Degt (Fζ , O),

associated with the bifurcation centre (λo, βo, xo) = (0, 1, 0) of the system (42).
Recall that by definition,

T -Degt (Fζ , O) =
∑
U∈L

(Ŭ , aŬ ),

where

aŬ = �U × S1-Degt (Fζ |R2×Ŭ , O ∩ (R2 × Ŭ )) −
∑
U ′<U

HU ′,U (aŬ ′).

Let � = �U , F = Fζ |R2×Ŭ and � = O ∩ (R2 × Ŭ ) for some U ∈ L. The twisted degree
� × S1-Degt (F, �) can be computed from the following formula (cf [6])

� × S1-Degt (F, �) =
∏

µ∈σ+(J (λo))

∏
i

(degVi
)mi(µ) ·

∑
j,l

tj,l(λo, βo)degVj,l
,

where σ+(J (λo)) is the positive spectrum of J (λo), degVi
is the basic degree of the i-th

irreducible representation of � over reals, mi(µ) = dim (E(µ) ∩ Vi)/dim Vi is the algebraic
multiplicity of µ when restricted to the i-th isotypical component of the eigenspace E(µ),
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degVj,l
is the basic degree of the (j, l)-th irreducible representation of � × S1 over complex

numbers, and tj,l(λo, βo) is the (j, l)-th isotypical crossing number of (λo, βo).
In our example, since σ+(J (λo)) = ∅ and ilβo is only a critical eigenvalue for l = 1, we

have

� × S1-Degt (F, �) =
∑

j

tj,1(λo, βo)degVj,1
.

Computation of a�̆. In this case, � = �� = Z1. Consider �c = R2 ⊗ C � C2 as a complex
Z1-representation. Then, the Z1-isotypical decomposition of �c is

�c = U0 ⊕ U0,

where U0 is the trivial (complex) Z1-representation. Thus,

�� × S1-Degt (Fζ |R2×�̆, O ∩ (R2 × �̆)) = t0,1(λo, βo)degV0,1
.

Consider J (λ) as a complex linear map in �c. Then,

J (λ) = α(λ) + 2β, and σ(J (λ)) = {σ1,2}.
Since σ(J (λo)) ∩ iR = ∅, there are no eigenvalues crossing the purely imaginary axis, as λ

crosses λo. Thus, t0,1(λo, βo) = 0 and consequently,

a�̆ = �� × S1-Degt (Fζ |R2×�̆, O ∩ (R2 × �̆)) = 0.

Computation of a�̆21
. In this case, � = ��21 = Z1. Similarly, we have

�c
21 = U0 ⊕ U0 ⊕ U0 ⊕ U0,

where U0 is the trivial (complex) Z1-representation. Thus,

��21 × S1-Degt (Fζ |R2×�̆21
, O ∩ (R2 × �̆21)) = t0,1(λo, βo)degV0,1

.

Consider J (λ) as a complex linear map in �c
21. Then,

J (λ) = α ⊗ R2 + β ⊗
(

2 0
1 1

)
, and σ(J (λ)) = {σ1,2, σ3,4}.

Since σ(J (λo)) ∩ iR = ∅, we have t0,1(λo, βo) = 0. Thus,

a�̆21
= ��21 × S1-Degt (Fζ |R2×�̆21

, O ∩ (R2 × �̆21)) − 0 = 0.

Computation of a�̆2
. In this case, � = ��2 = Z2. Consider �c

2 = R6 ⊗ C � C6 as a
complex Z2-representation. Then, the Z2-isotypical decomposition of �c

2 is

�c
2 = U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U1 ⊕ U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-representation given by
antipodal action. Thus,

��2 × S1-Degt (Fζ |R2×�̆2
, O ∩ (R2 × �̆2)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
2. Then,

J (λ) = α ⊗ R2 + β ⊗

2 0 0

1 0 1
1 1 0


 , and σ(J (λ)) = {σ1,2, σ3,4, σ5,6}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −1. Therefore,

a�̆2
= ��2 × S1-Degt (Fζ |R2×�̆2

, O ∩ (R2 × �̆2)) − 0 − 0 = −degV1,1
.
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Here V1,1 � U1 is a Z2 × S1-representation given by ‘complexifying’ the Z2-action on
U1, that is (ξ, z)w := zξw, for ξ ∈ Z2, z ∈ S1, w ∈ C. The orbit type of w �= 0 is
Z−

2 := {(1, 1), (−1, −1)}. Thus, degV1,1
= (Z−

2 ) and so

a�̆2
= −degV1,1

= −(Z−
2 ).

