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Abstract. An axiomatic approach to the primary equivariant degree is dis-
cussed and a construction of the primary equivariant degree via fundamental
domains is presented. For a class of equivariant maps, which naturally ap-
pear in one-parameter equivariant Hopf bifurcation, effective computational
primary degree formulae are established.

1. Introduction. Many mathematical models of natural phenomena exhibit sym-
metric properties related to some physical or geometric regularities. These models
have been studied using different topological techniques: variational methods (min-
imax theory, Conley index, Morse-Floer complex) (cf. [29, 6, 8, 32, 27, 5]), singu-
larity theory (cf. [14, 30]), reduction to the fixed-point spaces (cf. [12]), to mention
a few. The equivariant degree introduced in [17] is an important alternative to the
above approaches. To be more specific, given a compact Lie group G, orthogonal
G-representations V and W , open bounded invariant subset Ω ⊂ W and continuous
equivariant map f : (Ω, ∂Ω) → (V, V \ {0}), one can assign the equivariant degree
degG(f, Ω) taking its value in the equivariant homotopy group ΠG

SW (SV ) of maps

SW = ∂([0, 1]×B) → (R× V ) \ {0} = SV , (1)

where B is a large ball in W centered at the origin. It is known that degG(f, Ω)
satisfies all the natural properties expected from any reasonable “degree theory,”
like existence, homotopy invariance, excision, suspension, additivity (up to one sus-
pension), etc. Roughly speaking, the equivariant degree “measures” (equivariant)
homotopy obstructions for f|∂Ω to have an equivariant extension without zeros over
Ω (composed of several orbit types).
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Observe that, in general, the equivariant homotopy group of spheres ΠG
SW (SV )

is not stable even under suspensions by G-trivial summands, which makes the prac-
tical computation of degG(f, Ω) very complicated. At the same time, for the most
important (from the application point of view) case W = Rn ⊕ V it is possible to
define the equivariant degree (using a slight modification of the original construc-
tion from [17]) in such a way that its value belongs to the stable limit of ΠG

SW (SV ),
denoted by πG,st

n (see [1, 2, 3]). For the sake of simplicity, in what follows we will use
the same symbol for this modified degree. Then (cf. [1]) the group πG,st

n admits a
splitting πG,st

n =
⊕

dim W (H)≤n

Π(H), where Π(H) stands for the (stable) equivariant

homotopy group of maps satisfying the normality condition (see Definition 3) and
having zeros of the orbit type (H), and W (H) = N(H)/H denotes the Weyl group.
Therefore,

degG(f, Ω) =
∑

dim W (H)≤n

a(H), (2)

where a(H) stands for the Π(H)-component of degG(f, Ω). Denote by Φ+
n (G, Ω)

the set of orbit types (H) occurring in Ω such that dim W (H) = n and W (H) is
bi-orientable (see Definition 1). Since Π(H) ' Z for (H) ∈ Φ+

n (G,Ω) (see [18] for G
abelian and [13] for the general case), choosing an invariant orientation on W (H)
is equivalent to choosing a generator in Π(H). Thus, for each (H) ∈ Φ+

n (G, Ω), the
element a(H) from (2) can be written as nH · (H) with nH ∈ Z. The projection of
degG(f, Ω) onto

⊕

(H)∈Φ+
n (G,Ω)

Π(H) is called the primary degree of f in Ω. This is

the main object of our paper.
It should be pointed out that the primary degree was introduced in [13] indepen-

dently of [17], using the so-called regular normal approximations and winding num-
bers of their restrictions to normal slices around the orbits of zeros (cf. [10, 11, 23],
where the case G = S1 was considered). However, it is well-known (see, for in-
stance, [21, 36]) that the winding number admits an axiomatic definition as an
integer-valued function satisfying homotopy, additivity and normalization proper-
ties. Developing an axiomatic approach to the primary degree is one of the goals
of our paper (cf. Proposition 9). Of course, the existence part of Proposition 9
follows from the results of [17] and [13]. However, we give here an alternative proof
(cf. Proposition 8) based on the use of the so-called fundamental domains (see
Definitions 6 and 7, Theorem 2 and formulae (4)—(7)) — the notion having a tie
with different mathematical disciplines: fundamental polygon for isometry groups
of Riemannian manifolds, Weierstrass section in invariant theory, Poincaré section
in ODE’s, to mention a few (for a detailed exposition of this concept we refer to
[25]; for abelian group actions see [18]).

Observe that the construction of the primary degree via formulae (4)—(7) is
essentially based on the existence of (regular) normal approximations. However,
the normality property (being of great theoretical importance) is easy to formulate
but difficult to achieve in practice. Therefore, the constructive definition of the
primary degree via (4)—(7), as well as the axiomatic one, provided by Proposition
9 (cf. normalization and elimination properties) do not contain practical hints
for its computation, in general. Moreover, the use of a kind of normality condition
seems to be unavoidable under any axiomatic approach to the (primary) equivariant
degree.
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However, it turns out that in the case n = 1 it is possible “to go around the
normality problem,” and the primary degree is completely computable. The idea
behind this is very simple: (i) for G = S1 it is possible to define the primary de-
gree by a list of axioms (of course, equivalent to those presented in Proposition 8
and Remark 3) with the normality property not being addressed whatsoever (see
Theorem 3); (ii) the case of an arbitrary G can be canonically reduced to the com-
putations of the S1-degree using the so-called Recurrence Formula (see Proposition
13). In turn, the axiomatic approach to the S1-degree combined with specific one-
parameter techniques (see Section 6) allows us to obtain computational formulae
for the G-degree of equivariant maps related to G-symmetric Hopf bifurcation. An
exposition of this stream of ideas is the main goal of our paper.

A similar method works in the case n = 2; to this end one should develop
the axiomatic approach to the primary S1 × S1-degree and establish a suitable
recurrence formula. In the case n > 2, the situation is much more complicated;
possible connected components corresponding to W (H)-orbits may be different from
tori (for instance, if n = 3, the component may be diffeomorphic to the non-abelian
group SU(2)). Therefore, the techniques needed for possible reductions are more
complex. This and related topics, together with applications to symmetric Hopf
bifurcations in functional differential equations, constitute the subject of the second
part of this paper.

After the Introduction, the paper is organized as follows. In section 2 we recall
several notions from equivariant topology and discuss the known facts related to
the bi-orientability, normality and the purely group-theoretic quantity n(L, H). In
section 3 we develop an axiomatic approach to the primary degree in the case of
n free parameters. The main result (see Proposition 9) is preceded by a general
discussion of (regular) fundamental domains in the context relevant to equivariant
extensions (we believe that the existence result (see Theorem 2) is interesting in its
own).

Sections 4 and 5 contain an exposition of the axiomatic approach to the primary
S1-degree in the case of one free parameter. Here the concept of a basic map
(see formulae (10) and (11)) plays a central role; in a certain sense basic maps
are the simplest equivariant ones being close to the “identity” map and having
the S1-degree different from zero. In section 6 we show how the computation of
the S1-degree of several maps related to the equivariant Hopf bifurcation can be
reduced to the basic maps (see Theorem 4). Among the developed techniques, the
so-called Splitting Lemma is most important. Section 7 is devoted to the Recurrence
Formula, which concludes this paper.

2. Preliminaries.

2.1. Equivariant Jargon. We will recall the equivariant jargon frequently used
throughout this paper.

Hereafter, G stands for a compact Lie group. Two closed subgroups H and K
of G are conjugate if there exists g ∈ G such that K = gHg−1. Obviously, the
conjugation relation is an equivalence relation. The equivalence class of H is called
a conjugacy class of H in G and will be denoted by (H). The set of all conjugacy
classes of closed subgroups of G admits a partial order given by (H) ≥ (K) if K
is conjugate to a subgroup of H. For a closed subgroup H of G, we use N(H) to
denote the normalizer of H in G, and W (H) to denote the Weyl group N(H)/H in
G.
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Let G act on a topological space M and x ∈ M . We denote by Gx := {g ∈
G : gx = x} the isotropy group of x and by G(x) the orbit of x. The conjugacy
class (Gx) will be called the orbit type of x. The symbol J (M) stands for the set
of all orbit types occurring in M . For an invariant subset X ⊂ M and a closed
subgroup H of G we put XH := {x ∈ X : Gx ⊃ H}, XH := {x ∈ X : Gx = H},
X(H) := {x ∈ X : (Gx) = (H)}. Obviously, W (H) acts on XH and this action is
free on XH .

Assume, in addition, M is a smooth finite-dimensional G-manifold. Then (see, for
instance, [19, 33]) for every orbit type (H) ∈ J (M), the set M(H) is an invariant
smooth submanifold of M . Also, MH is a smooth submanifold of M , MH is a
smooth submanifold of MH and the orbit space MH/W (H) is a smooth manifold
(see [19]). We will denote by τ(M) the tangent bundle to M . If M is a Riemannian
manifold (equipped with an invariant metric) and N is a smooth G-submanifold of
M , then we denote by ν(N) (resp. νx(N)) the normal vector bundle of N in M
(resp. normal slice at x to N).

Hereafter, V denotes an orthogonal G-representation. Let Ω ⊂ Rn ⊕ V be an
open bounded G-invariant subset (n ≥ 0 and G acts trivially on Rn). A continuous
equivariant map f : Rn ⊕ V → V (resp. a pair (f, Ω)) is called Ω-admissible
(resp. an admissible pair) if f(x) 6= 0 for all x ∈ ∂Ω. An equivariant homotopy
h : [0, 1] × (Rn ⊕ V ) → V is called Ω-admissible if ht := h(t, ·) is Ω-admissible for
all t ∈ [0, 1]. An orbit type (H) in Rn ⊕ V is called primary if dim W (H) = n.

For the background of the equivariant topology, we refer to [7, 19, 33].

2.2. Bi-Orientability. The notion of bi-orientability (originally introduced in [28],
also see [13]) is briefly discussed in this subsection, and will play an essential role
in our considerations.

For a finite-dimensional smooth orientable G-manifold M , we say that M admits
a G-invariant orientation if the G-action preserves an orientation of τ(M). It is
easy to show that every compact Lie group G, considered as a G-manifold with
the G-action defined by left translations (resp. right translations) admits a G-
invariant orientation. In this case we call this G-invariant orientation a left-invariant
orientation (resp. right-invariant orientation) on G.

Definition 1. (cf. [28, 13]). Let G be a compact Lie group. If G admits an
orientation which is both, left-invariant and right-invariant, we say that G is bi-
orientable.

It is not hard to show that G is bi-orientable if it is abelian, finite or has an odd
number of connected components (in particular, if G is connected) (cf. [28]). The
importance of the notion of bi-orientability rests on the following:

Proposition 1. (cf. [28]). Let M be a free smooth finite-dimensional G-manifold
and let M/G be connected. Assume M admits a G-invariant orientation. Let Mo

be a (fixed) connected component of M and put Go := {g ∈ G : gMo = Mo}. Then
M/G = Mo/Go and moreover, Mo/Go is an orientable manifold if and only if Go

is bi-orientable.

Remark and Definition 1. Observe that under the assumptions of Proposition
1, if Go is bi-orientable, then one can define in a canonical way the orientation
on M/G. To this end we need an additional notion. Let X be a smooth finite-
dimensional G-manifold and let (H) ∈ J (X) be such that W (H) is bi-orientable
and XH admits a W (H)-invariant orientation. Take x ∈ XH and fix an orientation
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on W (H) which is invariant with respect to both left and right translations. It
induces an orientation of the orbit W (H)(x) ⊂ XH . Choose an orientation on XH .
Let Sx be a slice (see [19]) to the orbit W (H)(x) in XH oriented in such a way that
the orientation in the slice followed by the orientation of the orbit W (H)(x) gives
the orientation of XH . This orientation on Sx is called positive.

