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Abstract
We study systems of coupled units in a general network configuration with a
coupling delay. We show that the destabilizing bifurcations from an equilibrium
are governed by the extreme eigenvalues of the coupling matrix of the network.
Based on the equivariant degree method and its computational packages, we
perform a symmetry classification of destabilizing bifurcations in bidirectional
rings of coupled units. Both stationary and oscillatory bifurcations are
discussed. We also introduce the concept of secondary dominating orbit types
to capture bifurcating solutions of submaximal nature.
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1. Introduction

Networks of coupled systems are known to be capable of a wide range of interesting dynamics,
especially in the presence of time delays [1]. One of the most well-studied types of behaviour
involves synchronization of oscillations in various forms [2], and recent work has revealed
more complicated activity patterns related to the synchronization. As an example, which
has also been a motivation for the present paper, we mention the so-called chimera states: in a
network of identical phase oscillators arranged on a ring, with each oscillator coupled to a fixed
number of its spatial neighbours, appropriate conditions can lead to oscillators splitting into two
contiguous groups, one group oscillating synchronously while the other one incoherently [3],
a behaviour which has also been reported in the presence of time delays [4]. An important
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feature is that such states are observed for identical oscillators and under homogeneous coupling
conditions, i.e. in highly symmetric situations. Thus, a natural question arises as to the relation
of system’s symmetries to its possible dynamical states. The aim of this paper is to present
a systematic investigation of the types of dynamics that can be deduced from the symmetries
and bifurcations of coupled scalar systems under a time delay.

We consider n identical dynamical systems governed by the equation ẋi = f (xi) for
i = 1, . . . , n, coupled in a general network configuration:

ẋi (t) = f (xi(t)) + κgi(x1(t − τ), x2(t − τ), . . . , xn(t − τ)), i = 1, 2, . . . , n. (1)

Here xi ∈ R, the function gi describes the interaction among the coupled units, and τ � 0
is the time delay. The scalar κ > 0 denotes the coupling strength; it can of course be
subsumed into the definition of gi , but it is sometimes used as a bifurcation parameter when one
studies the effects of coupling in comparison to the intrinsic dynamics f , or for distinguishing
excitatory from inhibitory coupling by simply changing its sign. The functions f : R → R

and gi : Rn → R are assumed to be continuously differentiable; in addition, gi will be assumed
to be equivariant when we consider symmetry. We also assume that f and the gi vanish at the
origin; hence the zero solution is an equilibrium solution of (1). The local stability of the zero
solution is given by the linear variational equation

ẏ(t) = f ′(0)y(t) + κCy(t − τ), y ∈ Rn, (2)

where the coupling matrix C = [cij ] := [∂gi(0)/∂xj ] is assumed to be a symmetric matrix.
Systems of the form (1) include many well-known examples as special cases. For instance,

the neural network model

ẋi (t) = −xi(t) + g


 n∑

j=1

aij xj (t − τ)


 , (3)

where g is a sigmoidal function and aij ∈ R are entries of the (weighted and directed) adjacency
matrix A that describes the coupling among the neurons, has the form of (1). The component
aij describes how strongly the j th neuron influences the ith one; the influence being excitatory
if aij > 0 and inhibitory if aij < 0. Often one excludes self-coupling, taking aii = 0 ∀i.
Linearization of (3) about the zero solution yields the form (2) with κ = g′(0) and C = A.
There are also some variant models which are not strictly in the form (1), for instance pulse-
coupled systems,

ẋi (t) = f (xi(t)) + h(xi(t)) · g


 n∑

j=1

aij xj (t − τ)


 , (4)

where the influence of the network on the ith unit may be different depending on the state of
the ith unit at that particular time instant. Although (4) is not of form (1) for non-zero τ , its
linearization is still given by (2) with κ = h(0)g′(0) and C = A. This is a crucial observation
since many of our bifurcation results will depend only on the linear part (2) of the model at
hand, and thus will also apply to (4) in particular. Also, the term ‘coupling matrix’ is used
in a general way that can take other familiar forms in applications. For example, models of
synchronization typically involve diffusive-type interactions, e.g.,

ẋi (t) = f (xi(t)) +
n∑

j=1

aijg(xj (t − τ) − xi(t − τ)). (5)

Sometimes the order of summation and the function g are interchanged; in this case, (5)
becomes a special case of (3) obtained by setting aii = − ∑

j �=i aij ∀i in (3). The linear
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variational equation corresponding to (5) has the form (2) with C given by the negative of the
Laplacian matrix: C = −L = A − D, where D = diag{k1, . . . , kn} is the diagonal matrix of
vertex in-degrees ki = ∑

j �=i aij . If the delay pertains only to the interaction between different
units (so that there are no self-delays), then one obtains a slightly variant system

ẋi (t) = f (xi(t)) +
n∑

j=1

aijg(xj (t − τ) − xi(t)), (6)

whose linearization can be put into the form (2) (with the identification f (xi) → f (xi) +
g′(0)kixi) provided that all vertices have the same degree ki = k. In all cases, the matrix C

being symmetric reflects the assumption of bi-directional interactions in the network.
We are interested in the effects of the time delay and the spectrum of C in causing the

zero equilibrium to lose its stability as the system bifurcates into other dynamical states. We
show that, among all the eigenvalues of C, only the extreme eigenvalues (i.e. the smallest
and largest ones) play a role in destabilizing the zero equilibrium. Networks having the
same extreme eigenvalues will exhibit the same destabilizing behaviour, independently of
the precise network configuration. In the presence of ring (dihedral) symmetry, we give
a complete classification of bifurcating states using equivariant degree methods. The ring
configuration is motivated by the setting of chimera states mentioned in the first paragraph,
although we do not focus on chimeras in this paper but aim to capture all emergent dynamics
that can bifurcate from the equilibrium. To illustrate the theoretical results, we use throughout
a ring of size 12 with various coupling configurations, since on the one hand it gives rise
to a large variety of dynamical patterns, and on the other hand, it can be presented in a
manageable size.

Equivariant bifurcations have been extensively studied using various techniques such as
those based on singularity theory, as developed by Golubitsky et al (see [5, 6]), geometric
techniques developed by Field and Richardson (see [7–9]), constructive methods using
algebraic geometry developed by Bierstone and Milman (see [10]) and, last but not least,
equivariant degree methods developed by Ize and Vignoli, and Krawcewicz and co-workers
(see [11, 12]). While geometric methods are based on generic approximations, topological
methods rely on deformations subject to homotopy invariance. Since homotopy generally
allows ‘larger’ changes of maps compared to approximations, topological methods tend to
overlook finer properties of solutions such as stability, but rather they catch the existence. This
is also why topological methods are commonly believed to produce ‘weaker’ results. On the
other hand, they can deal with non-generic situations just as well as generic cases. Results
hold without generic assumptions since homotopy makes essentially no distinction between
generic and non-generic maps. An example of using topological indices to predict non-generic
global equivariant bifurcations with least symmetry can be found in [13]. To compare, the
index in [13] is defined for a subgroup pair (K, H) of the symmetry group �, where K is
normal in H and H/K is finite cyclic, while the invariant we use later is defined for � and
captures every subgroup; the index in [13] is used to predict global bifurcation with at least
symmetry K , while the invariant we use predicts local bifurcation with precise symmetry for
all adequate subgroups in � (see corollary 4.4 and proposition 4.7); last but not least, while
computations of the index in [13] can be technically involved, the invariant we use can be
computed instantly.

In this paper we use equivariant degree methods to give a complete classification of
bifurcating branches of solutions according to their symmetry properties. This includes
dealing with non-simple critical eigenvalues with non-simple representations in the kernel of
linearization. An additional advantage of using equivariant degree is that it can be effectively
calculated.
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The computational tool we use for exact calculations of equivariant degrees is the
‘Equivariant Degree Maple© Library Package’3 (EDML). More precisely, to a given bifurcating
equilibrium, one associates a bifurcation invariant in form of an equivariant degree. Here, the
term ‘invariant’ refers to the fact that the bifurcation invariant remains constant against all
adequate homotopies. The precise value of the bifurcation invariant, once calculated, carries
the full topological information about the bifurcating solutions and gives rise to a complete
classification of bifurcating branches by their symmetry properties. The calculation task of
bifurcation invariants for a given symmetry group � is taken over by the EDML package.
Examples of this computational approach using EDML can be found in [14–17]. In addition
to the symmetry group �, the software package takes several parameters as input, which are
solely determined by the critical spectrum of the linearized operator. In other words, the exact
value of the bifurcation invariant associated to the zero solution of (1) depends only on the
characteristic operator of (2). In fact, all results that follow from the bifurcation invariant of (1)
remain valid for any �-symmetric system whose linearization has the form (2), in particular
for systems of form (4)–(6).

Another advantage of using equivariant degree is that its basic degrees can be easily
programmed and calculated in other computer programming languages such as GAP4,
MATLAB, C++, Java, and so on. An existing extension of the EDML package is the ‘Dihedral
Calculator’, which is programmed using the non-commercial language GAP. It is currently
available for dihedral symmetry Dn for n � 2005. Other symmetry groups that are supported
by EDML are the quaternion group Q8, the alternating groups A4, A5, and the symmetric
group S4.

Our main results are theorem 4.3, corollary 4.4, theorem 4.5 and proposition 4.7. The
classification results for dihedral symmetry D12 are summarized in tables 2–5. Theorem 4.3
gives an existence result of steady-state bifurcations with their least symmetry. Corollary 4.4
using the implicit function theorem sharpens this to exact symmetry. For Hopf bifurcations,
existence result is stated in theorem 4.5 with the least symmetry. To obtain the precise symmetry
as well as for submaximal isotropies, we introduce the concept of secondary dominating orbit
types (see definition 4.6) to complement dominating orbit types. In proposition 4.7 bifurcating
branches of maximal or submaximal isotropies are predicted with their precise symmetry.

The paper is organized as follows. In section 2, we provide the basic definition of
equivariant degrees and introduce the necessary notation and preliminary calculations for
D12. In section 3 we give a brief account of the stability analysis and the derivation of the
basic bifurcation diagram for the linear system (2). We take two quantities α := τf ′(0)

and β := τκξ as bifurcation parameters, where ξ is an eigenvalue of C. As we shall see,
bifurcations, either of stationary or oscillatory nature, that destabilize the zero equilibrium,
are related only to the extreme eigenvalues of the coupling matrix. The main equivariant
bifurcation results are given in section 4. In section 5 we apply our results to bidirectional
rings of 12 and obtain classification results listed in tables 2–5. For rings of larger size, we refer
to the ‘Dihedral Calculator’ mentioned earlier for calculations of degrees and the method can be
applied systematically. In section 6 we connect the extreme eigenvalues to coupling strengths
by enumerating all possible first-and second-nearest-neighbour coupling configurations of the

3 The Equivariant Degree Maple© Library Package was created by Biglands and Krawcewicz at the University of
Alberta in 2006 supported by NSERC research grant. It is open source and can be freely downloaded, for example,
from www.math.uni-hamburg.de/home/ruan/download.
4 GAP (‘Groups, Algorithms, Programming’) is a non-commercial system for computational discrete algebra. It
provides a programming language and large data libraries of algebraic objects. The system is distributed freely at
www.gap-system.org
5 See Dihedral Calculator from MuchLearning http://dihedral.muchlearning.org
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12-cell ring. We conclude by giving simulation examples in a concrete nonlinear system,
namely the neural network model (3).