Computation of a�̆4
. In this case, � = ��4 = D3. Consider �c

4 = R6 ⊗ C � C6 as a
complex D3-representation. Then, the D3-isotypical decomposition of �c

4 is

�c
4 = U0 ⊕ U0 ⊕ U1 ⊕ U1,

where U0 is the trivial D3-representation, U1 � C⊕C is the complex D3-representation given
by ξ(z1, z2) = (ξz1, ξ

−1z2), κ(z1, z2) = (z2, z1), for z1, z2 ∈ C. Thus,

��4 × S1-Degt (Fζ |R2×�̆4
, O ∩ (R2 × �̆4)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
4. Then,

J (λ) = α ⊗ R2 + β ⊗

0 1 1

1 0 1
1 1 0


 , and σ(J (λ)) = {σ1,2, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

a�̆4
= ��4 × S1-Degt (Fζ |R2×�̆4

, O ∩ (R2 × �̆4)) − 0 = −2degV1,1
.

It was shown in [6] that (cf example 2.14 for the definition of Zt
3 and Dz

1)

degV1,1
= (Zt

3) + (D1) + (Dz
1) − (Z1).

Thus,

a�̆4
= −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1).

Computation of a�̆1
. In this case, � = ��1 = D3. Consider �c

4 = R6 ⊗ C � C6 as a
complex D3-representation. Similar as the case for �4, the D3-isotypical decomposition of
�c

1 is

�c
1 = U0 ⊕ U0 ⊕ U1 ⊕ U1.

Thus,

��1 × S1-Degt (Fζ |R2×�̆1
, O ∩ (R2 × �̆1)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
1. Then,

J (λ) = α ⊗ R2 + β ⊗

0 1 1

1 0 1
1 1 0


 , and σ(J (λ)) = {σ1,2, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

a�̆1
= ��1 × S1-Degt (Fζ |R2×�̆1

, O ∩ (R2 × �̆1)) − 0 = −2degV1,1

= −2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1).
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Computation of a�̆00
. In this case, � = ��00 = Z2. Consider �c

00 = R8 ⊗ C � C8 as a
complex Z2-representation. Then, the Z2-isotypical decomposition of �c

00 is

�c
00 = U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U1 ⊕ U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-representation given by
antipodal action. Thus,

��00 × S1-Degt (Fζ |R2×�̆00
, O ∩ (R2 × �̆00)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
00. Then,

J (λ) = α ⊗ R2 + β ⊗




0 2 0 0
1 1 0 0
1 0 0 1
1 0 1 0


 , and σ(J (λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

��00 × S1-Degt (Fζ |R2×�̆00
, O ∩ (R2 × �̆00)) = −2degV1,1

= −2(Z−
2 ).

On the other hand, H�2,�00 = Id, since h�2,�00 = Id. Consequently,

a�̆00
= −2(Z−

2 ) − H�2,�00

( − (Z−
2 )

) = −2(Z−
2 ) + (Z−

2 ) = −(Z−
2 ).

Computation of a�̆02
. This is a similar case as for �00. We have � = ��02 = Z2 and the

Z2-isotypical decomposition of �c
02 is

�c
02 = U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U1 ⊕ U1,

where U0 is the trivial (complex) Z2-representation and U1 is the Z2-representation given by
antipodal action. Thus,

��02 × S1-Degt (Fζ |R2×�̆02
, O ∩ (R2 × �̆02)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
02. Then,

J (λ) = α ⊗ R2 + β ⊗




1 0 1 0
1 0 0 1
2 0 0 0
1 1 0 0


 , and σ(J (λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

��02 × S1-Degt (Fζ |R2×�̆02
, O ∩ (R2 × �̆02)) = −2degV1,1

= −2(Z−
2 ).

On the other hand, H�2,�02 = Id, since h�2,�02 = Id. Consequently,

a�̆02
= −2(Z−

2 ) − H�2,�02

( − (Z−
2 )

) = −2(Z−
2 ) + (Z−

2 ) = −(Z−
2 ).