Return to M/G from Proposition 1 and assume Go is bi-orientable. Fix an
orientation on Go, which is invariant with respect to both left and right translations
and choose an orientation on Mo. Following the above construction, for any x ∈ Mo

one may consider a slice Sx to the orbit Go(x) equipped with the positive orientation.
Obviously, the positive orientation on slices canonically defines the orientation on
Mo/Go = M/G.

We will adopt the following notations: Φk(G) stands for the set of all conjugacy
classes (H) in G such that dim W (H) = k; Φk(G, V ) denotes the set of all orbit
types (H) in Rk ⊕ V such that (H) ∈ Φk(G); Φ+

n (G) ⊂ Φn(G) stands for the set
of all conjugacy classes (H) such that W (H) is bi-orientable (we will also write
Φ+

0 (G) = Φ0(G)); Φ+
n (G,V ) ⊂ Φn(G,V ) denotes the set of all orbit types (H) in

Rn ⊕ V such that (H) ∈ Φ+
n (G); A+

n (G) stands for the free Z-module generated by
Φ+

n (G); W (H)o is the subgroup of W (H) composed of all g such that g(RH)o =
(RH)o, where (RH)o stands for some (fixed) connected component of (Rn ⊕ V )H ;
Φ̃+

n (G,V ) ⊂ Φn(G,V ) denotes the set of all orbit types (H) such that W (H)o is
bi-orientable.

Definition 2. An orbit type (H) ∈ Φ+
n (G,V ) is called bi-orientable in Φn(G,V ),

and an orbit type (H) ∈ Φ̃+
n (G,V ) \ Φ+

n (G,V ) is called relatively bi-orientable
in Φn(G, V ). All other orbit types in Φn(G,V ) are called non-bi-orientable and
denoted by Φ̃−n (G,V ).

2.3. Regular Normal Approximations. Many theoretical problems of the equi-
variant homotopy classification of Ω-admissible maps can be reduced to the follow-
ing ones: (i) how to separate zeros having different orbit types? (ii) how to choose
representatives of equivariant homotopy classes admitting reasonable transversal-
ity/regularity conditions? The first problem gives rise to the so-called normality
condition. The second problem is more delicate: the equivariance “gets in conflict”
with regularity (for instance, due to the restriction requirements on the dimensions
of the orbits of zeros). Therefore, one has to look for special transversality require-
ments which are compatible with such techniques as the induction over orbit types
and the suspension operation (for a general discussion related to different G-actions
on a domain and target we refer to [25, 18, 6]).

Definition 3. (cf. [13, 24, 25]). Let V be an orthogonal G-representation, Ω ⊂
Rn ⊕ V an open bounded invariant set and f : Rn ⊕ V → V an Ω-admissible G-
equivariant map. We say that f is normal in Ω, if for every α = (H) ∈ J (Ω) and
every x ∈ f−1(0)∩ΩH , the following α-normality condition at x is satisfied: There
exists δx > 0 such that for all w ∈ νx(Ωα) with ‖w‖ < δx,

f(x + w) = f(x) + w = w.

Similarly, an Ω-admissible G-homotopy h : [0, 1]× (Rn⊕V ) → V is called a normal
homotopy in Ω, if for every α = (H) ∈ J (Ω) and for every (t, x) ∈ h−1(0)∩ ([0, 1]×
ΩH), the following α-normality condition at (t, x) is satisfied: There exists δ(t,x) > 0
such that for all w ∈ ν(t,x)([0, 1]× Ωα) with ‖w‖ < δ(t,x),

h(t, x + w) = h(t, x) + w = w.
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Definition 4. (cf. [13, 24, 25]). Let Ω ⊂ Rn ⊕ V be an open bounded invariant
set and f : Rn ⊕ V → V an Ω-admissible G-equivariant map. We say that f is a
regular normal map in Ω if

(i) f is of class C1;
(ii) f is normal in Ω;
(iii) for every (H) ∈ J (f−1(0) ∩Ω), zero is a regular value of fH := f |ΩH

: ΩH →
V H .

Similarly, an Ω-admissible G-equivariant homotopy h : [0, 1]× (Rn ⊕ V ) → V is
called a regular normal homotopy in Ω if

(i) h is of class C1;
(ii) h is a normal homotopy in Ω;
(iii) for every (H) ∈ J (h−1(0)∩ [0, 1]×Ω), zero is a regular value of the maps hH ,

(h0)H and (h1)H , where hH := h|[0,1]×ΩH
, (h0)H := h0|ΩH

, (h1)H := h1|ΩH
.

We complete this section with an important property of regular normal maps.
We first start with the following simple observation:

Proposition 2. (cf. [1], [25]) Let Ω ⊂ Rn ⊕ V be an open bounded invariant set,
and f : Rn⊕ V → V an Ω-admissible G-equivariant map being regular and normal.
Then for every x ∈ f−1(0) ∩ Ω we have dim (W (Gx)) ≤ n.

We have the following regular normal approximation property:

Proposition 3. (cf. [24], also see [25, 35, 26]). Let Ω ⊂ Rn⊕V be an open bounded
invariant set and f : Rn ⊕ V → V an Ω-admissible G-equivariant map. Then for
every η > 0 there exists a regular normal (in Ω) G-equivariant map f̃ : Rn⊕V → V

such that supx∈Ω ‖f̃(x) − f(x)‖ < η. Similarly, if h : [0, 1] × (Rn ⊕ V ) → V
is an Ω-admissible G-equivariant homotopy, then for every η > 0 there exists a
regular normal (in Ω) G-equivariant homotopy h̃ : [0, 1] × Rn ⊕ V → V such that
sup(t,x)∈[0,1]×Ω ‖h̃(t, x)− h(t, x)‖ < η. In addition, if h0 and h1 are regular normal
in Ω, then h̃0 = h0 and h̃1 = h1.

2.4. Numbers n(L, H). To compute the primary G-degree via a reduction to the
S1-degree, the following quantity n(L,H) is needed for the Recurrence Formula (see
Proposition 13):

Definition 5. (cf. [15, 25]) Given two closed subgroups L ⊂ H of a compact Lie
group G, we define the set

N(L,H) =
{

g ∈ G : gLg−1 ⊂ H
}

.

and we put

n(L,H) =
∣∣∣∣
N(L,H)
N(H)

∣∣∣∣ , (3)

where the symbol |X| stands for the cardinality of the set X.

Remark 1. It is easy to check that N(L, H) is a compact subset of G, but it is not
a subgroup of G in general. Also, the space N(L,H)/H := {Ha : a ∈ N(L,H)} is
a right W (L)-space. Indeed, since a ∈ N(L,H) implies aLa−1 ⊂ H, for every l ∈ L
there exists h ∈ H such that al = ha. Then for g ∈ N(L) and g′ = lgl′−1, l and
l′ ∈ L, we have

(ag)L(ag)−1 = a(gLg−1)a−1 = aLa−1 ⊂ H,

Hag′ = Halgl′−1 = Hhagl′−1 = Hagl′−1 = Hh′ag = Hag,
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where h′ ∈ H is such that (ag)l′−1 = h′(ag). Consequently, the right action of W (L)
on N(L,H)/H is well-defined. Note that the correspondence Ha 7→ a−1Hdefines
a W (L)-equivariant homeomorphism from N(L,H)/H to (G/H)L(cf. Cor. 1.68 in
[19]).

Proposition 4. Let L ⊂ H be two closed subgroups of a compact Lie group G such
that dim W (L) = dim W (H) = k. Then the number n(L,H) is finite and the set
N(L,H)/H is a closed k-dimensional submanifold of G/H.

Proof: Since the right W (L)-space N(L,H)/H is equivariantly homeomorphic
to the left W (L)-space (G/H)L, which, by Cor. 5.7 in [7], is composed of a finite
number of W (L)-orbits, it follows that N(L, H)/H consists also of a finite number
of W (L)-orbits, with each one homeomorphic to W (L)/Lo for a finite collection of
subgroups Lo ⊂ W (L). Since for each of these Lo,

dim
(

W (L)
Lo

)
≤ dim W (L) = k,

we obtain the following estimation of the (covering) dimension of N(L, H)/H:

dim
(

N(L,H)
H

)
≤ k.

On the other hand, the group W (H) acts freely on the space N(L,H)/H. Therefore,
by Gleason Lemma, the natural projection

N(L,H)
H

−→ N(L,H)/H

W (H)
=

N(L,H)
N(H)

is a locally trivial fiber bundle with the fiber W (H). We note that the action of
W (H) on G/H is smooth, hence the action of W (H) on N(L,H)/H is also smooth.
Thus, we have

k ≥ dim
(

N(L, H)
H

)
= dim

(
N(L,H)
N(H)

)
+ dim W (H)

= dim
(

N(L, H)
N(H)

)
+ k,

so dim
(

N(L,H)
N(H)

)
= 0. Since N(L,H)/H is composed of a finite number of con-

nected components (notice that W (L) and W (H) have finitely many connected
components), N(L,H)/N(H) has also finitely many connected components, and
consequently it is finite, which proves that the number n(L,H) is finite. In partic-
ular, we obtain that the set N(L,H)/H is composed of a finite number of W (H)-
orbits, which are all submanifolds of G/H. Therefore the set N(L,H)/H is a closed
submanifold of G/H. ¤

The number n(L,H) defined for two closed subgroups of G with dim W (H) =
dim W (L) has a very simple geometric interpretation provided by the following:

Lemma 1. Let L and H be two closed subgroups of a compact Lie group G such
that L ⊂ H and dim W (L) = dim W (H). Then n(L,H) represents the number of
different subgroups H̃ in the conjugacy class (H) such that L ⊂ H̃. In particular,
if V is an orthogonal G-representation such that (L), (H) ∈ J (V ), L ⊂ H, then
V L ∩ V(H) is a disjoint union of exactly m = n(L,H) sets of VHj , j = 1, 2, . . . ,m,
satisfying (Hj) = (H).
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Proof: Notice

N(L,H) =
{

g ∈ G : gLg−1 ⊂ H
}

=
{

g ∈ G : L ⊂ gHg−1
}

.

Let H be the set composed of all subgroups H ′, conjugate to H such that L ⊂ H ′,
and define a map b : N(L, H) → H by b(g) = gHg−1, g ∈ N(L,H). Consider
N(L,H) as the left N(H)-space. It is clear that b is constant on N(H)-orbits,
thus there exists a factorization b : N(L,H)/N(H) → H. It is easy to check that
b is one-to-one and onto. Assume now that V is an orthogonal G-representation,
(L), (H) ∈ J (V ), and L ⊂ H. Then VH ⊂ V L and gVH ⊂ V L if and only if
g ∈ N(L,H). On the other hand, gVH = VH if and only if g ∈ N(H). Therefore,
the conclusion follows. ¤
Notation: In what follows, in the case of two orbit types (L) and (H) such that
(L) ≤ (H), we will assume that the number n(L,H) corresponds to representatives
L and H such that L ⊂ H. In the case the orbit types (L) and (H) are not
comparable with respect to the partial order relation, we will simply put n(L,H) =
0.

3. Primary Equivariant Degree in the Case of n Free Parameters: An
Axiomatic Approach.

3.1. Equivariant Extensions and Fundamental Domains. As mentioned in
the Introduction, the equivariant degree “measures” homotopy obstructions for an
equivariant map to have equivariant extensions without zeros on a set composed of
several orbit types. Therefore, in this subsection we briefly discuss the following
problem:

Assume V is a finite-dimensional G-representation, Y := V \ {0}, X is a
G-space and B ⊂ X is a closed invariant subset in X. Let f : B → Y be
an equivariant map. Under which conditions, does there exist an equivariant
extension of f over X?
Using the induction over orbit types (see, for instance, [33]), the above problem

can be reduced to the following one:
Let X, B, Y and f be as above and assume that G acts freely on X \B. Find
a G-equivariant extension of f over X.
The key to the extension results is the following notion:

Definition 6. Let a topological group Q act on a finite-dimensional metric space
X. Let D0 ⊂ X be open in its closure D. Then D is said to be a fundamental
domain of the Q-action on X if the following conditions are satisfied:

(i) Q(D) = X;
(ii) g(Do) ∩ h(Do) = ∅ for g, h ∈ Q, g 6= h;
(iii) X \Q(Do) = Q(D \Do);
(iv) dim D = dimX/Q, dim (D \ Do) < dim D, dim Q(D \ Do) < dim X, where

“dim” stands for the covering dimension.