In closing this Introduction, we note that since the bifurcation invariant remains invariant
against all (admissible, equivariant) continuous deformations on the system, the classification
results we obtain using the bifurcation invariant remain valid under modelling variations within
the framework of symmetry. They may also be useful for systems encountered in real-world
applications that are only ‘approximately symmetric’. For modelling issues on systems with
imperfect symmetry, we refer to [6].

2. Preliminaries

2.1. Groups and group representations

Throughout we consider groups that are either finite or of form � × S1, where � is a finite
group and S1 is the group of complex numbers of unit length.

Let G be a group and H be a closed subgroup of G, written as H ⊂ G. Let
N(H) = {g ∈ G : gHg−1 = H } be the normalizer of H and W(H) = N(H)/H the Weyl
group of H . The set of all closed subgroups of G can be partially ordered by set inclusion.
For subgroups H, K ⊂ G, we write H � K if H ⊆ K; H < K if H � K . The symbol
(H) stands for the conjugacy class of the subgroup H in G; that is (H) = {gHg−1 : g ∈ G}.
The set of all conjugacy classes of closed subgroups of G affords a partial order given by:
(H) � (K) if H ⊆ gKg−1 for some g ∈ G; similarly, (H) < (K) if H � gKg−1 for some
g ∈ G.

Example 2.1. (see [12]) Let � = D12 be the dihedral group of order 24, which is represented
as the group of 12 rotations: 1, η, η2, . . ., η11 and 12 reflections: ς , ςη, ςη2, . . ., ςη11 of
the complex plane C, where η stands for the complex multiplication by e

iπ
6 and ς denotes

the complex conjugation. There are two kinds of subgroups in D12: cyclic and dihedral. The
cyclic subgroups are Z1, Z2, Z3, Z4, Z6, Z12, where Zk denotes the cyclic subgroup generated
by ηl with l = 12

k
. The dihedral subgroups are

Dk,j = {1, ηl, η2l , . . . , η(k−1)l , ςηj , ςηj+l , ςηj+2l , . . . , ςηj+(k−1)l}, for 0 � j < l = 12

k
,

where k ∈ {1, 2, 3, 4, 6, 12}. If l is odd, then all subgroups Dk,j for 0 � j < l are conjugate
to Dk,0 := Dk . If l is even, then all subgroups Dk,j with j being even are conjugate to
Dk,0 = Dk; all subgroups Dk,j with j being odd are conjugate to Dk,1 := D̃k . Thus,
up to conjugacy relation, we have the dihedral subgroups: D1, D̃1, D2, D̃2, D3, D̃3, D4,
D6 D̃6, D12. �

A real (respectively complex) representation of G is a finite-dimensional real (respectively,
complex) vector space X with a continuous map, or action, ψ : G×X → X such that the map
ψ(g, ·) : X → X is linear, for every g ∈ G. Banach representations are similarly defined for
Banach spaces with an action for which ψ(g, ·) is linear and bounded. We abbreviate ψ(g, x)

with gx.
A subset � ⊂ X is called invariant if gx ∈ � whenever x ∈ � for all g ∈ G. An action

on an invariant subset � ⊂ X is called free if the existence of an x ∈ � with gx = x implies
g = e is the neutral element. A representation X of G is called irreducible if {0} and X are
the only invariant subspaces in X.
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Example 2.2. (see [12]) The dihedral group Dn, for n ∈ N even, has the following real
irreducible representations:

(i) The trivial representation V0 	 R, where every element acts as the identity map.
(ii) For 1 � i � n

2 − 1, there is the representation Vi 	 R2 	 C given by the following
actions:

ηz = ηi · z, ςz = z̄,

where ‘·’ is the complex multiplication and ‘ ¯ ’ is the complex conjugation.
(iii) The representation V n

2
	 R given by: ηx = x and ςx = −x.

(iv) The representation V n
2 +1 	 R given by: ηx = −x and ςx = x.

(v) The representation V n
2 +2 	 R given by: ηx = −x and ςx = −x.

It has the following complex irreducible representations:

(i) The trivial representation U0 	 C, where every element acts as the identity map.
(ii) For 1 � j � n

2 −1, there is the representation Uj 	 C×C given by the following actions:

η(z1, z2) = (ηj · z1, η
−j · z2), ς(z1, z2) = (z2, z1),

where ‘·’ is the complex multiplication.
(iii) The representation U n

2
	 C given by: ηz = z and ςz = −z.

(iv) The representation U n
2 +1 	 C given by: ηz = −z and ςz = z.

(v) The representation U n
2 +2 	 C given by: ηz = −z and ςz = −z.

For n ∈ N odd, the dihedral group Dn has the above listed irreducible representations (i)–(iii),
where n is replaced with (n + 1). �

Let x ∈ X. By the symmetry of x, we mean the isotropy subgroup of x given
by Iso(x) := {g ∈ G : gx = x} with respect to the group action on X. The set
Orb(x) := {gx : g ∈ G} is called the orbit of x and the symmetry of the orbit is defined by the
orbit type ofx, which is the conjugacy class (Iso(x))of Iso(x). Note that Iso(gx) = gIso(x)g−1

for g ∈ G; thus, the symmetry of the orbit is independent of the choice of x from the orbit.
Let � ⊂ X be a subset and H ⊂ G be a closed subgroup. Define �H = {x ∈ X :

Iso(x) = H }. It can be verified that the Weyl group W(H) acts freely on �H . Denote the
H -fixed point subspace in � by �H = {x ∈ X : gx = x, ∀ g ∈ H }. In sections 3–5 we use
Fix(H) to denote the H -fixed point subspace, since the space on which G acts will be clear
from context. Note that �H ⊂ �H . Moreover, �H is the disjoint union of �H̃ for all H̃ ⊇ H .

Example 2.3. Let � = D12 and X = V1 be the real irreducible representation of D12 given
in example 2.2. Then, orbit types that occur in X are (D12), (D1), (D̃1) and (Z1) (refer to
example 2.1 for notations), with the corresponding fixed point subspaces:

XD12 = {(0, 0)}, XD1 = {(x, 0) : x ∈ R}, XD̃1 = {re− iπ
12 : r ∈ R}, XZ1 = X.

Note that XD1 is the disjoint union of subsets XD1 = {(x, 0) : x ∈ R, x �= 0} and
XD12 = {(0, 0)}. On the subset XD1 , the Weyl group W(D1) = D2/D1 	 Z2 acts freely
by the reflection. On the subset XD12, the Weyl group W(D12) = D12/D12 	 Z1 acts freely
by the neutral element. �

Finally, we remark that there is a natural way of ‘converting’ a complex �-representation
into a real �×S1-representation. Let U be a complex �-representation. Define a �×S1-action
on U by

(γ, z)u = z · (γ u), for (γ, z) ∈ � × S1, u ∈ U, (7)

where · stands for the complex multiplication. The obtained representation is denoted by Ū

and called the � × S1-representation induced from U . Note that Ū is irreducible as a real
� × S1-representation if U is irreducible as a complex �-representation.
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2.2. Equivariant maps and equivariant degree

Let X, Y be two Banach representations of G. A continuous map f : X → Y is called
equivariant if f (g◦x) = g∗f (x), for all x ∈ X and g ∈ G, where ◦ and ∗ stand for the G-
actions on X and Y , respectively. In equivariant nonlinear analysis, one is interested in finding
zeros of an equivariant map f in an invariant domain � ⊂ X. Note that by equivariance, the
set of all zeros of f in � is composed of disjoint group orbits; thus one speaks of zero orbits,
instead of zeros, of f .

A map f is called admissible on � if f (x) �= 0 for all x ∈ ∂�. A homotopy
h : [0, 1] × X → Y is called admissible if h(t, ·) is admissible for all t ∈ [0, 1]. An
equivariant degree, intuitively speaking, is an algebraic count of zero orbits of an admissible f

in � with respect to orbit types, which remains unchanged against all admissible (equivariant)
homotopies from f .

In the next two subsections we review from [12] two types of equivariant degrees that
will be used in section 4 for bifurcation analysis. In both cases, the equivariant degree is
first defined in finite-dimensional representations for continuous maps and then extended to
infinite-dimensional Banach representations for compact vector fields.

2.2.1. Equivariant degree without parameters. Let G = � be a finite group acting on a finite-
dimensional �-representation X. Let � be the set of all orbit types that appear in X. That
is, every element of � is a conjugacy class of a finite subgroup of �. Consider a continuous
equivariant map f : X → X on an open bounded invariant domain � ⊂ X such that f is
admissible on �. Define an equivariant degree (without parameter) of f in � by a finite sum
of integer-indexed orbit types:

�−Deg (f, �) =
∑

(K)∈�
nK · (K), (8)

where nK ∈ Z is an integer counting zero orbits of orbit type (K). One can also think of
�−Deg as associating to every such pair (f, �) an integer sequence indexed by the set �

of conjugacy classes. Depending on the value of f on � (with � = � ∪ ∂�), the degree
associates different integer values to different conjugacy classes. The precise definition of
nK can be given by the following recurrence formula:

nK = deg (f |�K , �K) − ∑
(K̃)>(K)nK̃ · |W(K̃)| · n(K, K̃)

|W(K)| . (9)

We explain the notations used in (9) and their geometric meaning. Recall that �K denotes
the fixed point subspace of K in �. By restricting f on �K , one obtains an (admissible) map
f |�K : �K → �K . Using the classical Brouwer degree ‘deg ’, the integer ‘deg (f |�K , �K)’
counts the zeros of f in �K . Since not every element in �K has the precise isotropy K , one
needs to subtract those zeros of larger isotropies. This is done by subtracting the summands
in (9). Within each summand, nK̃ is the integer counting zero orbits of orbit type (K̃). Since
the Weyl group W(K̃) acts freely on �K̃ , the integer nK̃ · |W(K̃)| then counts the zeros of
isotropy K̃ . The number n(K, K̃) is defined as the number of distinct conjugate copies of K̃

that contain K , formally by

n(K, K̃) =
∣∣∣∣∣ {g ∈ � : K ⊂ gK̃g−1}

N(K̃)

∣∣∣∣∣ . (10)

Thus, the number nK̃ · |W(K̃)| · n(K, K̃) counts the zeros of isotropy K ′ for all K ′ with
(K ′) = (K̃). It follows that the expression of the numerator in (9) gives the count of zeros
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of f having precise isotropy K . Again, since W(K) acts freely on �K , we have then the
total expression on the right-hand side of (9) giving the count of zero orbits of f having orbit
type (K).