Computation of a�̆03
. Similar to �00 and �02, we have

��03 × S1-Degt (Fζ |R2×�̆03
, O ∩ (R2 × �̆03)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
03. Then,

J (λ) = α ⊗ R2 + β ⊗




1 1 0 0
2 0 0 0
1 0 0 1
1 0 1 0


 , and σ(J (λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

��03 × S1-Degt (Fζ |R2×�̆03
, O ∩ (R2 × �̆03)) = −2degV1,1

= −2(Z−
2 ),

and

a�̆03
= −2(Z−

2 ) − H�2,�03

( − (Z−
2 )

) = −2(Z−
2 ) + (Z−

2 ) = −(Z−
2 ).
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Computation of a�̆01
. In this case, � = ��01 = D3. Similar to the case for �1, �4, one

shows that the D3-isotypical decomposition of �c
01 is

�c
01 = U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U1 ⊕ U1.

Thus,

��01 × S1-Degt (Fζ |R2×�̆01
, O ∩ (R2 × �̆01)) = t0,1(λo, βo)degV0,1

+ t1,1(λo, βo)degV1,1
.

Consider J (λ) as a complex linear map in �c
01. Then,

J (λ) = α ⊗ R2 + β ⊗




0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0


 , and σ(J (λ)) = {σ1,2, σ3,4, σ5,6,7,8}.

Thus, t0,1(λo, βo) = 0 and t1,1(λo, βo) = −2. Therefore,

��01 × S1-Degt (Fζ |R2×�̆01
, O ∩ (R2 × �̆01)) = −2degV1,1

= −2(Zt
3) − 2(D1) − 2(Dz

1) + 2(Z1).

Consequently,

a�̆01
= −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1).

Computation of aW . In this case, � = �V = Z1. Consider V c = R10 ⊗ C � C10 as a
complex Z1-representation. Then, the Z1-isotypical decomposition of V c is

V c = U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0 ⊕ U0,

where U0 � C is the trivial Z1-representation. Thus,

�V × S1-Degt (Fζ |R2×W, O ∩ (R2 × W)) = t0,1(λo, βo)degV0,1
.

Consider J (λ) as a complex linear map in V c. Then,

J (λ) = α ⊗ R2 + β ⊗ A, and σ(J (λ)) = {σ1,2, σ3,4, σ5,6,7,8,9,10}.
Thus, t0,1(λo, βo) = −3. Therefore,

�V × S1-Degt (Fζ |R2×W, O ∩ (R2 × W)) = −3degV0,1
= −3(Z1).

Consequently,

aW = −3(Z1) − H�1,V (a�̆1
) − H�2,V (a�̆2

) − H�3,V (a�̆3
) − H�4,V (a�̆4

)

− H�00,V (a�̆00
) − H�01,V (a�̆01

) − H�02,V (a�̆02
) − H�03,V (a�̆03

)

= −3(Z1) − 3H�1,V (a�̆1
) − 4H�2,V (a�̆2

)

= (−3 − 3 · (−4) − 4 · (−1))(Z1) = 13(Z1),

where the last equality used the fact that if h : Z1 → G is the inclusion homomorphism, then
by definition of H, H

(
(K)

) = χc(G/K) (Z1), for (K) ∈ �(G).
In summary, we have

T -Degt (Fζ , O) = (
�̆1, −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1)

)
+

(
�̆2, −(Z−

2 )
)

+
(
�̆4, −2(Zt

3) − 2(D1) − 2(Dz
1)

+ 2(Z1)
)

+
(
�̆01, −2(Zt

3) − 2(D1) − 2(Dz
1) + 2(Z1)

)
+

(
�̆00, −(Z−

2 )
)

+
(
�̆02, −(Z−

2 )
)

+
(
�̆03, −(Z−

2 )
)

+ (W, 13(Z1)).
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[12] Gȩba K, Krawcewicz W and Wu J H 1994 An equivariant degree with applications to symmetric bifurcation

problems: I. Construction of the degree Proc. Lond. Math. Soc. 69 377–98
[13] Golubitsky M and Lauterbach R 2009 Bifurcations from synchrony in homogeneous networks: linear theory

SIAM. J. Appl. Dyn. Syst. 8 40–75
[14] Golubitsky M, Pivato M and Stewart I 2004 Interior symmetry and local bifurcation in coupled cell networks

Dyn. Syst. 19 389–407
[15] Golubitsky M, Romano D and Wang Y 2012 Network periodic solution: patterns of phase-shift synchrony

Nonlinearity 25 1045
[16] Hirano N, Krawcewicz W and Ruan H 2011 Existence of nonstationary periodic solutions for G-symmetric

Lotka–Volterra type systems Discrete Contin. Dyn. Syst. A 30 709–35
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