Proposition 5. (see [25]) Let G be a compact Lie group, and let X be a finite-
dimensional metric G-space on which G acts freely. Then a fundamental domain
D ⊂ X always exists.

Let us return to the equivariant extension problem (recall that we assume X \B
is a free G-subspace). By Proposition 5, there exists a fundamental domain D(0) ⊂
L(0) := X \ B. Let D

(0)
o be the corresponding open subset of D(0) satisfying the
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conditions (ii)—(iv) of Definition 6, and let X(1) := B ∪ G(D(0) \ D
(0)
o ), L(1) :=

X(1) \B. Now, by applying Proposition 5 to X(1) \B, we obtain X(2) and L(2), etc.
Consequently, by following the same steps, we obtain a closed finite G-invariant
filtration

X = X(0) ⊃ X(1) ⊃ X(2) ⊃ · · · ⊃ X(r) = B.

Proposition 6. (see [25]) Under the above assumptions, any G-equivariant map
f : B → Y extends equivariantly over X if for all i ≥ 1 any equivariant map
X(i) → Y has a (non-equivariant) extension over X(i) ∪D(i−1).

3.2. Regular Fundamental Domains. Proposition 6 reduces the equivariant ex-
tension problem to the non-equivariant one. To make this scheme compatible with
an appropriate equivariant degree theory (in particular, to have the Hopf property
(see statements (P8)* and (P8) from Proposition 8 and Remark 3), a more careful
analysis of the geometry of a fundamental domain is needed.

Definition 7. Under the notations of Definition 6, assume there exists an open
contractible subset T0 ⊂ X/Q such that the natural projection p : X → X/Q induces
the homeomorphism p|D0 : D0 → T0. Then D is called a regular fundamental
domain.

Theorem 2. Let G be a compact Lie group. For any smooth finite-dimensional free
G-manifold X such that X/G is connected, there always exists a regular fundamental
domain D.

Proof: Since every smooth connected manifold admits a (smooth) triangulation
(cf. [34], p. 124-135), the proof is essentially based on the following:

Lemma 2. Let M be a smooth connected n-dimensional manifold (in general non-
compact), and let S :=

{
sk

i : i ∈ Jk, k = 0, 1, 2, . . . , n
}

be a smooth triangulation

of M , where the sets of indices Jk are countable. Then there always exists a subset
To of M satisfying the following conditions:

(i) To is open in M ;
(ii) To is dense in M ;
(iii) To is contractible;
(iv) M \ To is contained in the n− 1-dimensional skeleton.

Proof: For a given k-dimensional simplex sk, we denote by
◦
sk its interior. We call

the n-dimensional simplices in S sn
1 , sn

2 , . . . and begin our recursive definition with
T1 :=

◦
sn
1 and S1 : S \ {sn

1}.
Assume now that Tm and Sm ⊂ S are already constructed with Tm being open

in M and contractible. If Sm still contains n-dimensional simplices, we choose the
minimal jm+1 ∈ N such that

(a) sn
jm+1

∈ Sm;
(b) sn

jm+1
∩ Tm contains an (n− 1)-dimensional simplex sn−1

km+1
∈ Sm.

We define Tm+1 := Tm ∪ ◦
sn−1

km+1 ∪
◦
sn

jm+1 and Sm+1 := Sm \ {sn
jm+1

, sn−1
km+1

}. Clearly,
Tm+1 is open in M and contractible.

Let To :=
⋃

m Tm and So :=
⋂

m Sm. By construction, To is open and (by
connectedness of M) dense in M . Also, So = M \ To is a subset of the n − 1-
dimensional skeleton of S.
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In order to show that To is contractible, notice that To is a CW -complex and for
every continuous map ϕ : Sk → To, k = 0, 1, 2, . . . , the image ϕ(Sk) is compact, so
it is entirely contained in some of the contractible sets Tm. Consequently, ϕ is null-
homotopic, hence πk(To) = 0 for all k = 0, 1, 2, . . . . Therefore, To is contractible
(see [31], Cor. 24, Chap. 7, Sec. 6) and Lemma 2 is proved. ¤
Continuation of the proof of Theorem 2. Let p : X → X/G be the natural
projection. To complete the proof of Theorem 2, we take the set To ⊂ M := X/G
provided by Lemma 2 and consider the restriction of p over p−1(To). The fiber
bundle p : p−1(To) → To, by contractibility of To, is trivial. Fix a trivialization
ψ : p−1(To) → G × To. We put Do := ψ−1({1} × To). It is clear (cf. [25]) that
D := Do is the regular fundamental domain.

The proof of Theorem 2 is complete. ¤
3.3. Primary Equivariant Degree: Construction. Let G be a compact Lie
group, V an orthogonal G-representation, Ω ⊂ Rn ⊕ V an open bounded invariant
subset. Recall (see Definition 2) that Φ̃+

n (G,V ) ⊂ Φn(G,V ) denotes the set of all
bi-orientable and relatively bi-orientable orbit types, and Φ̃−n (G,V ) ⊂ Φn(G, V )
denotes the set of all non-bi-orientable orbit types.

Define
Ãn(G,V ) =

⊕

(H)∈eΦ+
n (G,V )

Z⊕
⊕

(H)∈eΦ−n (G,V )

Z2.

Take an Ω-admissible G-equivariant map f : Rn ⊕ V → V and assume that
it is regular and normal (in particular, (f−1(0) ∩ ΩH) ∩ (f−1(0) ∩ ΩK) = ∅ for
(H) 6= (K)). Take (H) ∈ Φn(G,V ) and put fH = f|ΩH

.
Assume that (H) ∈ Φ̃+

n (G,V ). Then (see Proposition 1), the manifold ΩH/W (H)
is orientable. Fix an orientation of W (H) which is both left-invariant and right-
invariant. Also, by fixing an orientation on V H , we obtain the orientation on
Rn⊕V H and thus on ΩH . Take a canonical orientation on ΩH/W (H) described in
Remark and Definition 1.

Choose a regular fundamental domain D on ΩH provided by Theorem 2 with
To = p(Do) such that f−1

H (0)∩(D\Do) = ∅. Notice that under the assumption that
f is regular normal, the set p(f−1

H (0)∩Do) is finite (i.e. f−1
H (0) is composed of a finite

number of W (H)-orbits), therefore, it is always possible to construct To in such a
way that p(f−1

H (0)) ⊂ To. We call the homeomorphism ξ := (p|Do
)−1 : To → Do

the lifting homeomorphism. Then we can define the (H)-component of the primary
degree by

nH = nH(f) := deg(fH ◦ ξ, To) (4)
(here deg stands for the (local) Brouwer degree with respect to zero).

Similar to the non-equivariant case, if (H) ∈ Φ̃−n (G,V ), one defines the (H)-
component nH(f) of the primary equivariant degree as the corresponding residue
class modulo 2 (following literally the above construction).

Remark 2. If we choose an orientation on Do in such a way that ξ preserves it,
then deg(fH , Do) is correctly defined and coincides with deg(fH ◦ ξ, To). In this
sense one can think of nH(f) as a “degree of fH on a fundamental domain D.”

Definition 8. We define the complete primary degree of an Ω-admissible G-equivariant
regular normal map f : Rn ⊕ V → V to be an element G-Deg ∗(f, Ω) ∈ Ãn(G, V )
with

G-Deg ∗(f, Ω) = nH1(H1) + nH2(H2) + · · ·+ nHr (Hr), (5)
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where nHi
is defined by (4) if (Hi) ∈ Φ̃+

n (G,V ) (taken modulo 2 if W (H)o is non-
bi-orientable). If g : Rn ⊕ V → V is a G-equivariant Ω-admissible map (in general,
not necessarily normal nor regular in Ω), choose a regular normal Ω-admissible map
f : Rn ⊕ V → V equivariantly homotopic to g by an Ω-admissible homotopy (see
Proposition 3) and put

G-Deg ∗(g, Ω) = G-Deg ∗(f, Ω). (6)

Clearly, relatively bi-orientable orbit types a priori depend on the representation
V (cf. Definition 2, and note there, the connected component (RH)o depends on
the G-action on V , thus the subgroup W (H)o which fixes (RH)o depends on the
representation V ). Therefore, it seems reasonable to exclude them from a more
“workable” definition of the primary equivariant degree. Also, we exclude the non-
bi-orientable orbit types Φ̃−n (G,V ) for the computational reason, and we define the
primary equivariant degree of f to be an element of A+

n (G) given by

G-Deg (f, Ω) = nH1(H1) + nH2(H2) + · · ·+ nHm(Hm), (7)

where nHi
(Hi) are the components of G-Deg ∗(f, Ω) corresponding to the (Hi) ∈

Φ+
n (G).
In other words, the primary equivariant degree G-Deg (f, Ω) is the restriction of

the complete primary degree G-Deg ∗(f, Ω) to the components corresponding to the
bi-orientable orbit types.

3.4. Primary Equivariant Degree: Justification.

Proposition 7. Let G be a compact Lie group, Ω ⊂ Rn ⊕ V an open bounded
invariant subset and f : Rn⊕V → V an Ω-admissible G-equivariant map. Then the
complete primary degree (see (4)—(6)) (as well as the primary equivariant degree
(7)) is well-defined.

Proof: (i) We first show that formula (4) is independent of a choice of a regular
fundamental domain D. Suppose that D′ is another regular fundamental domain
such that f−1

H (0) ∩ (D′ \ D′
o) = ∅, p(D′

o) = T ′o with the lifting homeomorphism
ξ′ : T ′o → D′

o. By applying the additivity property of the Brouwer degree, we
can assume, without loss of generality, that f−1

H (0) is composed of a single orbit
W (H)(xo) and put p(xo) = yo. Suppose that Bo ⊂ To ∩ T ′o is a contractible
neighborhood of yo, put Eo = ξ(Bo), E′

o = ξ′(Bo) and we assume xo ∈ Eo. Then,
by excision property of the degree,

deg(fH ◦ ξ, To) = deg(fH ◦ ξ, Bo), deg(fH ◦ ξ′, T ′o) = deg(fH ◦ ξ′, Bo).

We will show that
deg(fH ◦ ξ, Bo) = deg(fH ◦ ξ′, Bo). (8)

Case 1. xo ∈ Eo ∩ E′
o. Observe that ξ|Bo

and ξ′|Bo
are sections of the (trivial)

bundle p : p−1(Bo) → Bo, thus there exists a continuous map µ : Eo → W (H) such
that for every x ∈ Eo, we have

Ψ(x) := µ(x)x ∈ E′
o

and Ψ : Eo → E′
o is a homeomorphism since so are ξ|Bo

and ξ′|Bo
. In particular,

µ(xo) = 1 and Eo is contractible. Therefore, there exists a homotopy µt of µ with
a constant map µo(x) ≡ 1. Put Ψt(x) := µt(x)x, i.e. Ψt is a homotopy between Ψ
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and Id|Eo
. Observe that ξ′ = Ψ ◦ ξ, therefore, by the homotopy invariance of the

degree, we have

deg(fH ◦ ξ′, Bo) = deg(fH ◦Ψ ◦ ξ, Bo) = deg(fH ◦Ψt ◦ ξ, Bo) = deg(fH ◦ ξ, Bo).