Example 2.4. Let � = D12 and X = V1 be the real irreducible representation of D12 given in
example 2.2. Consider the antipodal map f = −Id : X → X on the unit disc B ⊂ X, which
is D12-equivariant and B-admissible. As mentioned in example 2.3, orbit types that occur in
V1 are (D12), (D1), (D̃1) and (Z1). Thus,

�−Deg (−Id, B) = nD12 · (D12) + nD1 · (D1) + nD̃1
· (D̃1) + nZ1 · (Z1).

We compute nD1 using (9). To do so, we first need to compute nD12 :

nD12 = deg (−Id, BD12)

|W(D12)| = 1

1
= 1,

where we used the fact BD12 = XD12 ∩ B = {(0, 0)}, W(D12) = Z1 from example 2.3 and
deg (−Id, Rm) = (−1)m for m ∈ {0} ∪ N. Thus, we have

nD1 = deg (−Id, BD1) − 1 · 1 · 1

|W(D1)| = −1 − 1

2
= −1,

where we used the fact n(D1, D12) = ∣∣D12
D12

∣∣ = 1 and W(D1) = Z2. Following (9) further, one
shows that

�−Deg (−Id, B) = (D12) − (D1) − (D̃1) + (Z1).

�
The definition of equivariant degree can be extended, in a standard way, to infinite-

dimensional Banach representations for compact equivariant fields, namely, equivariant maps
of the form f = Id − F : D ⊂ X → X that are admissible on a bounded domain D such
that F(D) is compact. It was shown in [18] that the equivariant degree defined by (8)–(9), as
well as its infinite-dimensional extension, satisfies the usual properties of degree theory, such
as the existence property which states that

nK �= 0 in (8) ⇒ f −1(0) ∩ �K �= ∅,

which can be useful for predicting zero orbits of orbit type at least (K).

2.2.2. Equivariant degree with one parameter. Let G = �×S1 be the product of a finite group
� and the circle group S1. There are two types of closed subgroups in G: those subgroups that
are of the form K × S1 for some subgroup K ⊂ �, or the twisted subgroups of G, defined as
follows.

Definition 2.5. A subgroup H ⊂ � × S1 is called a twisted l-folded subgroup, if there exists
a subgroup K ⊂ �, an integer l � 0 and a group homomorphism φ : K → S1 such that

H = Kφ,l := {(γ, z) : φ(γ ) = zl}.
For l = 1, H is called a twisted subgroup for simplicity. Conjugacy classes of twisted
subgroups are called twisted orbit types. �
Remark 2.6. Note that the subgroups of the form K ×S1 (for some K ⊂ �) and the twisted (l-
folded) subgroups can also be distinguished using the dimension of their Weyl groups. While
the former have 0-dimensional Weyl groups, the latter have 1-dimensional Weyl groups in
� × S1. Thus, the Weyl group of a twisted (l-folded) subgroup is homeomorphic to a number
of finitely many disjoint circles.
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Example 2.7. Let G = D12 × S1 be the product group of the dihedral D12 and the unit circle
S1 ⊂ C. We describe its twisted subgroups H = Kφ . Clearly, all subgroups of D12 are twisted
subgroups with φ ≡ 1 ∈ S1. Besides that, there are twisted subgroups that are not contained
in D12. These can be classified into two categories: those for which K = Zk and those for
which K = Dk,j (refer to example 2.1 for notation).

Let K = Zk for some k ∈ {1, 2, 3, 4, 6, 12} and φ : K → S1 be given by φ(ηl) = ηjl for
some j with 1 � j < k. Then,

Kφ = {(1, 1), (ηl, ηjl), (η2l , η2j l), . . . , (η(k−1)l , ηj (k−1)l)} := Z
tj
k , for 1 � j < k.

Among these subgroups, Z
tj
k and Z

tk−j

k are conjugate to each other, for 1 � j < k. Thus, for

k even, up to conjugacy relation, we have the twisted subgroups Z
t1
k , Z

t2
k , . . . , Z

t k
2

k := Zd
k , and

for k odd, Z
t1
k , Z

t2
k , . . . , Z

t k−1
2

k . That is, we have Zd
2 , Z

t1
3 , Z

t1
4 , Zd

4 , Z
t1
6 , Z

t2
6 , Zd

6 , Z
t1
12, Z

t2
12, Z

t3
12,

Z
t4
12, Z

t5
12, Zd

12.
Let K = Dk,j for some k ∈ {1, 2, 3, 4, 6, 12} and 0 � j < l = 12

k
. Up to conjugacy, it is

sufficient to consider K = Dk in case l is odd, and K = Dk , K = D̃k in case l is even (see
example 2.1). Let φ : K → S1 be the group homomorphism such that ker φ = Zk . Then,

D
φ

k = {(1, 1), (ηl, 1), . . . , (η(k−1)l , 1), (ς, −1), (ςηl, −1), . . . , (ςη(k−1)l , −1)} := Dz
k,

and

D̃
φ

k = {(1, 1), (ηl, 1), . . . , (η(k−1)l , 1), (ςη, −1), (ςη1+l , −1), . . . , (ςη1+(k−1)l , −1)} := D̃z
k,

if l is even.

Thus, we have Dz
1, D̃z

1, Dz
2, D̃z

2, Dz
3, D̃z

3, Dz
4, Dz

6, D̃z
6, Dz

12.
In the case k is even, there is a group homomorphism φ : K → S1 for which ker φ = Dk

2
.

Then,

D
φ

k = {(1, 1), (ηl, −1), (η2l , 1), . . . , (η(k−1)l , −1), (ς, 1), (ςηl, −1),

. . . , (ςη(k−1)l , −1)} := Dd
k ,

and

D̃
φ

k = {(1, 1), (ηl, −1), (η2l , 1), . . . , (η(k−1)l , −1), (ςη, 1), (ςη1+l , −1),

. . . , (ςη1+(k−1)l , −1)} := D̃d
k , if l is even.

Also, there is a group homomorphism φ : K → S1 for which ker φ = D̃ k
2
. Then,

D
φ

k = {(1, 1), (ηl, −1), (η2l , 1), . . . , (η(k−1)l , −1), (ς, −1), (ςηl, 1),

. . . , (ςη(k−1)l , 1)} := Dd̂
k ,

and

D̃
φ

k = {(1, 1), (ηl, −1), (η2l , 1), . . . , (η(k−1)l , −1), (ςη, −1), (ςη1+l , 1),

. . . , (ςη1+(k−1)l , 1)} := D̃d̂
k , if l is even.

One shows that for l even, Dd
k and Dd̂

k are conjugate, and D̃d
k and D̃d̂

k are conjugate. Thus,

in the case k is even, up to conjugacy relation, we have the twisted subgroups Dd
k and Dd̂

k if l

is odd, and Dd
k and D̃d

k if l is even. That is, for D12, we have Dd
1 , D̃d

1 , Dd
2 , D̃d

2 , Dd
3 , D̃d

3 , Dd
4 ,

Dd̂
4 , Dd

6 , D̃d
6 , Dd

12, Dd̂
12. �
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Let X be a finite-dimensional representation of G and R be the one-dimensional parameter
space on which G acts trivially. Let �1 be the set of all twisted orbit types that appear in R×X.
Consider a continuous equivariant map f : R×X → X on an open bounded invariant domain
� ⊂ R×X such that f is admissible on �. Define an equivariant degree (with one parameter)
of f in � by a finite sum of integer-indexed twisted orbit types:

� × S1−Deg (f, �) =
∑

(H)∈�1
nH · (H), (11)

where nH ∈ Z is an integer counting zero orbits of the twisted orbit type (H). More precisely,
nH can be computed by the following recurrence formula:

nH =
∑

kdeg k(f |�H , �H ) − ∑
(H̃ )>(H)nH̃ · n(H, H̃ ) · |W(H̃)/S1|

|W(H)/S1|
in the same spirit of (9). We explain the notation in detail. Again, nH is supposed to count
the zero orbits of orbit type (H) in �, or equivalently, the zero orbits of isotropy H in �H .
Restricting the map f on �H , we consider f |�H : �H → �H . Since W(H) is homeomorphic
to |W(H)/S1| copies of finitely many disjoint circles (see remark 2.6) and |W(H)| acts freely
on �H , the number nH |W(H)/S1| counts the copies of circles in the zeros having isotropy H

in �H . Using the classical S1-degree (e.g. see [11]), the integer deg k(f |�H , �H ) counts the
number of circles in the zeros of f having isotropy Zk in �H . The first sum then counts the
total number of circles in the zeros of f in �H . The summand in the second sum counts the
copies of circles in the zeros of f which have isotopy H̃ , where the number n(H, H̃ ) is given
by (10). Thus, we obtain from the numerator the number of circles in the zeros of f in �H

with precise isotropy H . Divided by the number |W(H)/S1| of copies in W(H), this gives
the count of zero orbits with precise isotropy H .

This degree can be extended to infinite-dimensional Banach representations for compact
equivariant fields. The resulting degree satisfies all classical properties of an equivariant degree
theory, among which the existence property plays an important role for our purpose:

nH �= 0 in (11) ⇒ f −1(0) ∩ �H �= ∅.

3. Stability analysis and the bifurcation diagram

We now consider the coupled system (1) and the corresponding linear variational equation (2)
about the zero solution. For τ > 0, it is convenient to rescale the time t → t/τ so that the
linearized equation takes the form

ẏ(t) = τf ′(0)y(t) + τκCy(t − 1). (12)

The characteristic operator �(λ) : Cn → Cn for (12) is

�(λ) = (λ − τf ′(0))In − τκe−λC, (13)

and the corresponding characteristic equation is

det �(λ) =
∏

ξ∈σ(C)

(
λ − τf ′(0) − τκe−λξ

) = 0, (14)

where σ(C) denotes the spectrum of C.
Since C is assumed to be a symmetric matrix, we have σ(C) ⊂ R. In this case, each

of the factors on the right side of (14) can be analysed using well-known methods for scalar
delay equations with real coefficients [19, 20]. Thus, let ξ ∈ σ(C) ⊂ R and consider the
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Figure 1. Bifurcation diagram of the characteristic equation (14). The curves indicate
the parameter values for which the characteristic equation has a root on the imaginary
axis. The curves separate the α–β parameter plane into regions in which the number of
characteristic roots with positive real part is a constant, the value of which is indicated
in the figure. Hence ‘0’ indicates the region where the origin is stable, which is bounded
from above by the straight line L1 and from below by the curve C2.

corresponding factor in (14). If λ = u + iv is a characteristic root, then separating real and
imaginary parts leads to{

u − α − βe−u cos v = 0
v + βe−u sin v = 0,

(15)

where α = τf ′(0) and β = τκξ . For purely imaginary roots, we have u = 0, giving{−α − β cos v = 0,

v + β sin v = 0.
(16)

For v = 0 the solution is the line L1 defined by β = −α, which corresponds to parameter
values for which λ = 0 is a characteristic root. Over the intervals v ∈ (kπ, (k + 1)π), k ∈ Z,
the solution can be expressed in the parametric form (α(v), β(v)) = (v/ tan(v), −v/ sin(v)),
which gives parametric curves for which there exists a pair of purely imaginary characteristic
roots of the form λ = ±iv. These bifurcation curves are depicted in figure 1. Knowing
that the zero solution is stable for β = 0 and α < 0, and because characteristic roots can
cross the imaginary axis only for parameter values belonging to the bifurcation curves, one
can then move vertically in the parameter plane, increasing the number of roots with positive
real parts appropriately each time a bifurcation curve is crossed. Implicit differentiation on
bifurcation curves shows that the characteristic roots on the imaginary axis move to the right
as |β| increases, yielding the picture shown in figure 1.