Case 2. xo 6∈ Eo ∩E′
o. In this case, there exists g ∈ W (H)o such that gxo =: x′o ∈

E′
o. Put D̃o := g(Do). Clearly, Do and D̃o have a natural smooth structure and, by

the smoothness of the orbit map, g : Do → D̃o is also smooth. Since W (H)o acts

freely, D̃ := D̃o is a fundamental domain with a lifting homeomorphism ξ̃ = g ◦ ξ,
and we put Ẽo = g(Eo). By the Sard-Brown theorem, we can assume that yo is a
regular point of the map fH ◦ ξ. Since fH is W (H)-equivariant, we have

fH ◦ ξ = fH ◦ g−1 ◦ g ◦ ξg−1 ◦ fH ◦ g ◦ ξ = g−1 ◦ fH ◦ ξ̃,

i.e.
g ◦ fH ◦ ξ = fH ◦ ξ̃,

which implies that yo is also a regular point of fH ◦ ξ̃. Since the action of W (H)
preserves the orientation of the slice, we obtain immediately

deg(fH ◦ ξ, Bo) = deg(fH ◦ ξ̃, Bo).

Since x′o ∈ E′
o ∩ Ẽo, the equality (8) follows from the Case 1.

(ii) We show that the formula (4) does not depend on a choice of a representative
f . Take two regular normal G-equivariant maps f0 and f̃1, which are equivariantly
homotopic by an Ω-admissible homotopy Ψ : [0, 1] × Rn ⊕ V → V with Ψ0 = f0

and Ψ1 = f̃1 (where Ψt := Ψ(t, ·)). Let (H) ∈ Φn(G,V ) and choose D1 to be
a regular fundamental domain for the W (H)-action on ΩH such that (f0)−1

H (0) ∩
(D1 \ D1

o) = ∅. Denote by ξ1 := (p|D1
o
)−1 : T 1

o → D1
o the corresponding lifting

homeomorphism. Then, by continuity of Ψ, there exists 0 < t̃1 ≤ 1 such that⋃
t∈[0,et1)(Ψt)−1

H (0) ∩ (D1 \ D1
o) = ∅. Since for every t1 ∈ [0, t̃1), the map Ψt,

t ∈ [0, t1], is a regular normal homotopy between f0 and f1 := Ψt1 , it follows from
the homotopy property of the local Brouwer degree that

deg((f0)H ◦ ξ1, T 1
o ) = deg((f1)H ◦ ξ1, T 1

o ).

By the compactness of [0, 1], there exists a (finite) partition 0 < t1 < · · · <
tk = 1 and fundamental domains D1, D2, . . . , Dk with the corresponding lifting
homeomorphisms ξi := (p|Di

o
)−1 : T i

o → Di
o, such that

⋃

t∈[ti−1,ti]

(Ψt)−1
H (0) ∩ (Di \Di

0) = ∅.

Consequently, by induction, we obtain

deg((f0)H ◦ ξ1, T 1
o ) = deg((f1)H ◦ ξ1, T 1

o ) = · · · = deg((fk)H ◦ ξk, T k
o ),

which implies
deg((f0)H ◦ ξ1, T 1

o ) = deg((fk)H ◦ ξk, T k
o ).

Proposition 7 is proved.
¤
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3.5. Primary Equivariant Degree: Basic Properties. The complete primary
degree and the primary equivariant degree defined above satisfy all the reasonable
properties required from any reasonable “degree theory.” To see that, we need the
following:

Definition 9. Let G be a compact Lie group, V an orthogonal G-representation
and f : Rn ⊕ V → V a regular normal map such that f(xo) = 0 with Gxo = H and
(H) ∈ Φn(G,V ). Let UG(xo) be a G-invariant tubular neighborhood around G(xo)
such that f−1(0) ∩ UG(xo) = G(xo). Then f is called a tubular map around G(xo).
In addition, if (H) ∈ Φ̃+

n (G,V ) and Sxo
is a positively oriented slice to W (H)(xo) in

Rn ⊕ V H (cf. Remark and Definition 1), then we call nxo
= sign det DfH(xo)|Sxo

the local index of f at xo in UG(xo) (here fH := f |ΩH and D stands for the
differential). In the case (H) ∈ Φ̃−n (G, V ), we simply put nxo

= 1 ∈ Z2.

Proposition 8. (cf. [13, 18]). Let G, V , Ω and f be as in Proposition 7. Then
the complete primary degree defined by (4)—(6) satisfies the following properties:

(P1)* (Existence) If G-Deg ∗(f, Ω) =
∑

(H) nH(H) is such that nHo 6= 0 (taken
mod 2 in the case (Ho) ∈ Φ̃−n (G,V )) for some (Ho) ∈ Φn(G,V ), then there
exists x ∈ Ω with f(x) = 0 and Gx ⊃ Ho.

(P2)* (Additivity) Assume that Ω1 and Ω2 are two G-invariant open disjoint sub-
sets of Ω such that f−1(0) ∩ Ω ⊂ Ω1 ∪ Ω2. Then

G-Deg ∗(f, Ω) = G-Deg ∗(f, Ω1) + G-Deg ∗(f, Ω2).

(P3)* (Homotopy) Suppose h : [0, 1]×Rn⊕V → V is an Ω-admissible G-equivariant
homotopy. Then

G-Deg ∗(ht, Ω) = const
(here ht := h(t, ·, ·), t ∈ [0, 1]).

(P4)* (Suspension) Suppose that W is another orthogonal G-representation and let
U be an open, bounded G-invariant neighborhood of 0 in W . Then

G-Deg ∗(f × Id, Ω× U) = G-Deg ∗(f, Ω).

(P5)* (Normalization) Suppose f is a tubular map around G(xo), H := Gxo ,
(H) ∈ Φn(G,V ), with the local index nxo of f at xo in a tubular neighborhood
UG(xo). Then

G-Deg ∗(f, UG(xo)) = nxo(H).

(P6)* (Elimination) Suppose f is normal in Ω and ΩH ∩ f−1(0) = ∅ for every
(H) ∈ Φn(G,V ). Then

G-Deg ∗(f, Ω) = 0.

(P7)* (Excision) If f−1(0) ∩ Ω ⊂ Ω0, where Ω0 ⊂ Ω is an open invariant subset,
then

G-Deg ∗(f, Ω) = G-Deg ∗(f, Ω0).
(P8)* (Hopf property) Suppose that Ω ⊂ Rn ⊕ V is an open invariant subset

such that ΩH/W (H) is connected for all (H) ∈ Φn(G,V ) and ΩK = ∅ for
all (K) ∈ Φk(G,V ) with k < n. Let f, g : Rn ⊕ V → V be two Ω-admissible
G-equivariant maps such that

G-Deg ∗(f, Ω) = G-Deg ∗(g, Ω).

Then f and g are G-equivariantly homotopic by an Ω-admissible homotopy.
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Proof: (P1)*: Assume f is regular normal and choose a regular fundamental
domain D (together with the lifting homeomorphism ξ : To → Do (see subsection
3.3)), for the W (Ho)-action on ΩHo . By assumption, 0 6= nHo = deg(fHo ◦ ξ, To).
Then, by the existence property of the (local) Brouwer degree, there exists yo ∈ To

such that fHo(ξ(yo)) = 0, i.e., fHo(xo) = 0, where xo = ξ(yo) ∈ Do ⊂ ΩHo , so that
Gxo

= Ho.
In the general case, take a sequence {fn} of G-equivariant Ω-admissible regular

normal maps such that

sup
x∈Ω

‖fn(x)− f(x)‖ <
1
n

.

Since for n sufficiently large fn is G-equivariantly homotopic to f , it follows that
G-Deg ∗(f, Ω) = G-Deg ∗(fn, Ω). Since fn is normal, we obtain f−1

n (0)∩ΩHo
6 ∅, thus

there is a sequence {xn} ⊂ ΩHo
such that fn(xn) = 0 for each n sufficiently large.

We can assume without loss of generality that xn → x as n → ∞ and therefore
f(x) = limn→∞ fn(xn) = 0. Since V Ho is closed, x ∈ V Ho and consequently
Gx ⊃ Ho.

(P2)* — (P4)*, (P7)*: To establish these properties, one can use the same idea
as above: for a regular normal f (resp. h) the statements follow from (4), (5) and
appropriate properties of the local Brouwer degree. In the general case it suffices
to take regular normal approximations sufficiently closed to f (resp. h) and use the
standard compactness argument.

(P5)*: Follows from the regular value definition of the Brouwer degree.
(P6)*: Follows from the definition of the primary equivariant degree.
(P8)*:

Step 1. Local homotopies around zeros: Denote by Φn,0(G, V ) the set
of all the orbit types occurring in f−1(0) ∩ Ω. By definition of deg (f, Ω) and
Proposition 3, without loss of generality, one can assume that (i) f and g are
regular normal and (ii) Φn,0(G,V ) is also the set of all the orbit types occurring
in g−1(0)∩Ω. Further, by assumption, f and g only have zeros of primary orbit
types. For each (H) ∈ Φn,0(G,V ), choose a regular fundamental domain D on
ΩH provided by Theorem 2 with To = p(Do) such that f−1

H (0)∩ (D \Do) = ∅
and g−1

H (0) ∩ (D \ Do) = ∅, i.e. p(f−1
H (0)) ∪ p(g−1

H (0)) ⊂ To. Notice that
To is contractible (in particular, connected). Thus, by the Hopf Property of
Brouwer degree,

deg(fH ◦ ξ, To) = deg(gH ◦ ξ, To)

implies that fH is homotopic to gH by a certain homotopy hH on ΩH . This
homotopy can be extended, in a standard way (cf. [25, 33]), to a G-equivariant
homotopy between f and g on Ω(H). By Proposition 3, this homotopy can also
be assumed to be regular and normal. Then, by using the normality condition,
such a homotopy can be extended to an invariant neighborhood of Ω(H), say
NΩ(H) (denote this homotopy by hH). Apply the same argument to each
(H) ∈ Φn,0(G,V ) and choose for any (H) an invariant closed neighborhood
NH ⊂ NΩ(H) satisfying the conditions: (i) NH contains zeros of f and g of
orbit type (H); (ii) NH ∩NL = ∅ as (H) 6= (L). The collection of the “local”
homotopies {hH|NH

} for all (H) ∈ Φn,0(G,V ), gives rise to the equivariant
homotopy between f and g on the closed invariant subset N :=

⊔
NH .

Step 2. Extension of local homotopies: Based on the local homotopies,
define a map h on A := ({0}×Ω)∪ ([0, 1]×N)∪ ({1}×Ω) by letting h(0, ·) =
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f(·), h(1, ·) = g(·) and h(t, x) = hH(t, x) for (t, x) ∈ [0, 1] × N and x of
orbit type (H). By construction, h is continuous G-equivariant. Using the
equivariant Kuratowski-Dugundji Theorem (see, for instance, [25], Theorem
1.3), extend h equivariantly and continuously over [0, 1] × Ω and denote this
extension by ĥ. In general, ĥ may have new zeros.
Step 3. Correcting ĥ via Urysohn function: Put Â := ĥ−1(0) \ A (i.e.
the set of the “new zeros” of ĥ). We claim that Â is a closed subset in [0, 1]×Ω.
Indeed, take a sequence {(tn, xn)} from Â, and suppose {(tn, xn)} → (to, xo)
in [0, 1]×Ω. By continuity of ĥ, we have ĥ−1(0) is a closed subset in [0, 1]×Ω,
so (to, xo) ∈ ĥ−1(0). By the normality of h, one has: (to, xo) 6∈ A, i.e. Â is
closed. By construction, Â ∩ A = ∅, thus there exists an invariant Urysohn
function η : [0, 1] × Ω → [0, 1] with η(A) = 1 and η(Â) = 0. Now, define a
new map h̃ on [0, 1] × Ω by: h̃(t, x) = ĥ(t · η(t, x), x). It is easy to see that
h̃−1(0) = h−1(0), thus h̃ is a required homotopy between f and g.

¤
Remark 3. One can easily reformulate Proposition 8 for the primary equivariant
degree defined by (7). To this end, one should (i) replace G-Deg ∗ by G-Deg through
the whole statement; (ii) replace Φn(G,V ) by Φ+

n (G) in the properties (P1)∗, (P5)∗

and (P6)∗; (iii) require, in addition, ΩK = ∅ for all (K) ∈ Φn(G,V ) \Φ+
n (G) in the

property (P8)∗. In what follows, we will refer to the corresponding properties of
the primary equivariant degree as to (Pj) instead of (Pj)∗, j = 1, . . . , 8.

3.6. Axiomatic Approach. The following statement provides an axiomatic ap-
proach to the complete primary equivariant degree and the primary degree.

Proposition 9. Let G be a compact Lie group.
(i) There exists a unique function G-Deg ∗ assigning to each admissible pair (f, Ω)

an element G-Deg ∗(f, Ω) =
∑

nH(H) in Ãn(G,V ), which satisfies properties
(P1)*—(P6)* listed in Proposition 8;

(ii) There exists a unique function G-Deg assigning to each admissible pair (f, Ω)
an element G-Deg (f, Ω) =

∑
nH(H) in A+

n (G), which satisfies properties
(P1)—(P6) (see Proposition 8 and Remark 3).

Proof: We only prove the statement (i), since the statement (ii) follows similarly.
The existence part of Proposition 9 is provided by Propositions 7 and 8. To prove
the uniqueness, take an arbitrary admissible pair (f, Ω). By the homotopy property,
f can be assumed to be regular normal. By additivity (i.e. excision) and elimination
properties, we can assume that Ω∩ f−1(0) contains points of the orbit types (H) ∈
Φn(G,V ). Since f is regular normal, the set Ω ∩ f−1(0) is composed of a finite
number of G-orbits. Take tubular neighborhoods isolating the above orbits (this
is doable, since we have finitely many zero orbits). By the additivity, the primary
degree of (f, Ω) is equal to the sum of degrees of restrictions of f to the tubular
neighborhoods. By the elimination axiom, the contribution of the secondary orbit
types, is equal to zero. Finally, by the normalization property, the remaining orbits
lead to “local indices,” which determine uniquely the value of the complete primary
degree G-Deg ∗(f, Ω). ¤

4. Axiomatic Definition of S1-degree. According to the general scheme out-
lined in the Introduction, from now on we will assume that n = 1.
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In this and next sections, we will formulate the axioms determining the primary
S1-degree and prove that these axioms indeed uniquely define it.

Recall that any abelian compact Lie group is bi-orientable. Denote by A1(S1) :=
A+

1 (S1) the free Z-module generated by the symbols (Zk), k = 1, 2, 3, . . . . Consider
an orthogonal S1-representation V , an open S1-invariant bounded set Ω ⊂ R⊕ V ,
and an Ω-admissible S1-equivariant map f : R ⊕ V → V . Then (cf. (4)-(7)) the
primary degree S1-Deg (f, Ω), which we will simply call S1-equivariant degree, is an
element in A1(S1) and can be written as

S1-Deg (f, Ω) = nk1(Zk1) + nk2(Zk2) + · · ·+ nkr
(Zkr

), (9)

where nki
∈ Z.

4.1. Basic Maps and m-Folding. We begin our exposition with two construc-
tions playing a substantial role in our considerations.

(i) We denote by Vk, k = 1, 2, 3, . . . , the (non-trivial) k-th real irreducible rep-
resentation of the group S1, i.e. Vk is the space R2 = C with the S1-action
given by γz := γk · z, γ ∈ S1, z ∈ C, and define the set

kΩ :=
{

(t, z) ∈ R⊕ Vk : |t| < 1,
1
2

< |z| < 2
}

(10)

and b : R⊕ Vk → Vk by

b(t, z) :=
(
1− |z|+ it

) · z, (t, z) ∈ R⊕ Vk, (11)

where “·” denotes the complex multiplication in Vk = C. It is clear that
the map b is S1-equivariant and kΩ-admissible. We call the map b the S1-
basic map on kΩ (or simply basic map if it is clear from the context what
representation is involved).

(ii) Further, for every integer m = 1, 2, 3, . . . , we define the homomorphism θm :
S1 → S1 (called m-folding), by θm(γ) = γm, γ ∈ S1, and define the induced
by θm homomorphism Θm : A1(S1) → A1(S1), by

Θm(Zk) := (Zkm), k = 1, 2, 3, . . . ,

i.e. Θm(Zk) = (θ−1
m (Zk)), where (Zk) are the free generators of A1(S1).

Notice that if f : R⊕V → V is an Ω-admissible S1-equivariant map for a certain
open bounded S1-invariant subset Ω ⊂ R⊕V , then for every integer m = 1, 2, 3, . . . ,
we can, first, define the associated m-folded S1-representation m(V ), which is the
same vector space V with the S1-action ‘·’ given by

γ · v := θm(γ)v = γmv, γ ∈ S1, v ∈ V.

Next, the map f considered from R⊕m(V ) to m(V ), is S1-equivariant as well. The
set Ω considered as an S1-subset of R ⊕ m(V ) will be denoted by m(Ω). In what
follows, we will say that the pair (f, m(Ω)) is the m-folded admissible pair associated
with (f, Ω).

4.2. Formulation of the Main Result and Consequences of Axioms. Now,
we are in a position to state the main result of this section.

Theorem 3. There exists a unique function, denoted by S1-Deg , assigning to each
admissible pair (f, Ω) an element S1-Deg (f, Ω) ∈ A1(S1) satisfying properties (P1)
— (P4) (see Proposition 8 with G = S1 and Remark 3) as well as the following
ones:
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(P5)’ (Normalization) For the basic map b : R⊕ V1 → V1, we have

S1-Deg (b, 1Ω) = (Z1).

(P6)’ (Elimination) If V is a trivial S1-representation, then

S1-Deg (f, Ω) = 0.

(F) (Folding) Let m(V ) be the m-folded representation associated with V , and
(f, m(Ω)) the m-folded admissible pair associated with (f, Ω). Then

S1-Deg (f, m(Ω)) = Θm

[
S1-Deg (f, Ω)

]
.

The proof of Theorem 3 will be given in the next section. Here we present some
immediate consequences of the axioms stated in Theorem 3.

Corollary 1. Suppose S1-Deg is a function provided by Theorem 3. Then:
(P7)’ (Excision) Assume Ωo is an S1-invariant open subset of Ω such that f−1(0)∩

Ω ⊂ Ωo. Then
S1-Deg (f, Ω) = S1-Deg (f, Ωo).

(P9) (k-th Basic Map) For every k = 1, 2, 3, . . . , and the k-th basic map b :
R⊕ Vk → Vk,

S1-Deg (b, kΩ) = (Zk).

The proof of Corollary 1 is straightforward and we omit it.

Corollary 2. Let b− : R⊕ Vk → Vk, k = 1, 2, 3, . . . , be defined by

b−(t, z) =
(
1− |z| − it) · z, t ∈ R, z ∈ Vk. (12)

Assume S1-Deg is a function provided by Theorem 4.1. Then

S1-Deg (b−, kΩ) = −(Zk). (13)

Proof: We consider the set

Ω :=
{

(t, z) ∈ R⊕ Vk : |t| < 2,
1
2

< |z| < 2
}

and the function α : R→ R defined by

α(t) =





1 if t < −1 or t > 3
2 ,

−t if − 1 ≤ t < 1
4 ,

t− 1
2 if 1

4 ≤ t ≤ 3
2 .

Define the homotopy h : [0, 1]× R⊕ Vk → Vk by

hλ(t, z) =
(
λ
(
1− |z|) + i

(
(1− λ) + λα(t)

)) · z, z ∈ Vk, t ∈ R, λ ∈ [0, 1].

It is clear that hλ is an Ω-admissible homotopy such that h0(t, z) = i · z, which
implies (by (P1)) that S1-Deg (h0, Ω) = 0 and, therefore (by (P3)),

S1-Deg (h1, Ω) = 0. (14)

Obviously, h−1
1 (0) ∩ Ω =

{
(t, z) ∈ R⊕ Vk : |z| = 1, t = 0, 1

2

}
. Put

Ω1 :=
{

(t, z) ∈ R⊕ Vk : |t| < 1
4
,

1
2

< |z| < 2
}

,

Ω2 :=
{

(t, z) :
∣∣∣∣t−

1
2

∣∣∣∣ <
1
4
,

1
2

< |z| < 2
}

.
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Then (by (P2) and (14))

S1-Deg (h1,Ω1) + S1-Deg (h1,Ω2) = 0. (15)

By (P7)’ (resp. (P3)), we have

S1-Deg (h1,Ω1) = S1-Deg (b−, kΩ)
(
resp. S1-Deg (h1, Ω2) = S1-Deg (b, kΩ)

)
.

Therefore, by (P9) and (15), S1-Deg (b−, kΩ) = −(Zk). ¤

5. Proof of Theorem 3.

5.1. Positive Orientation in a Slice and Central Lemma. The proof of The-
orem 3 is essentially based on a regular value argument. To formulate and prove
the corresponding statement (see Lemma 3), we will analyze the general notion of
positive orientation on a slice (see Remark and Definition 1) in a relevant setting.

Take the standard orientation on C and consider S1 ⊂ C as an oriented sub-
manifold. Let W be a non-trivial (n + 1)-dimensional S1-representation. Take a
non-zero x ∈ W and assume the orbit G(x) does not intersect WG. Using the above
orientation on S1, we assign a tangent vector vn+1 to the orbit G(x) at the point
x, which indicates the natural orientation of G(x).

We consider the slice Sx to the orbit G(x) at x:

Sx :=
{

w ∈ W : w • vn+1 = 0
}

,

where “•” denotes the standard inner product in W .
In Sx we define the positive orientation: choose a basis {v1, v2, . . . , vn} ⊂ Sx

such that the change-of-basis matrix from the basis {v1, v2, . . . , vn, vn+1} ⊂ W to
the standard basis {e1, e2, . . . , en, en+1} ⊂ W ' Rn+1, has a positive determinant.
Then the basis {v1, v2, . . . , vn} defines the positive orientation of Sx (cf. Remark
and Definition 1).

We are now in a position to state:

Lemma 3. (Central Lemma) Let f : R ⊕ V → V be a regular normal Ω-
admissible map such that f−1(0) ∩ Ω consists of one S1-orbit G(xo). Suppose that
Gxo = Zko and denote by Sxo the positively oriented slice at xo to the orbit G(xo).
Assume that S1-Deg is a function provided by Theorem 3. Then

S1-Deg (f, Ω) = no (Zko),

where no is the local index of f at xo (cf. Definition 9).

5.2. Proof of Lemma 3. Step 1: Simplification of the S1-Action (“Un-
folding”). We consider the S1-isotypical decomposition of the space V , i.e.

V = V G ⊕ Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vkr , (16)

where Vkj is modeled on the S1-irreducible representation Vkj (which means that
any irreducible subrepresentation of Vkj is equivalent to Vkj ). Assume that xo =
y0 + y1 + · · · + yr, where y0 ∈ R ⊕ V G, yj ∈ Vkj . If yj 6= 0, then Gyj = Zkj ,
which implies (since Gxo = Zko) that kj is a multiple of ko. Indeed, notice that
Gx+y = Gx ∩Gy, thus Gxo = Zko ⊂ Zkj = Gyj .