The region of stability is indicated in figure 1 by the label ‘0’. It is bounded from above
by the straight line L1 and from below by the curve C2. The latter is given by the parametric
branch (α, β) = (v/ tan(v), −v/ sin(v)), v ∈ (0, π), and meets the line L1 at the point (1, −1).
This is for one particular spatial mode corresponding to the eigenvalue ξ . One can then repeat
the same argument for all eigenmodes ξ ∈ σ(C). If a parameter pair (α, β) is varied to leave
the stable region by crossing the line L1, a bifurcation of steady states may occur, whereas
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crossing the curve C2 may lead to a bifurcation of periodic solutions. The codimension of
these bifurcations is related to the multiplicity of the eigenvalue ξ given by the critical value
of β = τκξ .

3.1. Effects of network structure

Suppose we start with stable systems (f ′(0) < 0) without coupling, so we are initially on the
negative α-axis. As the coupling strength κ is increased from zero, stability may be lost via
a stationary or an oscillatory bifurcation through the first eigenmode ξ to hit L1 or C2. The
important observation is that this first bifurcation depends only on the extremal eigenvalues
ξ of the coupling matrix C. Hence, the number of relevant parameters is greatly reduced
and one needs to check only the two extremal eigenvalues of the coupling matrix regardless
of the network size. In this way it is possible to classify networks by defining equivalence
classes according to the extreme eigenvalues: networks having the same smallest and largest
eigenvalues will have identical stability properties with regard to the class.

In special cases it is possible to give more precise statements. For diffusively coupled
systems such as (5) or (6), the coupling matrix C equals the negative of the Laplacian matrix.
Therefore, in case the connection weights aij are non-negative, all the eigenvalues of C are non-
positive, the largest one always being zero. In fact, for connected networks, the eigenvalues
are strictly negative, except for a single zero eigenvalue (see e.g. [21]). In this case, it is
the smallest eigenvalue of C (i.e. the largest Laplacian eigenvalue) that determines the first
bifurcation. As far as the network structure is concerned, this is the only relevant quantity.

For systems of the form (3) or (4), C is given by the adjacency matrix A, which can have
both negative and positive eigenvalues even when all aij have the same sign. Thus both ξmin

and ξmax should be considered for the first bifurcation. For sufficiently small τ , the bifurcation
occurs in the vicinity of the origin of the α-β parameter plane of figure 1. Since the line
L1 intersects the origin where the curve C2 has a gap, the likely bifurcation is a stationary
one and the eigenvalue responsible for the bifurcation is the largest positive eigenvalue of A.
This agrees with the observation of section 3.2 below that oscillatory bifurcations arise from
sufficiently large delays, for the class of scalar systems studied in this paper.

3.2. Effects of delay

In the absence of delays (τ = 0), the characteristic equation for (2) is∏
ξ∈σ(C)

(λ − f ′(0) − κξ) = 0. (17)

from which the characteristic roots can be directly read off as λ = f ′(0) + κξ , ξ ∈ σ(C). The
roots are real for real network eigenvalues ξ ; hence the only critical root is λ = 0, which occurs
when f ′(0) = −κξ . The corresponding critical curve is a straight line on the parameter plane
of f ′(0) versus κξ , which is identical with the line L1 of figure 1. Thus, one has stability below
this line and one real positive characteristic root above, for a given spatial mode corresponding
to ξ . In particular, Hopf bifurcations do not occur.

To see the effects of the delay, we fix the other quantities κ, ξ and f ′(0) and notice that the
values of α, β in figure 1 then change only along the ray emanating from the origin with slope
m = κξ/f ′(0). The delay τ parametrizes the distance of points along the ray to the origin.
Hence, to use the delay as a bifurcation parameter, one goes along the ray starting from the
origin and obtain bifurcations as the curves given in figure 1 are intersected. Such rays only
intersect with L1 at the origin or else completely coincide with L1; moreover, they intersect the
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other curves if the slope m is sufficiently large. Since the latter curves correspond to pairs of
purely imaginary characteristic roots, large values of the delay cause oscillatory bifurcations.

To summarize, stationary bifurcations given by L1 of figure 1 are independent of the delay,
whereas the remaining set of curves correspond to oscillatory bifurcation resulting from the
delay. In the following sections we will consider both stationary and oscillatory bifurcations in
our symmetry analysis. Stationary bifurcations will be relevant for both delayed and undelayed
systems, whereas oscillatory bifurcations will be a feature of delayed systems only, in the
context of scalar systems that we consider.

4. Symmetries and equivariant bifurcations

By a symmetry of a dynamical system, we mean a group of elements acting on the phase space
that keep the system invariant. More precisely, given a system of form

dx

dt
= F(x) (18)

with x ∈ Rn and F : Rn → Rn, and an action of a group � on the phase space Rn, an element
γ ∈ � is called a symmetry of (18) if (18) remains unchanged after applying the action of γ

on both sides. Since a group action is linear, it commutes with the linear operator d
dt

; thus γ

is a symmetry of (18) if and only if γF(x) = F(γ x) for all x ∈ Rn.
Let Sn be the group of all permutations of n symbols. For � ∈ Sn, consider its natural

action on Rn by (x1, . . . , xn) �→ (x�(1), . . . , x�(n)). Consider a subgroup � ⊂ Sn.

Lemma 4.1. Let κ �= 0. Then � is a symmetry of systems of form (1) if and only if

g�(i)(x1, x2, . . . , xn) = gi(x�(1), x�(2), . . . , x�(n)), (19)

for all � ∈ � and (x1, x2, . . . , xn) ∈ Rn.

Proof. Let � ∈ � and apply its action on (1). We obtain

ẋ�(i)(t) = f (x�(i)(t)) + κgi(x�(1)(t − τ), x�(2)(t − τ), . . . , x�(n)(t − τ)). (20)

Comparing with (1), we see that (20) is the same system as (1) if and only if

κgi(x�(1)(t − τ), x�(2)(t − τ), . . . , x�(n)(t − τ))

= κg�(i)(x1(t − τ), x2(t − τ), . . . , xn(t − τ)).

This leads to (19), since κ �= 0. �

Remark 4.2. Note that a necessary condition for (19) to hold is that the coupling matrix C in
the linearization (2) satisfies

cij = c�(i)�(j), ∀ � ∈ �. (21)

For the specific systems (3)–(6) it can be checked that (21) is also a sufficient condition, since
(19) reduces to aij = a�(i)�(j) ∀� ∈ �. �

In what follows, we will study the bifurcations that destabilize the zero solution under a
group of symmetries � ⊂ Sn of the system (1) using the equivariant degree. Exact values of
associated bifurcation invariants are calculated using the EDML (Equivariant Degree Maple
Library) Package, by calling

showdegree[�](n0, n1, . . . , nr , m0, m1, . . . , ms), for ni, mj ∈ Z, (22)
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where the ni and mj are integers to be determined by the critical spectrum of the linearized
system at the equilibrium. The integers r and s in (22) are predetermined by � and are equal
to the number of all distinct (non-trivial) irreducible representations of � over reals and over
complex numbers, respectively. In what follows, we use V0, V1, . . . , Vr for the distinct real
irreducible representations and U0, U1, . . . , Us for the complex ones, where V0 and U0 are
reserved for the trivial representations.

4.1. Steady-state bifurcations

In reference to figure 1, suppose that the parameters (α, β) are varied to leave the shaded
stability region by crossing L1 at some point (αo, βo). Then,

αo = −βo = τκξo, (23)

for an eigenvalue ξo ∈ σ(C). For τ, κ > 0, ξo is the maximal eigenvalue of C. Let E(ξo) be
the generalized eigenspace of ξo. Given the �-action on Rn, we decompose Rn into pieces of
Vi’s:

Rn = V0 × V1 × · · · × Vr,

where every Vi

Vi = Vi × · · · × Vi︸ ︷︷ ︸
ni times

(24)

is a product of ni copies of Vi for some integer ni ∈ N∪{0}. Also, since E(ξo) is a �-invariant
subspace of Rn, we can decompose E(ξo) as:

E(ξo) = E0 × E1 × · · · × Er,

where every Ei is given by

Ei = Vi × · · · × Vi︸ ︷︷ ︸
ei times

(25)

i.e. as a product of ei copies of Vi for some integer ei ∈ N ∪ {0}. Using (24)–(25), define

ui := ni − ei, (26)

for i = 0, 1, . . . , r . Then, the bifurcation invariant around (αo, βo) is given by

ω0 := showdegree[�](n0, . . . , nr , 1, 0, . . . , 0) − showdegree[�](u0, . . . , ur , 1, 0, . . . , 0).

(27)

Running the EDML package we obtain the value of ω0, which is of form

c1(K1) + c2(K2) + · · · + cp(Kp),

for integers ci ∈ Z and conjugacy classes (Ki) of subgroups Ki in �.

Theorem 4.3. Let (αo, βo) be such that αo = −βo and ξo ∈ σ(C) be given by (23). If ω0

given by (27) is of form

ω0 = c1(K1) + c2(K2) + · · · + cp(Kp),

for some ci �= 0, then there exists a bifurcating branch of steady states of symmetry at least
(Ki).
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Proof. By the existence property of equivariant degree, it is sufficient to prove that the
value of the bifurcation invariant for the steady state bifurcations around (αo, βo) is indeed
given by formula (27), since if this is the case, then any non-zero coefficient in the value
indicates a bifurcating branch with the corresponding symmetry. The formula (27) follows
from theorem 8.5.2 in [22], but we give an alternative and more straightforward proof in
Appendix A for completeness. �

Corollary 4.4. Assume the hypotheses of theorem 4.3, and suppose furthermore that the
subgroup Ki satisfies

ξo �∈ σ(C|Fix(H)), ∀ H � Ki. (28)

Then there exists a bifurcating branch of steady states of symmetry precisely (Ki).