In addition, since V is an orthogonal S1-representation, the isotypical compo-
nents Vkj and Vki , for kj 6= ki, are orthogonal one to another. Consequently, if kj

is not a multiple of ko, then the isotypical component Vkj is orthogonal to R⊕ V G

and to every component Vki , for which ki is a multiple of ko. In particular, this
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implies that Vkj
is orthogonal to the subspace R ⊕ V H , where H := Gxo

= Zko
.

Since, by assumption, f is normal in Ω, it maps the small vectors v ∈ (R ⊕ V H)⊥

near the orbit G(xo) identically on themselves, i.e. f(xo + v) = v. In other words,
this property implies that the map f , on a small neighborhood of G(xo) can be
considered (up to a certain admissible homotopy) as the product map fo× Id, with
fo := f|R⊕V H . By the suspension property (P4), we have

S1-Deg (f, Ω) = S1-Deg (fo × Id, Ωo ×B)S1-Deg (fo,Ωo),

where Ωo = Ω ∩ (R⊕ V H) and B denotes the unit ball in (R⊕ V H)⊥. Thus,

sign det Df(xo)|Sxo
= sign det Dfo(xo)|S′xo

,

where S′xo
:= Sxo

∩ (R⊕V H). In this way, we can assume without loss of generality
that in the decomposition (16)

k1 = ko · n1, k2 = ko · n2, . . . , kr = ko · nr,

and ko = gcd(k1, k2, . . . , kr). Since in this case, the subgroup H = Zko
acts trivially

on V , we can define the action of S1 ' S1/H on the space V , which is also an
orthogonal S1-representation, denoted by Ṽ (for the purpose of distinguishing it
from V ). Moreover, the map f is also S1-equivariant with respect to this new
action. Denote by Ω̃ the set Ω considered as an S1-subspace of Ṽ . Then (f, Ω) is
the ko-folded admissible pair associated with the admissible pair (f, Ω̃). Therefore,
by the folding property (F), we have

S1-Deg (f, Ω) = Θko

[
S1-Deg (f, Ω̃)

]
.

Consequently, it is sufficient to show that

S1-Deg (f, Ω̃) = no (Z1).

In the remaining part of the proof, we will simply assume that Gxo = Z1.
Step 2: Reduction to a tubular neighborhood. Take a tubular neighborhood

Ω′ = G
(
xo + B(0, ε)

)
, B(0, ε) :=

{
v ∈ Sxo : ‖v‖ < ε

}
,

where 0 < ε < ‖xo‖, around the orbit G(xo). Then every point x ∈ Ω′ has a unique
representation as γxo + γv, for some v ∈ B(0, ε) and γ ∈ S1.

Define the linear operator

A := Df(xo)|Sxo
: Sxo → V,

and the map f0 := Ω′ → V by

f0

(
γ(xo + v)

)
= γ(Av), γ ∈ S1, v ∈ B(0, ε),

which is clearly S1-equivariant. Notice that

S1-Deg (f0, Ω′) = S1-Deg (f, Ω).

Indeed, we can always assume that ε > 0 was chosen to be sufficiently small, so the
homotopy

h(λ, γ(xo + v)) = γ
[
λAv + (1− λ)f(xo + v)

]
, λ ∈ [0, 1], γ ∈ S1, v ∈ Sxo ,

is Ω′-admissible.
Step 3: Reduction to One Isotypical Component. We consider the path
xλ = λe + (1− λ)xo, λ ∈ [0, 1], where e is a unit vector belonging to the isotypical
component V1. Let Sxλ

be the slice to the orbit G(xλ) at the point xλ, and Bλ =



1002 Z. BALANOV, W. KRAWCEWICZ AND H. RUAN

{
v ∈ Sxλ

: ‖v‖ < ε
}

for min{‖xo‖, 1} > ε > 0. We put Ωλ : G(xλ + Bλ),
Aλ := Df(xλ)|Sxλ

and define fλ : Ωλ → V , λ ∈ [0, 1], by

fλ(γ(xλ + v)) = γ(Aλv), v ∈ Sxλ
, γ ∈ S1.

By the excision property (P7)’ and the homotopy property (P3), we have

S1-Deg (f1, Ω1) = S1-Deg (fλ, Ωλ)S1-Deg (f0,Ω′) = S1-Deg (f, Ω).

Notice that, using a path in the space of linear isomorphisms from Se to V , the
matrix A can be deformed to a block matrix Ã, which is Id on the isotypical compo-
nents Vk2 , . . . , Vkr . Since Se = {v ∈ R⊕ V : v • e = 0}, by applying the suspension
property (P4), we can assume that V = V G ⊕ V1, e ∈ V1.
Step 4: Reduction to Basic Maps. Suppose that V1 = Ck = R2k and e =
(0, 0, . . . , 0, 1, 0). Since the orbit G(e) consists of the points (0, 0, . . . , 0, cos τ ,
sin τ) ∈ R2k, the tangent vector to G(e) at e is the vector v2k+1 = (0, 0, . . . , 0, 1),
and consequently the slice Se consists of all vectors of the form (α1, α2, . . . , α2k−1, 0),
αj ∈ R. By taking the standard basis in Se, which in this case defines the positive
orientation of Se, we can use the fact that there exists a path Aλ (λ ∈ [0, 1]), in
GL(2k,R) connecting the matrix Ã to the matrix:

A1 :




0 0 . . . 0 0 −1
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 0 1 0
1 0 . . . 0 0 0




if sign det Df(xo)|Sxo
> 0, and

A1 :=




0 0 . . . 0 0 −1
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 0 1 0
−1 0 . . . 0 0 0




if sign det Df(xo)|Sxo
< 0. The path Aλ defines an Ω1-admissible homotopy

f1+λ

(
γ(e + v)

)
= γ(Aλv), v ∈ Se, γ ∈ S1.

Let us consider an element (t, v) ∈ R⊕ V , which is represented as

(t, v) = v0 + ṽ1 + γse, v0 ∈ V G, ṽ1 ∈ Ck−1 × {0} ⊂ Ck = V1, γ ∈ S1, s ∈ R+.

Then we have

f2(t, v) = f2(t, v0 + ṽ1 + γse) = f2(γ(t, v0 + γ−1ṽ1 + se)

= γ
(
A1(t, v0 + γ−1ṽ1 + se

)
= γ(v0 + γ−1ṽ1) + γÃ1(t, s)

= v0 + ṽ1 + γÃ1(t, s),

where Ã1 :=
[

0 −1
1 0

]
if sign det Df(xo)|Sxo

> 0 and Ã1 :=
[

0 −1
−1 0

]
if

sign det Df(xo)|Sxo
< 0. The above identities show that the map f2 is “normal”

with respect to the vectors v0 + ṽ1, i.e. f2 = f̃2× Id, where f̃2 : R⊕C→ C is given
by:

f̃2(t, γse) = γ(Ã1(t, s)
)
, γ ∈ S1, s ∈ R+, t ∈ R.
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Therefore, by the suspension property (P4), we have

S1-Deg (f2, Ω1) = S1-Deg (f̃2, Ω̃1),

where Ω̃1 :=
{
(t, z) ∈ R ⊕ C : |t| < 1, 1

2 < |z| < 2
}

is equivariantly homotopically
equivalent to Ω1, and the S1-action on C is the standard complex multiplication.

Let us consider the maps b(t, z) =
(
1−|z|+ it

) · z and b−(t, z) =
(
1−|z|− it

) · z,
defined on Ω̃1, to which we can apply the linearization procedure along the orbit
G(zo), zo = (0, 1, 0) ∈ R⊕C. More precisely, we consider the derivatives Db(0, 1, 0)
and Db−(0, 1, 0) restricted to Se, which can be easily evaluated:

B+ := Db(0, 1, 0)|Se

[
0 −1
1 0

]
; B− := Db−(0, 1, 0)|Se

=
[

0 −1
−1 0

]
(17)

Then, by applying the formula f±(t, γs) := γ(B±(t, s)), γ ∈ S1, s ∈ R+ and t ∈ R,
we observe that f+ (resp. f−) is equivariantly homotopic to the basic map b (resp.
b−). Therefore, if sign det Df(xo)|Sxo

= 1, then there exists an Ω̃1-admissible
homotopy between b and f̃2, and if sign det DSxo

f(xo) = −1, then there exists an
Ω̃1-admissible homotopy between b− and f̃2. Consequently, by the normalization
property (P5) and Corollary 2, we obtain that

S1-Deg (f, Ω) = no (Z1),

which completes the proof. ¤

5.3. Proof of Theorem 3. Existence. We claim that the primary degree defined
by the formulae (4)—(7) (with n = 1 and G = S1) satisfies the properties listed
in Theorem 3. Indeed, Properties (P1)—(P4), (P6)’ are provided by Proposition
8. Property (P5)’ follows from (17). To show (F), consider an admissible pair
(f, Ω) and the associated m-folded pair (f,m (Ω)). By the homotopy and excision
properties, we can assume that f is regular normal on Ω (and, consequently, on
m(Ω)). Take some orbit type (Zk) occurring in Ω and let D be a regular fundamental
domain for ΩZk

. Then D is a regular fundamental domain for m(Ω)Zkm
. Since f is

the same for both cases, the result follows from (4).
Uniqueness. Let S1 -̃Deg be a function satisfying Properties (P1)—(P4), (P5)’, (P6)’
and (F). Let V be an orthogonal S1-representation, Ω ⊂ R⊕V an S1-invariant open
bounded region, and f : R ⊕ V → V an equivariant Ω-admissible map. We will
show that

S1 -̃Deg (f, Ω) = S1-Deg (f, Ω).
By Proposition 3 and homotopy property (P3), without lost of generality one

can assume that f is regular normal. By the normality, there exists an open S1-
invariant subset Ωo ⊂ Ω such that Z := f−1(0) ∩ ΩS1

= f−1(0) ∩ Ωo, i.e. Ωo is
an isolating invariant neighborhood of Z. In addition, we can assume that f|Ωo

(up
to an Ωo-admissible homotopy) is a product map fS1 × Id, where fS1

:= f|R⊕V S1 ,

and Id is the identity operator on the space (R⊕ V S1
)⊥. Then, by the suspension

property (P4) and the elimination property (P6)’, we have

S1 -̃Deg (f, Ωo) = S1-̃Deg (fS1 × Id, ΩS1

o ×B) = S1 -̃Deg (fS1
, ΩS1

o ) = 0,

where B denotes the unit ball in (R⊕ V S1
)⊥.

Since f is assumed to be regular, we have that

f−1(0) ∩ Ω = Z ∪ S1(x1) ∪ · · · ∪ S1(xm),
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where S1(xj), j = 1, 2, . . . ,m, are isolated orbits. We can choose open invariant
sets Ωj ⊂ Ω such that Ωj ⊃ S1(xj), Ωj ∩ Ωi = ∅, i 6= j, i, j = 0, 1, 2, . . . , m. Then,
by applying the additivity property (P2), we obtain that

S1 -̃Deg (f, Ω) = S1 -̃Deg (f, Ω0) + S1 -̃Deg (f, Ω1) + · · ·+ S1 -̃Deg (f, Ωm)

= S1 -̃Deg (f, Ω1) + · · ·+ S1 -̃Deg (f, Ωm).

For each of the orbits S1(xj), j = 1, . . . , m, we consider the positively oriented
slice Sj at the point xj , and we denote by Djf(xj) the matrix of the derivative
Df(xj)|Sj

, with respect to a basis in Sj defining the positive orientation on it.
Applying the Central Lemma and Properties (P2), (P7)’, one obtains

S1 -̃Deg (f, Ω) =
m∑

j=1

S1 -̃Deg (f, Ωj)
m∑

j=1

sign det Df(xj)|Sj
· (Zkj

)

=
m∑

j=1

S1-Deg (f, Ωj) = S1-Deg (f, Ω).

6. Computation of S1-Degree Via Reduction to Basic Maps.

6.1. Statement of the Problem. The goal of this section is to show how the
axiomatic approach described in the previous two sections allows us to calculate the
S1-degree for an important class of S1-equivariant maps which naturally appear in
symmetric Hopf bifurcation problems.

We start with a simple observation that every S1-representation admits a so-
called natural complex structure, which turns out to be a convenient setting for
the discussion of Hopf bifurcation problems and a natural way of describing the
S1-action to carry out certain computations. To be more specific, let V be an S1-
representation with V S1

= {0}. Then one can define on V a complex structure
sensitive to the S1-action as follows. Assume, for a moment, that V = Vk. Then,
for z ∈ C we put z = |z|eiθ, for some θ ∈ [0, 2π). The complex multiplication of
v ∈ Vk by the number z is defined by

z · v := |z|e iθ
k v. (18)

Suppose, further, that V is (in general) reducible, and we have the following
S1-isotypical decomposition:

V = Vk1 ⊕ Vk2 ⊕ · · · ⊕ Vks , (19)

where Vkj is modeled on the irreducible S1-representation Vkj , j = 1, 2, . . . , s. Since
for every j, Vkj can be equipped with the complex structure according to (18), every
isotypical component from (19) also admits such a structure. In this way, we obtain
on V a complex structure which we will call natural complex structure.

Let Γ be a compact Lie group. The problem of studying Γ-symmetric Hopf
bifurcations in many cases can be reduced to the following one (cf. [4]):

Let G = Γ × S1 and let V be an orthogonal G-representation with V S1
=

{0} (here S1 is identified with {1} × S1). Suppose V (considered as the S1-
representation) is equipped with the natural complex structure and put

O :=
{

(λ, v) ∈ C⊕ V : ‖v‖ < 2,
1
2

< |λ| < 4
}

. (20)
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Assume G acts trivially on C and R and take a continuous map a : S1 →
GLG(V ), where GLG(V ) stands for the set of all G-equivariant linear invert-
ible maps in V . Define a G-equivariant map fa : O → R⊕ V by

fa(λ, v)
(
|λ|(‖v‖ − 1) + ‖v‖+ 1, a

(
λ

|λ|
)

v

)
, (λ, v) ∈ O. (21)

How can one compute the primary degree G-Deg (fa,O)?
Our approach to the above problem involves the following four components:

(i) Recurrence Formula (see Proposition 13) allowing a reduction of the general
problem to the computation of the corresponding S1-degree;

(ii) Splitting Lemma (cf. Lemma 4) allowing a reduction to subrepresentations;
(iii) Homotopy factorization (cf. Corollaries 3 and 4) allowing a factorization of a

given map through canonical representatives of the elements of π1(GLG(k,C))
and next deformations to the so-called C-complementing maps being natural
“complex counterparts” for the k-th basic maps (cf. Definition 10);

(iv) Suspension procedure allowing a reduction of the computation of the S1-degree
of C-complementing maps to the one of k-th basic maps (cf. Proposition 10).

The last three techniques come together at the end of this section (see Theorem
4 where the S1-degree for (21) is given). Observe that the Splitting Lemma is
presented in a form much more general than what is needed to establish Theorem
4.

6.2. C-Complementing Maps and Suspension Procedure. We start with the
following:

Definition 10. Let b : R ⊕ Vk → Vk (resp. b− : R ⊕ Vk → Vk) be the k-th basic
map (resp. a map defined by (12)) and let kΩ be defined by (10). Assume that Vk

is equipped with the natural complex structure and O is given by (20). Suppose
that f : C ⊕ Vk → R ⊕ Vk (resp. f− : C ⊕ Vk → R ⊕ Vk) is defined by f(λ, v) =(
|λ|(‖v‖−1)+‖v‖+1, λ ·v

)
(resp. f−(λ, v) = (|λ|(‖v‖−1)+‖v‖+1, λ ·v)), where

λ ∈ C, v ∈ Vk. Then the pair (f,O) (resp. (f−,O)) is called a C-complementing
pair to (b, kΩ) (resp. to (b−, kΩ)).

It is clear that (f,O), (f−,O), (b, kΩ), and (b−, kΩ) are admissible pairs. The
following statement justifies the above definition.

Proposition 10. Let (f,O) (resp. (f−,O)) be a C-complementing pair to (b, kΩ)
(resp. (b−, kΩ)). Then f (resp. f−) is S1-homotopic (by an O-admissible homo-
topy) to a map f1 (resp. f−1 ), which is a suspension of b (resp. b−) on an open
subset containing zeros of f1 (resp. f−1 ). In particular,

S1-Deg (f,O) = S1-Deg (b, kΩ) = (Zk), (22)

S1-Deg (f−,O) = S1-Deg (b−, kΩ) = −(Zk). (23)

Proof: We will consider only the case of the map f (the proof for the map f− is
similar). To begin with, observe that the map

f1(λ, v) =
(
|λ|(‖v‖ − 1) + ‖v‖+ 1,

λ

|λ| · v
)

,
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defined for (λ, v) ∈ O, is S1-homotopic (by an O-admissible homotopy) to the map
f (since for any (λ, v) ∈ ∂O, the vectors f(λ, v)) and f1(λ, v) do not point the
opposite directions). Thus, we have

S1-Deg (f,O) = S1-Deg (f1,O).

Let us define the function η : R→ R by

η(t) =





0 if t < 1
2

t− 1
2 if 1

2 ≤ t ≤ 3
2

1 if t > 3
2 ,

and put θ(v) = η(‖v‖), for v ∈ Vk. Set

fθ(λ, v) = (1− θ(v))
(
f1(λ, 0) + v) + θ(v)f1(λ, v), (24)

where (λ, v) ∈ O. Obviously, f1 is S1-homotopic to fθ by an O-admissible homo-
topy, i.e. we have

S1-Deg (f1,O) = S1-Deg (fθ,O)

for any θ ∈ [0, 1]. By direct computation, f−1
θ (0) = Z0 ∪ Z1 ⊂ Ω where Z0 :={

(λ, 0) ∈ C⊕ Vk : |λ| = 1
}

and Z1 :=
{

(−3, v) ∈ C⊕ Vk : ‖v‖ = 1
}

.

Put

Ω0 :=
{

(λ, v) :
1
2

< |λ| < 3
2
, ‖v‖ <

1
2

}

and

Ω1 :=
{

(λ, v) : |λ + 3| < 1
2
,

1
2

< ‖v‖ <
3
2

}
.

Then, by the additivity property of the S1-degree, we have

S1-Deg (fθ,O) = S1-Deg (fθ, Ω0) + S1-Deg (fθ, Ω1).

Since for (λ, v) ∈ Ω0, we have fθ(λ, v) = (1− |λ|, v), it follows from the suspension
property that

S1-Deg (fθ, Ω0) = S1-Deg (ϕo, Bo),

where Bo = {λ ∈ C : 1
2 < |λ| < 3} and ϕo : Bo → R is defined by ϕo(λ) = 1− |λ|.

Clearly, ϕo is homotopic by a Bo-admissible homotopy to a constant map ϕ1 ≡ 5,
thus S1-Deg (ϕo, Bo) = 0, so we have

S1-Deg (f,O) = S1-Deg (fθ, Ω1).

Replacing the R-component of (24) θ(v) (resp. ‖v‖) by ‖v‖ − 1
2 (resp. 1), one

obtains the map

f̃θ(λ, v) =
(

1
2
(3− |λ|),

(
1− θ(v) + θ(v) · λ

|λ|
)
· v

)

=
(

1
2
(3− |λ|), 3(1 + |λ|)− (2|λ|+ 6)‖v‖+ (2‖v‖ − 1)(λ + 3)

2|λ| · v
)

where (λ, v) ∈ Ω1 (recall, θ(v) = ‖v‖ − 1
2 on Ω1).

Obviously, f̃θ has no zeros on ∂Ω1. Moreover, for any (λ, v) ∈ ∂Ω1 the vectors
fθ(λ, v) and f̃θ(λ, v) do not point in opposite directions. Therefore, fθ and f̃θ are
S1-homotopic by Ω1-admissible homotopy and

S1-Deg (fθ, Ω1) = S1-Deg (f̃θ, Ω1).
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Next, replacing in the V -component of f̃θ the value |λ| (resp. 2‖v‖ − 1) by 3
(resp. 1), one obtains the map

f̂1(λ, v) =
(

1
2
(3− |λ|), 12(1− ‖v‖) + (λ + 3)

6
· v

)
,

where (λ, v) ∈ Ω1.
At this moment, we can apply the change of variables λ′ = λ + 3, leading to the

set Ω2 :
{
(λ′, v) : |λ′| < 1

2 , 1
2 < ‖v‖ < 3

2

}
and (after an appropriate S1-homotopy)

the map f̃1 : Ω2 → R⊕ V, given by

f̃1(α + iβ, v)
(

1
2
α,

12(1− ‖v‖) + (α + iβ)
6

· v
)

, λ′ = α + iβ,

(here, we used the fact that 3 − |λ| = 3 −
√

(α− 3)2 + (β)2 is S1-homotopic to α,
since |β| ≤ |λ′| < 1

2 , which guarantees no zeros of such a homotopy crossing ∂Ω2),
which is clearly Ω2-admissibly S1-homotopic to the map

f1(α + iβ, v) = (α, (1− ‖v‖+ iβ) · v).

Obviously, f1 is a suspension of the basic map b, therefore

S1-Deg (f1, Ω2) = S1-Deg (b, kΩ),

and since
S1-Deg (f1, Ω2) = S1-Deg (f̃θ,Ω1) = S1-Deg (f,O),

the equality (22) follows. ¤

6.3. Homotopy Factorization: Properties of GLG(V ). Let V be an orthogonal
G-representation and let GLG(V ) be the group of all equivariant linear invertible
operators on V . We first recall some standard algebraic facts about a decomposition
of GLG(V ).

Proposition 11. (cf. [20]) Let

V = Uk1 ⊕ · · · ⊕ Ukr , (25)

be the G-isotypical decomposition, where a component Ukj is modeled on an irre-
ducible representation Ukj . Then:

(i) GLG(V ) =
⊕r

j=1 GLG(Ukj );
(ii) for any isotypical component Ukj from (25) we have GLG(Ukj ) ' GL(m,F),

where m = dim Ukj /dimUkj and F ' GLG(Ukj ), i.e. F = R, C or H, depend-
ing on the type of the irreducible representation Ukj .

Next, we will discuss homotopy properties of the group GL(m,C). We keep the
following notations: for a continuous map ϕ : S1 → C \ {0}, S1 ⊂ C, the symbol
deg(ϕ, S1) stands for its Brouwer degree; for A ∈ GL(m,C) the symbol detCA
stands for the complex determinant. We have

Proposition 12. (see, for instance, [16, 23]).

(i) Two continuous maps Φ, Ψ : S1 → GL(m,C), m ≥ 1, are homotopic if and
only if the maps ϕ := detC ◦Φ and ψ := detC ◦Ψ are homotopic, i.e.

deg(ϕ, S1) = deg(ψ, S1).
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(ii) For every map Φ : S1 → GL(m,C), there exists l ∈ Z such that Φ is homotopic
to Φl given by

Φl(γ) :=




γl 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , γ ∈ S1.

In particular, for ϕl := detC ◦Φl, one has deg(ϕl, S
1) = l.

Combining Propositions 11 and 12 we obtain the following statement related to
the homotopy factorization procedure.

Corollary 3. Let G be a compact Lie group, V an orthogonal G-representation,
and Uko

an isotypical component of V modeled on an irreducible G-representation
Uko

of the complex type. Assume m = dim Uko
/dimUko

. Then
(i) GLG(Uko

) ' GL(m,C);
(ii) for each a ∈ π1(GLG(Uko)) there exists a representative ϕa : S1 → GL(m,C),

such that

ϕa(λ) =




λl 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , λ ∈ S1,

for some l ∈ Z. In particular, we have an isomorphism µko : π1(GLG(Vko)) →
Z, where µko(a) = l.