Proof. By theorem 4.3, there exists a bifurcating branch of steady states of symmetry at least
(Ki). Let (H) be the symmetry of this branch of solutions. Then, (H) � (Ki). Up to the
group conjugacy, we have H ⊇ Ki . We need to show H = Ki . Assume to the contrary that
H � Ki . Then by (28) we have that, when restricted to Fix(H), the characteristic operator
�(0)|Fix(H) : Fix(H) → Fix(H) is an isomorphism for (α, β) in a neighbourhood of (αo, βo).
By the implicit function theorem, there can be no additional solution in neighbourhood of the
trivial solution x = 0 ∈ Fix(H), which is a contradiction. �

4.2. Hopf Bifurcations

Assume that (α, β) leaves the shaded stability region of figure 1 by crossing C2 at some point
(αo, βo). Since C2 bounds the region from below and τ, κ > 0, the first parameter pair
that crosses C2 must be related to the minimal eigenvalue ξmin of C. Let ξo ∈ σ(C) be the
corresponding eigenvalue, i.e.

βo = τκξo. (29)

That is, ξo = ξmin becomes critical. Consider the complexification Cn = C ⊗ Rn of the phase
space Rn and extend the �-action on Cn by defining

γ (z ⊗ x) = z ⊗ (γ x), for γ ∈ �, x ∈ Rn. (30)

The (generalized) eigenspace E(ξo) remains �-invariant as a complex subspace of Cn. Thus,
we decompose E(ξo) into irreducible representations U0, U1, . . . , Us as:

E(ξo) = F0 × F1 × · · · × Fs,

where every Fj is given by

Fj = Uj × · · · × Uj︸ ︷︷ ︸
mj times

(31)

that is, a product of mj copies of Uj for some integer mj ∈ N ∪ {0}. Then, the bifurcation
invariant around (αo, βo) for Hopf bifurcation is given by

ω1 := showdegree[�](0, 0, . . . , 0, −m0, −m1, . . . ,−ms). (32)

Running the EDML package, we obtain the value of ω1 being of form

c1(H1) + c2(H2) + · · · + cq(Hq),

for integer coefficients cj ∈ Z and conjugacy classes (Hj ) of subgroups Hj ⊂ � × S1.
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Theorem 4.5. Let (αo, βo) be such that (αo, βo) ∈ C2 in figure 1 and ω1 be given by (32). If

ω1 = c1(H1) + c2(H2) + · · · + cq(Hq),

contains a non-zero coefficient cj �= 0 for some (Hj ), then there exists a bifurcating branch of
oscillating states of symmetry at least (Hj ).

Proof. Using equivariant degree theory, the bifurcation invariant is computed by (see [12])

ω1 = showdegree[�](k0, k1, . . . , kr , t0, t1, . . . , ts),

where ki’s are related to the positive spectrum of the right-hand side of (12) in the constant
function space, and the tj ’s are the crossing numbers which are equal to either mj or −mj ,
depending on the direction of the crossing of the critical characteristic roots.

Consider (12) in the constant function space. Then,(
τf ′(0)Id + τκC

)
x = 0, x ∈ Rn.

The positive spectrum σ+ of the linear operator (τf ′(0)Id + τκC) is

σ+ ={τf ′(0) + τκξ : τf ′(0)+τκξ > 0, ξ ∈ σ(C)} = {α + β(ξ) : α + β(ξ) > 0, ξ ∈ σ(C)},
which is an empty set, since the curve C2 lies in the area α + β < 0. Since the integer ki is the
total number of copies of Vi in E(µ) for µ ∈ σ+, we have ki = 0 for all i = 0, 1, . . . , r .

The crossing numbers are positive if the critical characteristic roots cross from the right
to the left of the complex plane; and negative otherwise. As (a, β) crosses C2 at (αo, βo) from
the shaded region in figure 1, the count of characteristic roots with positive real part increases
by 2, thus all non-zero tj ’s are negative and equal to −mj . �

Theorem 4.5 gives an existence result of bifurcating branches together with their least
symmetry. To sharpen to the precise symmetry, one can work with orbit types that satisfy
certain maximal condition. Here, we recall the concept of dominating orbit types from [12]
and introduce a new complementing definition of secondary dominating orbit types.

Definition 4.6. Let {U1, U2, . . . , Um} be the set of irreducible �-representations that occur in
Cn, where Cn is the complexification of the phase space Rn of the system (1). Let Ūj be the
� × S1-representation induced from Uj , for j = 1, 2, . . . , m (see (7)). Collect maximal orbit
types from Ūj , for j = 1, 2, . . . , m, and denote this collection by M. An orbit type (H) ∈ M
is called dominating if (H) is maximal in M. A non-dominating orbit type (L) ∈ M is called
secondary dominating if all orbit types (H) ∈ M satisfying (L) < (H) are dominating. �
Proposition 4.7. Let (αo, βo) be such that (αo, βo) ∈ C2 in figure 1 and ξo be the corresponding
eigenvalue of C given by (29). Assume that ω1 defined by (32) contains (H) with a non-zero
coefficient. Then the following hold:

(i) If (H) is a dominating orbit type, then there exists a bifurcating branch of oscillating
states of symmetry precisely equal to (H).

(ii) Suppose that (H) is a secondary dominating orbit type, and for every dominating orbit
type (H̃ ) with (H) < (H̃ ) there exists a flow-invariant subspace S ⊂ Rn such that

(a) S contains every state of symmetry H̃ ; and
(b) ξo �∈ σ(C|S).
Then there exists a bifurcating branch of oscillating states of symmetry precisely being
(H).
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Proof. Statement (i) follows from [12], and (ii) follows from the implicit function theorem,
in the same spirit as corollary 4.4. More precisely, let (H) be a secondary dominating orbit
type with a non-zero coefficient in ω1. By theorem 4.5, there exists a bifurcating branch of
oscillating states of symmetry at least (H). Let (H̃ ) be the precise symmetry of this branch
and suppose that (H) < (H̃ ). By definition of secondary dominating orbit types, the only orbit
types that are strictly larger than (H) are dominating orbit types. Thus (H̃ ) is dominating, and
so there exists a flow-invariant subspace S in Rn satisfying (a) and b). Consider the restricted
flow on S. The bifurcating branch of oscillating states, by condition (a), is contained in S.
However, by condition (b) and the implicit function theorem, there can be no bifurcation taking
place in S. This leads to a contradiction. �

5. Bidirectional ring configuration

In this section, we study the bifurcations of the system (1) on a particular class of networks,
namely bidirectional ring configurations. That is, we assume gi’s satisfy (19) for � = Dn. If
the system has one of the specific forms (3)–(6), this assumption can be weakened to (21). In
either case, the coupling matrix C in (2) satisfies (21), which in case of dihedral configuration
implies that C is a circulant matrix6 with c1j = c1,(n+2−j) for 1 � j � n. In particular, C is a
symmetric matrix.

A circulant matrix with first row entries c0, c1, . . . , cn−1 has eigenvalues

ξj = c0 + c1�j + c2�
2
j + · · · + cn−1�

n−1
j , j = 0, 1, 2, . . . , n − 1, (33)

with corresponding eigenvectors vj = (1, �j , �
2
j , . . . , �

n−1
j )T , where �j = exp(2πij/n) are

the nth roots of unity. Moreover, if the circulant matrix is Dn-symmetric, then ξj = ξn−j for
0 < j < n, which is essentially induced by the Dn-symmetry. In fact, we have


E(ξ0) = V0,

E(ξj ) = E(ξn−j ) = Vj for 0 < j <
n

2
,

E(ξ n
2
) = V( n

2 +2), if n is even

(34)

(see example 2.2 for notations Vj ). An eigenvalue ξ ∈ σ(C) is called simple if E(ξ) is
irreducible. To a critical eigenvalue ξo, we associate an index set

I = {i : ξi = ξo} (35)

(in case n is even and ξ n
2

= ξo, we put n
2 + 2 into I instead of n

2 ), which collects all indices of
irreducible representations that have to do with the critical eigenvalue ξo.

5.1. Steady-state bifurcations for bidirectional rings

Recall that Dn acts on the phase space Rn by

η(x1, x2, . . . , xn) = (xn, x1, x2, . . . , xn−1) (36)

ς(x1, x2, . . . , xn) = (xn, xn−1, . . . , x1), (37)

for x = (x1, x2, . . . , xn) ∈ Rn. Using characters of representations, Rn can be decomposed
into irreducible representations of Dn. In case of even n, we have

Rn = V0 × V1 × V2 × · · · × V n
2 −1 × V n

2 +2 (38)

6 Recall that an n×n matrix is called circulant if every row is the right shift of the previous row (mod n). A circulant
matrix C = (cij ) is also denoted by circ[c11, c12, . . . , c1n] using the entries of its first row.
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and in case of odd n, we have

Rn = V0 × V1 × V2 × · · · × V n−1
2

(39)

(see example 2.2 for notations Vj ). It follows that the non-zero ni’s in (27) are (see (24)){
n0 = n1 = n2 = · · · = nn

2 −1 = nn
2 +2 = 1, if n is even,

n0 = n1 = n2 = · · · = nn−1
2

= 1, if n is odd.
(40)

The integers ui’s in (27) are determined by the critical eigenvalue ξo and the corresponding I

(see (35)). Based on (34) and the definition (26) of ui , the non-zero ui’s are{
ui = 1, for i ∈ {0, 1, 2, . . . , n

2 − 1, n
2 + 2} \ I, if n is even,

ui = 1, for i ∈ {0, 1, 2, . . . , n−1
2 } \ I, if n is odd.

(41)

Thus, the bifurcation invariant ω0 can be computed using (27), accompanied by (40)–(41).

Example 5.1. (Simple critical eigenvalues for bidirectional rings.) Let C be a coupling matrix
satisfying (21) for � = Dn. Then C is determined by ( n

2 +1) or ( n+1
2 ) different entries depending

on whether n is even or odd, respectively. These entries decide which eigenvalue is maximal.
Let ξo ∈ σ(C) be the maximal eigenvalue. Assume that ξo is simple, i.e. E(ξo) is irreducible.
Then the index set I is a singleton and there are only possibly n

2 or n−1
2 different values of ω0,

depending on whether n is even or odd. As an example, for n = 12, we have

ω0 =




−2(D12) + 2(D̃6) + 4(D4) − 2(D̃3) + 2(D3) − 2(D̃2) − 2(D2)

−2(Z4) + 2(Z2), if ξo = ξ0,

(D1) − (D̃1), if ξo = ξ1,

−(D2) + (D̃2) + 2(D1) − 2(D̃1), if ξo = ξ2,

−(D̃3) + (D3), if ξo = ξ3,

2(D4) − 2(D2) − (Z4) + (Z2) − 2(D̃1) + 2(D1), if ξo = ξ4,

−(D̃1) + (D1), if ξo = ξ5,

(D̃6) − 2(D̃3) + (Z3), if ξo = ξ6.

(42)

These values, combined with fixed point subspaces of subgroups of D12 (see table 1), lead to the
classification result summarized in table 2. To illustrate, in case ξo = ξ1, we have two orbit types
(D1) and (D̃1) with non-zero coefficients in ω0. Using table 1, we have that ξ1 �∈ σ(C|Fix(H))

for all H > D1, thus by corollary 4.4, there exists at least one bifurcating branch of steady
states of symmetry precisely (D1). Since (D1) consists of 6 isotropy subgroups: ηkD1η

−k for
k = 0, 1, . . . , 5, we derive the form of the solution for each of these isotropies. The same can
be applied to (D̃1).

Note that the possible values of ω0 do not depend on the entries of C directly, but rather
on the maximal eigenvalue. For example, if every cell is connected only with its 2 nearest
neighbours, then ξo = ξ0 if the coupling is excitatory; and ξo = ξ6 if it is inhibitory. That
is, this configuration does not allow ξo to be ξi for i ∈ {1, 2, 3, 4, 5}. However, if each cell i

is connected to its 4 nearest neighbours, with coupling strength d1 to cells (i ± 1) and with
strength d2 to (i ± 2), then every eigenvalue can be maximal for some choices of d1, d2. See
figure 2 for their precise relation. �
Besides those values listed in (42), ω0 can take other values if ξo is non-simple. For example,
the coupling configuration with four nearest neighbours allows double critical eigenvalues as
shown in figure 2, when the relation between d1, d2 follows one of the lines there. In this
case, one can work out the index set I and compute ω0 individually. The same result using
theorem 4.3 and corollary 4.4 applies.
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Table 1. Fixed point subspaces of K ⊂ D12 and eigenvalues of the coupling matrix
C|Fix(K) : Fix(K) → Fix(K) (up to conjugacy classes of subgroups).

K Fix(K) σ(C|Fix(K))

D12 {x1 = x2 = · · · = x12} ξ0

D6 {x1 = x2 = · · · = x12} ξ0

D̃6 {x1 = x3 = · · · = x11, x2 = x4 = · · · = x12} ξ0, ξ6

Z6 {x1 = x3 = · · · = x11, x2 = x4 = · · · = x12} ξ0, ξ6

D4 {x1 = x3 = x4 = x6 = x7 = x9 = x10 = x12, x2 = x5 = x8 = x11} ξ0, ξ4

Z4 {x1 = x4 = x7 = x10, x2 = x5 = x8 = x11, x3 = x6 = x9 = x12} ξ0, ξ4, ξ4

D3 {x1 = x4 = x5 = x8 = x9 = x12, x2 = x3 = x6 = x7 = x10 = x11} ξ0, ξ3

D̃3 {x1 = x3 = x5 = x7 = x9 = x11, x2 = x6 = x10, x4 = x8 = x12} ξ0, ξ3, ξ6

Z3 {x1 = x5 = x9, x2 = x6 = x10, x3 = x7 = x11, x4 = x8 = x12} ξ0, ξ3, ξ3, ξ6

D2 {x1 = x6 = x7 = x12, x2 = x5 = x8 = x11, x3 = x4 = x9 = x10} ξ0, ξ2, ξ4

D̃2 {x1 = x5 = x7 = x11, x2 = x4 = x8 = x10, x3 = x9, x6 = x12} ξ0, ξ2, ξ4, ξ6

Z2 {x1 = x7, x2 = x8, x3 = x9, x4 = x10, x5 = x11, x6 = x12} ξ0, ξ2, ξ2, ξ4, ξ4, ξ6

D1 {x1 = x12, x2 = x11, x3 = x10, x4 = x9, x5 = x8, x6 = x7} ξ0, ξ1, ξ2, ξ3, ξ4, ξ5

D̃1 {x1 = x11, x2 = x10, x3 = x9, x4 = x8, x5 = x7} ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6

Z1 R
12 ξ0, ξ1, ξ1, ξ2, ξ2, ξ3, ξ3, ξ4, ξ4, ξ5, ξ5, ξ6

5.2. Hopf bifurcations for bidirectional rings

The complexification of E(ξj ) for ξj ∈ σ(C) satisfies


Ec(ξ0) = U0,

Ec(ξj ) = Ec(ξn−j ) = Uj for 0 < j < n
2

Ec(ξ n
2
) = U( n

2 +2), if n is even

(43)

(see example 2.2 for notations Uj ). It follows that the non-zero integers mj ’s in (32) are

mj = 1, for j ∈ I, (44)

where I is given by (35). The bifurcation invariant ω1 can then be computed using (32) together
with (44).

Example 5.2. (Simple critical eigenvalues for bidirectional rings).Following example 5.1, we
take C that satisfies (21) with � = Dn. The ( n

2 + 1) or ( n+1
2 ) different entries of C decide

which eigenvalue is minimal. Let ξo ∈ σ(C) be the minimal eigenvalue. Assume that ξo is
simple. Then the index set I is a singleton and there are only n

2 or n−1
2 different values of ω0,

depending on whether n is even or odd, respectively. Again for n = 12, we have

ω1 =




−(D12), if ξo = ξ0

−(Z
t1
12) − (Dd

2 ) − (D̃d
2 ) + (Zd

2), if ξo = ξ1,

−(Z
t2
12) − (Dd

4 ) − (Dd̂
4 ) + (Zd

4), if ξo = ξ2,

−(Z
t3
12) − (Dd

6 ) − (D̃d
6 ) + (Zd

6), if ξo = ξ3,

−(Z
t4
12) − (Dz

4) − (D4) + (Z4), if ξo = ξ4,

−(Z
t5
12) − (Dd

2 ) − (D̃d
2 ) + (Zd

2), if ξo = ξ5,

−(Dd̂
12), if ξo = ξ6.
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Table 2. Summary of distinct forms of steady states bifurcating from the equilibrium
x = 0 of the system (1) for n = 12.

Critical eigenvalue Symmetry Form of bifurcating steady-states Figure
(for distinct a, b, c, d, e, f, g ∈ R)

ξ0 D12 (a, a, a, a, a, a, a, a, a, a, a, a)

ξ1 or ξ5 D1 (a, b, c, d, e, f, f, e, d, c, b, a)

ηD1η
−1 (a, a, b, c, d, e, f, f, e, d, c, b)

η2D1η
−2 (b, a, a, b, c, d, e, f, f, e, d, c)

η3D1η
−3 (c, b, a, a, b, c, d, e, f, f, e, d)

η4D1η
−4 (d, c, b, a, a, b, c, d, e, f, f, e)

η5D1η
−5 (e, d, c, b, a, a, b, c, d, e, f, f )

D̃1 (a, b, c, d, e, f, e, d, c, b, a, g)

ηD̃1η
−1 (g, a, b, c, d, e, f, e, d, c, b, a)

η2D̃1η
−2 (a, g, a, b, c, d, e, f, e, d, c, b)

η3D̃1η
−3 (b, a, g, a, b, c, d, e, f, e, d, c)

η4D̃1η
−4 (c, b, a, g, a, b, c, d, e, f, e, d)

η5D̃1η
−5 (d, c, b, a, g, a, b, c, d, e, f, e)

ξ2 D2 (a, b, c, c, b, a, a, b, c, c, b, a)

ηD2η
−1 (a, a, b, c, c, b, a, a, b, c, c, b)

η2D2η
−2 (b, a, a, b, c, c, b, a, a, b, c, c)

D̃2 (a, b, c, b, a, d, a, b, c, b, a, d)

ηD̃2η
−1 (d, a, b, c, b, a, d, a, b, c, b, a)

η2D̃2η
−2 (a, d, a, b, c, b, a, d, a, b, c, b)

ξ3 D3 (a, b, b, a, a, b, b, a, a, b, b, a)

ηD3η
−1 (a, a, b, b, a, a, b, b, a, a, b, b)

D̃3 (a, b, a, c, a, b, a, c, a, b, a, c)

ηD̃3η
−1 (c, a, b, a, c, a, b, a, c, a, b, a)
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Table 2. (Continued.)

Critical eigenvalue Symmetry Form of bifurcating steady-states Figure
(for distinct a, b, c, d, e, f, g ∈ R)

ξ4 D4 (a, b, a, a, b, a, a, b, a, a, b, a)

ηD4η
−1 (a, a, b, a, a, b, a, a, b, a, a, b)

η2D4η
−2 (b, a, a, b, a, a, b, a, a, b, a, a)

ξ6 D̃6 (a, b, a, b, a, b, a, b, a, b, a, b)

To find dominating and secondary dominating orbit types, consider the maximal orbit types in
Ui’s. They are

(D12) in U0;
(Z

t1
12), (Dd

2 ) (D̃d
2 ) in U1;

(Z
t2
12), (Dd

4 ) (Dd̂
4 ) in U2;

(Z
t3
12), (Dd

6 ), (D̃d
6 ) in U3;

(Z
t4
12), (Dz

4) (D4) in U4;
(Z

t5
12), (Dd

2 ) (D̃d
2 ) in U5;

(Dd̂
12) in U6.

Among these orbit types, we find the dominating orbit types: (D12), (Dd̂
12), (Z

t1
12), (Z

t2
12),

(Z
t3
12), (Z

t4
12), (Z

t5
12), (Dd

6 ), (D̃d
6 ), (Dd

4 ), (Dz
4) and the secondary dominating orbit types:

(Dd
2 ), (D̃d

2 ), (D4), (Dd̂
4 ). The values of ω1 together with the dominating and secondary

dominating orbit types lead to the classification result summarized in tables 3–5 using
proposition 4.7. �

Remark 5.3. Depending on the isotropy, different cells may possess different period. As an
example, for D̃d

2 (and its conjugacy copies) in table 3, consider the two diagrams in the bottom
row. The cell at 2 o’clock and the cell at 8 o’clock do not change colour (black) as the time
T
2 elapses. This means they have half the period as other cells. More precisely, for isotropy
ηkD̃d

2 η−k with k = 0, 1, 2, 3, 4, 5, the cells 3 + k and 9 + k have half the period as other
cells. Similarly, in table 4, for isotropy ηkDd

4 η−k with k = 0, 1, 2, the cells 2 + k, 5 + k,
8 + k, 11 + k (black in diagram) have period T

2 ; for isotropy ηkD̃d
6 η−k with k = 0, 1, the

cells 1 + k, 3 + k, 5 + k, 7 + k, 9 + k, 11 + k (black in diagram) have period T
2 . In table 5, for

isotropy ηkDz
4η

−k with k = 0, 1, 2, the cells 2 + k, 5 + k, 8 + k, 11 + k (black in diagram) have
period T

2 . �

6. Near-neighbour coupling and simulation examples

In this section we consider the 12-cell ring with all possibilities of first- and second-closest-
neighbour couplings. More precisely, each cell i coupled to its two nearest neighbours on
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Table 3. Summary of distinct forms of oscillating states bifurcating from the equilibrium
x = 0 of the system (1), where cells are coupled to their nearest and next nearest
neighbours (part I).

Critical Form of oscillating-states
EigenvalueSymmetry(for some period T ) Figure

ξ0 D12 (x(t), x(t), x(t), . . . , x(t))

ξ1 Z
t1
12 (x1(t), x1(t + T

12 ), x1(t + 2T
12 ) . . . , x1(t + 11T

12 ))

ςZ
t1
12ς

−1 (x1(t), x1(t + 11T
12 ), x1(t + 10T

12 ) . . . , x1(t + T
12 ))

ξ1 or ξ5 Dd
2 (x1(t), x2(t), x3(t), x3(t + T

2 ), x2(t + T
2 ), x1(t + T

2 ),

x1(t + T
2 ), x2(t + T

2 ), x3(t + T
2 ), x3(t), x2(t), x1(t))

ηDd
2 η−1 (x1(t), x1(t), x2(t), x3(t), x3(t + T

2 ), x2(t + T
2 ),

x1(t + T
2 ), x1(t + T

2 ), x2(t + T
2 ), x3(t + T

2 ), x3(t), x2(t))

η2Dd
2 η−2 (x2(t), x1(t), x1(t), x2(t), x3(t), x3(t + T

2 ), x2(t + T
2 ),

x1(t + T
2 ), x1(t + T

2 ), x2(t + T
2 ), x3(t + T

2 ), x3(t))

η3Dd
2 η−3 (x3(t), x2(t), x1(t), x1(t), x2(t), x3(t), x3(t + T

2 ),

x2(t + T
2 ), x1(t + T

2 ), x1(t + T
2 ), x2(t + T

2 ), x3(t + T
2 ))

η4Dd
2 η−4 (x3(t + T

2 ), x3(t), x2(t), x1(t), x1(t), x2(t), x3(t),

x3(t + T
2 ), x2(t + T

2 ), x1(t + T
2 ), x1(t + T

2 ), x2(t + T
2 ))

η5Dd
2 η−5 (x2(t + T

2 ), x3(t + T
2 ), x3(t), x2(t), x1(t), x1(t),

x2(t), x3(t), x3(t + T
2 ), x2(t + T

2 ), x1(t + T
2 ), x1(t + T

2 ))

D̃d
2 (x1(t), x2(t), x3(t), x2(t + T

2 ), x1(t + T
2 ), x4(t),

x1(t + T
2 ), x2(t + T

2 ), x3(t), x2(t), x1(t), x4(t + T
2 ))

ηD̃d
2 η−1 (x4(t + T

2 ), x1(t), x2(t), x3(t), x2(t + T
2 ), x1(t + T

2 ),

x4(t), x1(t + T
2 ), x2(t + T

2 ), x3(t), x2(t), x1(t))

η2D̃d
2 η−2 (x1(t), x4(t + T

2 ), x1(t), x2(t), x3(t), x2(t + T
2 ),

x1(t + T
2 ), x4(t), x1(t + T

2 ), x2(t + T
2 ), x3(t), x2(t))

η3D̃d
2 η−3 (x2(t), x1(t), x4(t + T

2 ), x1(t), x2(t), x3(t), x2(t + T
2 ),

x1(t + T
2 ), x4(t), x1(t + T

2 ), x2(t + T
2 ), x3(t))

η4D̃d
2 η−4 (x3(t), x2(t), x1(t), x4(t + T

2 ), x1(t), x2(t), x3(t),

x2(t + T
2 ), x1(t + T

2 ), x4(t), x1(t + T
2 ), x2(t + T

2 ))

η5D̃d
2 η−5 (x2(t + T

2 ), x3(t), x2(t), x1(t), x4(t + T
2 ), x1(t),

x2(t), x3(t), x2(t + T
2 ), x1(t + T

2 ), x4(t), x1(t + T
2 ))
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Table 4. Summary of distinct forms of oscillating states bifurcating from the equilibrium
x = 0 of the system (1), where cells are coupled to their nearest and next nearest
neighbours (part II).

Critical Form of oscillating-states
Eigenvalue Symmetry (for some period T ) Figure

ξ2 Z
t2
12 (x1(t), x1(t + T

6 ), x1(t + 2T
6 ), . . . , x1(t + 5T

6 ),

x1(t), x1(t + T
6 ), x1(t + 2T

6 ), . . . , x1(t + 5T
6 ))

ςZ
t2
12ς

−1 (x1(t), x1(t + 5T
6 ), x1(t + 4T

6 ) . . . , x1(t + T
6 ),

x1(t), x1(t + 5T
6 ), x1(t + 4T

6 ) . . . , x1(t + T
6 ))

Dd
4 (x1(t), x2(t), x1(t + T

2 ), x1(t + T
2 ), x2(t), x1(t),

x1(t), x2(t), x1(t + T
2 ), x1(t + T

2 ), x2(t), x1(t))

ηDd
4 η−1 (x1(t), x1(t), x2(t), x1(t + T

2 ), x1(t + T
2 ), x2(t),

x1(t), x1(t), x2(t), x1(t + T
2 ), x1(t + T

2 ), x2(t))

η2Dd
4 η−2 (x2(t), x1(t), x1(t), x2(t), x1(t + T

2 ), x1(t + T
2 ),

x2(t), x1(t), x1(t), x2(t), x1(t + T
2 ), x1(t + T

2 ))

Dd̂
4 (x1(t), x2(t), x1(t), x1(t + T

2 ), x2(t + T
2 ), x1(t + T

2 ),

x1(t), x2(t), x1(t), x1(t + T
2 ), x2(t + T

2 ), x1(t + T
2 ))

ηDd̂
4 η−1 (x1(t + T

2 ), x1(t), x2(t), x1(t), x1(t + T
2 ), x2(t + T

2 ),

x1(t + T
2 ), x1(t), x2(t), x1(t), x1(t + T

2 ), x2(t + T
2 ))

η2Dd̂
4 η−2 (x2(t + T

2 ), x1(t + T
2 ), x1(t), x2(t), x1(t), x1(t + T

2 ),

x2(t + T
2 ), x1(t + T

2 ), x1(t), x2(t), x1(t), x1(t + T
2 ))

ξ3 Z
t3
12 (x1(t), x1(t + T

4 ), x1(t + T
2 ), x1(t + 3T

4 ),

x1(t), x1(t + T
4 ), . . . , x1(t + 3T

4 ))

ςZ
t3
12ς

−1 (x1(t), x1(t + 3T
4 ), x1(t + T

2 ), x1(t + T
4 ),

x1(t), x1(t + 3T
4 ), . . . , x1(t + T

4 ))

Dd
6 (x1(t), x1(t + T

2 ), x1(t + T
2 ), x1(t), x1(t), x1(t + T

2 ),

x1(t + T
2 ), x1(t), x1(t), x1(t + T

2 ), x1(t + T
2 ), x1(t))

ηDd
6 η−1 (x1(t), x1(t), x1(t + T

2 ), x1(t + T
2 ), x1(t), x1(t),

x1(t + T
2 ), x1(t + T

2 ), x1(t), x1(t), x1(t + T
2 ),

x1(t + T
2 ))

D̃d
6 (x1(t), x2(t), x1(t), x2(t + T

2 ), x1(t), x2(t),

x1(t), x2(t + T
2 ), x1(t), x2(t), x1(t), x2(t + T

2 ))

ηD̃d
6 η−1 (x2(t + T

2 ), x1(t), x2(t), x1(t), x2(t + T
2 ),

x1(t), x2(t), x1(t), x2(t + T
2 ), x1(t), x2(t), x1(t))
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Table 5. Summary of distinct forms of oscillating states bifurcating from the equilibrium
x = 0 of the system (1), where cells are coupled to their nearest and next nearest
neighbours (part III).

Critical Form of oscillating-states
Eigenvalue Symmetry (for some period T ) Figure

ξ4 Z
t4
12 (x1(t), x1(t + T

3 ), x1(t + 2T
3 ),

x1(t), x1(t + T
3 ), . . . , x1(t + 2T

3 ))

ςZ
t4
12ς

−1 (x1(t), x1(t + 2T
3 ), x1(t + T

3 ),

x1(t), x1(t + 2T
3 ), . . . , x1(t + T

3 ))

Dz
4 (x1(t), x2(t), x1(t + T

2 ), x1(t), x2(t), x1(t + T
2 ),

x1(t), x2(t), x1(t + T
2 ), x1(t), x2(t), x1(t + T

2 ))

ηDz
4η

−1 (x1(t + T
2 ), x1(t), x2(t), x1(t + T

2 ), x1(t), x2(t),

x1(t + T
2 ), x1(t), x2(t), x1(t + T

2 ), x1(t), x2(t))

η2Dz
4η

−2 (x2(t), x1(t + T
2 ), x1(t), x2(t), x1(t + T

2 ), x1(t),

x2(t), x1(t + T
2 ), x1(t), x2(t), x1(t + T

2 ), x1(t))

D4 (x1(t), x2(t), x1(t), x1(t), x2(t), x1(t),

x1(t), x2(t), x1(t), x1(t), x2(t), x1(t))

ηD4η
−1 (x1(t), x1(t), x2(t), x1(t), x1(t), x2(t),

x1(t), x1(t), x2(t), x1(t), x1(t), x2(t))

η2D4η
−2 (x2(t), x1(t), x1(t), x2(t), x1(t), x1(t),

x2(t), x1(t), x1(t), x2(t), x1(t), x1(t))

ξ5 Z
t5
12 (x1(t), x1(t + 5T

12 ), x1(t + 10T
12 ), x1(t + 3T

12 ),

x1(t + 8T
12 ), x1(t + T

12 ), x1(t + 6T
12 ), x1(t + 11T

12 ),

x1(t + 4T
12 ), x1(t + 9T

12 ), x1(t + 2T
12 ), x1(t + 7T

12 )

ςZ
t5
12ς

−1 (x1(t), x1(t + 7T
12 ), x1(t + 2T

12 ), x1(t + 9T
12 ),

x1(t + 4T
12 ), x1(t + 11T

12 ), x1(t + 6T
12 ), x1(t + T

12 ),

x1(t + 8T
12 ), x1(t + 3T

12 ), x1(t + 10T
12 ), x1(t + 5T

12 )

ξ6 Dd̂
12 (x1(t), x1(t + T

2 ), x1(t), x1(t + T
2 ), . . . , x1(t + T

2 ))

both sides with coupling strength ci,i±1 = d1 and to its second-nearest neighbours on both
sides with coupling strength ci,i±2 = d2, as well as possibly having a self-feedback loop with
strength cii = c0. Each coupling strength is allowed to be positive, negative, or zero. We
illustrate some of the ensuing dynamics in the context of a concrete model mentioned in the
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Figure 2. The largest eigenvalue of the coupling matrix C for a circular arrangement of
12 cells where each cell is connected to four others, with coupling strength d1 to its two
immediate neighbours on each side and with coupling strength d2 to the second-nearest
neighbours.

Introduction, namely the nonlinear neural network model (3). We will also make reference to
the diffusively coupled system (5) by choosing c0 appropriately.

Since the coupling matrix C is circulant, we calculate its eigenvalues using (33) as

ξj = c0 + 2d1 cos(
π

6
j) + 2d2 cos(

π

3
j), j = 0, 1, 2, . . . , n − 1. (45)

We then determine the largest and smallest eigenvalues ofC in terms of the coupling strengthsd1

and d2. Figures 2 and 3 graphically show which of the ξi are the largest and smallest eigenvalues
of C for the complete range of coupling strengths d1 and d2. The figures are symmetric images
of each other with respect to the origin since replacing (d1, d2) by (−d1, −d2) is equivalent
to multiplying C by −1, which reverses the roles of smallest and largest eigenvalues. Note
from (45) that the self-coupling coefficient c0 simply shifts the eigenvalues without altering
their magnitude order. Hence, by changing c0 one can make either the smallest or the largest
eigenvalue the dominant one that determines the first bifurcation, in the context of the stability
diagram of figure 1. As depicted in figures 2 and 3, every eigenvalue ξi of C can arise as
the dominant one by appropriate choices of the coupling strengths d1 and d2. (Note that for
7 � j � 11, ξj is identical to ξ12−j , by (45).) Therefore, the present setting of coupling with
two closest neighbour pairs permits a systematic investigation of the whole range of dynamics
listed in tables 2–5.

We consider the model (3) with g(x) = arctan x and aii = 0 ∀i. Thus f (x) = −x,
so that f ′(0) = −1 and g′(0) = 1. In the coupling matrix C we have c0 = 0, and we
fix the remaining coupling strengths as d1 = 0.25, d2 = 0.5. The eigenvalues ξ0 to ξ6 are
{1.5, 0.933013, −0.25, −1, −0.75, 0.066987, 0.5}. We take τ = 1 initially.

We first consider excitatory coupling by setting κ = 1. The dominant eigenvalue is
ξ0 = 1.5; so the system settles to a non-zero steady-state solution starting from random
initial conditions, as shown in figure 4. This is also the behaviour of the undelayed system,
which persists under the presence of delays. If we include a self-coupling term c0 = −1.5,
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Figure 3. The smallest eigenvalue of the coupling matrix C for a circular ring of size
12, in terms of the coupling strengths. (See the caption of figure 2 for explanation.)
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Figure 4. System (3) with excitatory coupling (κ = 1) approaching a uniform steady-
state solution from random initial conditions (left). The negative of the final state is also
a stable equilibrium which can be observed for a different choice of initial conditions.
Adding self-coupling yields the diffusively coupled system (5), which exhibits a stable
oscillatory pattern of two clusters (right): cells {2, 3, 6, 7, 10, 11} form a synchronized
cluster (blue curve) that oscillate in anti-phase with cells {1, 4, 5, 8, 9, 12} (red curve).

as in the diffusively coupled system (5), all eigenvalues of C are shifted by −1.5. Now a
negative eigenvalue, namely ξ3 = −2.5, becomes the dominant one responsible for bifurcation.
Consequently, the network splits into an oscillatory pattern (figure 4). It is worth noting that,
although diffusive coupling is expected to drive the system to a spatially uniform solution, in
this example it breaks a uniform equilibrium and replaces it with a non-trivial spatial pattern
of two clusters of synchronized oscillators.

We now change the coupling from excitatory to inhibitory by setting κ = −1.2 (figure
5). We keep d1 = 0.25, d2 = 0.5 and c0 = 0 as before. The extreme eigenvalues of κC are
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Figure 5. System (3) with inhibitory coupling (κ = −1.2). When τ = 1, the network
approaches a two-cluster steady-state solution from random initial conditions (left). The
clusters are the same as in the oscillatory pattern of figure 4. Increasing the delay to
τ = 3 yields spatially uniform synchronized oscillations shown on the right.

−1.2ξ0 = −1.8 and −1.2ξ3 = 1.2. For the present value of τ = 1, the positive eigenvalue
leaves the stability region first, so the systems settles into a two-cluster steady-state solution
in accordance with ξ3. When we take τ = 3, however, the negative eigenvalue becomes
responsible for the bifurcation and the system exhibits spatially uniform periodic oscillations,
in accordance with ξ0. Here, in the absence of diffusive coupling, the delay apparently plays
an important role in driving the system to a spatially uniform state, albeit an oscillatory one.

Although a rigorous stability analysis of the emerging spatio-temporal patterns is beyond
the scope of the present study, repeated numerical simulations starting from random initial
conditions manifest their stability. However, in many cases several stable patterns co-exist, so
stability should only be inferred in a local sense.
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Appendix A. Proof of theorem 4.3

Theorem 4.3 Let (αo, βo) be such that αo = −βo, and let ξo ∈ σ(C) be given by (23). If ω0

given by (27) is of form

ω0 = c1(K1) + c2(K2) + · · · + cp(Kp)

for some ci �= 0, then there exists a bifurcating branch of steady states of symmetry at least
(Ki).

Proof. The parameter pair (α, β) escapes the shaded region in figure 1 by crossing over L1
through (αo, βo) (see figure A1).
Let c : [λ−, λ+] ⊂ R → R2 be a parametrization of the crossing curve such that
c(λ−) = (α−, β−), c(λo) = (αo, βo) and c(λ+) = (α+, β+). Then the initial bifurcation
problem becomes a bifurcation problem around λo. More precisely, we have a �-equivariant
map F : R×Rn → Rn such that F(λ, 0) = 0 for all λ ∈ [λ−, λ+]. The spectrum of DxF(λ, 0)
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Figure A1. The crossing of (α, β) through (αo, βo) ∈ L1.

Figure A2. An isolating box �1 around the bifurcating point λ = λo, where the red line
is the equilibrium, the blue curves are potential bifurcating solutions and the plus signs
‘+’ are the signs of auxiliary function ζ1.

belongs to C− (the left half of the complex plane) for all λ ∈ [λ−, λo], and as λ crosses λo, the
spectrum of DxF(λo, 0) intersects with iR at 0.

Without loss of generality, let λ± = ±4 and λo = 0. Define a box around the bifurcation
point (0, 0) ∈ R × Rn (see figure A2):

�1 := {(λ, x) : |λ| < 4, ‖x‖ < ρ},
where ρ > 0 is such that F(±4, ·) is a homeomorphism on {x ∈ Rn : ‖x‖ < ρ}.

Without loss of generality, let ρ = 2. Define F1 : �1 → R × Rn by

F1(λ, x) := (|λ|(‖x‖ − 2) + ‖x‖ − 1, F (λ, x)
)

:= (ζ1(λ, x), F (λ, x)).

Note that ζ1 > 0 for ‖x‖ = 2 and ζ1 < 0 for ‖x‖ = 0. Functions with this property are called
auxiliary functions on �1. Thus, by construction, zeros of F1 in �1 are contained properly in
�1, i.e. F−1

1 (0) ∩ �1 ⊂ �1, and if F1(λ, x) = 0, then x �= 0. In other words, zeros of F1

correspond precisely to non-trivial zeros of F in �1. The bifurcation invariant ω0 is defined by

ω0 = �−Deg (F1, �1).

To compute ω0, we perform several homotopies on F1. Define F2 : �1 → R × Rn by

F2(λ, x) := (|λ|(‖x‖ − 1) + ‖x‖ + 1, F (λ, x)
)

:= (ζ2(λ, x), F (λ, x)).

Since ζ2 > 0 for ‖x‖ = 2, we have F1 and F2 are homotopic on �1 by a linear homotopy.
Thus, by homotopy invariance, we have �−Deg (F1, �1) = �−Deg (F2, �1). Also, ζ2 > 0
for |λ| � 1

2 . Thus, all zeros of F2 in �1 are contained in the following subset of �1:

�2 := {(λ, x) :
1

2
< λ < 4, ‖x‖ < 2}⊂ �1.

In other words, F2 does not have zeros in �1 \ �2. By (the double negation of) the existence
property, we have

�−Deg (F2, �1 \ �2) = 0.
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It then follows that

�−Deg (F2, �1) = �−Deg (F2, �2) + �−Deg (F2, �1 \ �2) = �−Deg (F2, �2).

Moreover, F2 is homotopic to F3 : �2 → R × Rn defined by

F3(λ, x) := (ζ2(λ, x), DxF (λ, 0)).

Decompose Rn into the sum of the critical eigenspace and the eigenspaces of the rest (all
negative) eigenvalues of DxF(λo, 0), say Rn = R0 × R1. Then, for x = (x1, x2) ∈ R0 × R1,
the linear map DxF(λ, 0)(x1, x2) is homotopic to (λx1, −x2). Thus, F3 is homotopic to
F4 : �2 → R × Rn defined by

F4(λ, x) := (ζ2(λ, x), (λx1, −x2)), for x = (x1, x2) ∈ R0 × R1.

Note that F4(λ, x) = 0 only if x = 0. Substituting x = 0 into ζ2(λ, x), we have ζ2(λ, 0) = 0
if and only if λ = ±1. That is,

F−1
4 (0) ∩ �2 = {(−1, 0), (1, 0)}.

It follows that

�−Deg (F2, �2) = �−Deg (F4, �2) = �−Deg (F4, N−1) + �−Deg (F4, N1),

where N−1 (respectively N1) is a small neighbourhood of (−1, 0) (respectively (1, 0)). On
N−1, we have that F4 is homotopic to (1 + λ, −x1, −x2). By suspension, we obtain

�−Deg (F4, N−1) = �−Deg (−Id, B1(R
n)),

where B1(·) denotes the unit ball. On the other hand, F4 is homotopic to (1 − λ, x1, −x2) on
N1, so by multiplication, we have

�−Deg (F4, N1) = −�−Deg (−Id, B1(R1)).

Therefore,

ω0 = �−Deg (−Id, B1(R
n)) − �−Deg (−Id, B1(R1)).

Using showdegree, it is expressed as

ω0 = showdegree[�](n0, n1, . . . , nr , 1, 0, . . . , 0) − showdegree[�]

×(u0, u1, . . . , ur , 1, 0, . . . , 0),

where ni’s and ui’s are defined by (24)–(26).
The statement then follows from the existence property of degree. �
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