6.4. Splitting Lemma.

Lemma 4. (Splitting Lemma) Let G be a compact Lie group, V1 and V2 orthog-
onal G-representations, V = V1 ⊕ V2. Assume that the G-isotypical decomposition
of V contains only components modeled on irreducible G-representations of complex
type. Suppose that aj : S1 → GLG(Vj), j = 1, 2, are two continuous maps and
a : S1 → GLG(V ) is given by

a(λ) = a1(λ)⊕ a2(λ), λ ∈ S1.

Assume O and fa are defined by (20) and (21), respectively. Put

Oj :=
{

(λ, vj) ∈ C⊕ Vj : ‖vj‖ < 2,
1
2

< |λ| < 4
}

,

faj (λ, vj) :=
(
|λ|(‖vj‖ − 1) + ‖vj‖+ 1, aj

(
λ

|λ|
)

vj

)
,

where j = 1, 2, vj ∈ Vj. Then

G-Deg (fa,O) = G-Deg (fa1 ,O1) + G-Deg (fa2 ,O2).

Proof: We can assume without loss of generality that aj : S1 → GLG(Vj)∩O(Vj)
is analytic, i.e. there exists an analytic extension of aj to a neighborhood of S1 in C
(here O(Vj) stands for the group of orthogonal operators on Vj , j = 1, 2). Introduce
the functions qj : R→ R, j = 1, 2,

qj(t) =





1 if 0 ≤ t < sj ;
− 1

εj
(t− tj) if sj ≤ t < tj ;

0 if t ≥ tj ,

where





sj = j
j+4 − 1

2(j+4)2 ;

tj = j
j+4 + 1

2(j+4)2 ;

εj = tj − sj = 1
(j+4)2 .
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Then define for (λ, v1, v2) ∈ O ⊂ C⊕ V1 ⊕ V2 the map

f̃a(λ, v1, v2) :=
(
θ(λ, v1, v2), β1(λ, v1), β2(λ, v1, v2)

)
,

with

θ(λ, v1, v2) = |λ|(‖v1 + v2‖ − 1) + ‖v1 + v2‖+ 1,

β1(λ, v1) = q2(‖v1‖)v1 + (1− q2(‖v1‖)a1

(
λ

|λ|
)

v1,

β2(λ, v1, v2) = q1(‖v1 + v2‖)v2 + (1− q1(‖v1 + v2‖)a2

(
λ

|λ|
)

v2.

The maps fa and f̃a are G-homotopic by an O-admissible homotopy.
Let us examine zeros of the map f̃a. It is clear that

Z0 :=
{

(λ, 0, 0) : |λ| = 1
}
⊂ f̃−1

a (0).

Observe that if (λ, v1, v2) ∈ f̃−1
a (0) is such that v1 6= 0 (resp. v2 6= 0) then v2 = 0

(resp. v1 = 0). Indeed, suppose that (λ, v1, v2) ∈ f̃−1
a (0) is such that v1 6= 0 6=

v2. Then, by comparing the norms of the both sides in the following equalities:
q2(‖v1‖)v1 = −(1 − q2(‖v1‖)a1

(
λ
|λ|

)
v1 and q1(‖v1 + v2‖)v2 = −(1 − q1(‖v1 +

v2‖)a2

(
λ
|λ|

)
v2, we obtain

q2(‖v1‖) = 1− q2(‖v1‖) and q1(‖v1 + v2‖) = 1− q1(‖v1 + v2‖),
which implies

q2(‖v1‖) = q1(‖v1 + v2‖) =
1
2
,

so ‖v1‖ = 1
3 and ‖v1 + v2‖ = 1

5 , but this is a contradiction because v1 is orthogonal
to v2 and thus ‖v1 + v2‖ ≥ ‖v1‖.

Therefore, we can first suppose that (λ, v1, 0) ∈ f̃−1
a (0), v1 6= 0, so ‖v1‖ = 1

3 .
Then θ(λ, v1, 0) = 0 and β1(λ, v1) = 0 imply |λ| ( 1

3 − 1
)

+ 1
3 + 1 = 0, i.e. |λ| = 2.

On the other hand, since q2( 1
3 ) = 1

2 ,

β1(λ, v1) =
1
2

[
v1 − a1

(
λ

|λ|
)

v1

]
= 0, v1 6= 0,

λ satisfies the equation

detC

[
Id− a1

(
λ

|λ|
)

Id
]

= 0, |λ| = 2. (26)

Since the map ω → detC[Id− a1(ω)Id] is analytic in a neighborhood of S1 in C, the
equation

detC[Id− a1(ω)Id] = 0, ω ∈ S1,

has only a finite number of solutions, and consequently the equation (26) also has
finitely many solutions, say λ1, . . . , λn. Put

Zk :=
{

(λk, v1, 0) : ‖v1‖ =
1
3

}
, k = 1, . . . , n.

If (λ, v1, 0) ∈ f̃−1
a (0), v1 6= 0, then (λ, v1, 0) ∈ Z1 ∪ · · · ∪Zn. Similarly, if (λ, 0, v2) ∈

f̃−1
a (0), v2 6= 0, then ‖v2‖ = 1

5 and |λ| = 3
2 , and there exists a finite number of
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solutions λ′1, . . . , λ
′
m to the equation

detC

[
Id− a2

(
λ

|λ|
)

Id
]

= 0, |λ| = 3
2
.

Put Z ′l :=
{
(λ′l, 0, v2) : ‖v2‖ = 1

5

}
, l = 1, . . . , m. In this way, we have proved that

f̃−1
a (0) ⊂ Z0 ∪ Z1 ∪ · · · ∪ Zn ∪ Z ′1 ∪ · · · ∪ Z ′m. By applying the excision property

to G-invariant separating neighborhoods of Zk, Z ′l , k = 0, 1, . . . , n, l = 1, . . . , m,
and using appropriate deformations of f̃a on these sets, we obtain the map f̂a such
that f̂a(λ, v1, v2) = (θ(λ, v1, v2), β1(λ, v1), v2) for (λ, v1, v2) in a neighborhood of
Zk, k = 1, . . . , n, and f̂a(λ, v1, v2) = (θ(λ, v1, v2), v1, β2(λ, 0, v2)) for (λ, v1, v2) in
a neighborhood of Z ′l , l = 1, . . . ,m. Notice that f̃a in a neighborhood of Z0 is
homotopic to a map without zeros.

The conclusion then follows from the suspension and excision properties. ¤

6.5. S1-Degree Formulae. Here we combine the above results to compute the
S1-degree of (21). We start with the following:

Corollary 4. Let V = Vk be the k-th irreducible S1-representation (k > 0) equipped
with the natural complex structure, l ∈ Z and

f̃(λ, v) =
(
|λ|(‖v‖ − 1) + ‖v‖+ 1,

(
λ

|λ|
)l

v
)
, (λ, v) ∈ O,

where O is given by (20). Then S1-Deg (f̃ ,O) = l(Zk).

Proof: For the sake of definiteness, assume that l > 0 (the case l ≤ 0 can be
treated using a similar argument), and consider the map

f̃ × Id : O ×Bl−1 → R⊕ Vk ⊕
[
Vk ⊕ · · · ⊕ Vk︸ ︷︷ ︸

l−1

]
,

where Bl−1 = B(Vk)× · · · ×B(Vk)︸ ︷︷ ︸
l−1

and B(Vk) denotes the unit ball in Vk. Then,

by the suspension property,

S1-Deg (f̃ ,O) = S1-Deg
(
f̃ × Id,O ×Bl−1

)
.

Obviously, f̃ × Id is equivariantly homotopic, by an O×Bl−1-admissible homotopy,
to fa given by (21), where v ∈ V = Vk ⊕ · · · ⊕ Vk︸ ︷︷ ︸

l

and a : S1 → GLS1
(V ) is defined

by

a(γ)




γl 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 , γ ∈ S1.

From Proposition 12 it follows that fa is equivariantly homotopic (by an O×Bl−1-
admissible homotopy) to fb given by

fb(λ, v) =
(
|λ|‖(‖v‖ − 1) + ‖v‖+ 1, b

(
λ

|λ|
)

v

)
,
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with b : S1 → GLS1
(V ) defined by

b(γ) =




γ 0 . . . 0
0 γ . . . 0
...

...
. . .

...
0 0 . . . γ


 , γ ∈ S1.

Since S1-Deg (f̃ ,O) = S1-Deg (fb,O × Bl−1), by the Splitting Lemma and Propo-
sition 10, we have

S1-Deg (f̃ ,O) = (Zk) + · · ·+ (Zk)︸ ︷︷ ︸
l

l(Zk).

The proof of Corollary 4 is complete. ¤
By combining Proposition 12, Corollary 3, Splitting Lemma and Corollary 4, we

immediately obtain:

Theorem 4. Let V be an orthogonal S1-representation with V S1
= {0}, admitting

the isotypical decomposition (19) and equipped with the natural complex structure.
Let O (resp. fa) be defined by (20) (resp. (21)). Then

S1-Deg (fa,O) =
s∑

j=1

lj(Zkj ),

where lj := deg
(
detC ◦aj , S

1
)
, aj(λ) := a(λ)|Vkj

: Vkj → Vkj , for j = 1, . . . , s.

As an immediate consequence of Theorem 4, we obtain

Corollary 5. Let V and O be as in Theorem 4. Let lj ∈ Z, j = 1, . . . , s, be
given integers and assume that dim C Vkj = mj. Define f : O → R ⊕ V by

f(λ, v1, . . . , vs) =
(
|λ|(‖v‖ − 1

)
+ ‖v‖ + 1, λl1v1, . . . , λ

lsvs

)
, where λ ∈ C \ {0},

vj ∈ Vkj . Then

S1-Deg (f,O) =
s∑

j=1

mj lj(Zkj ).

7. Recurrence Formula.

7.1. Preliminaries. In this section we present the so-called Recurrence Formula
to provide the computation of the primary G-degree via appropriate S1-degree and
coefficients depending on G only. To formulate and prove the corresponding result
(see Proposition 13), we will introduce/recall several notions and notations.
(a): The Number deg1(f, Ω). Let V be an orthogonal S1-representation, Ω ⊂
R ⊕ V an open bounded S1-invariant set, and f : R ⊕ V → V an Ω-admissible
S1-equivariant map. Consider the S1-degree defined by (9) and put

degki
(f, Ω) := nki , i = 1, 2, . . . , r.

This notation is motivated by the fact that each of the integer coefficients in (9)
satisfies the usual additivity, homotopy, excision, and suspension properties.
(b): Primary Degree and Relative Bi-Orientable Orbit Types. In Sub-
section 3.3, we have indicated one reason for excluding relative bi-orientable orbit
types from the construction of the primary G-degree. Another one rests on the fact
that the inclusion of these types would lead, in general, to unnecessary complica-
tions related to the validity of other important properties of the primary degree
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(for instance, the so-called multiplicativity property (cf. [2, 3])). At the same time,
for many important classes of groups appearing in applications (for instance, the
so-called twisted groups (see [2, 3])), the appearance of relatively bi-orientable orbit
types does not affect the computational formulae.

Nevertheless, potential applications of the equivariant degree, which are based
on the Recurrence Formula, probably are not exhausted by the twisted groups.
Therefore, for the sake of completeness we present the Recurrence Formula with the
relatively bi-orientable orbit types being taken into account. To be more specific,
assume G is a compact Lie group, V is an orthogonal G-representation, Ω ⊂ R⊕V an
open bounded G-invariant subset and f : R⊕V → V an Ω-admissible G-equivariant
map. We will assume that the primary degree G-Deg (f, Ω) is extended to the orbit
types (H) ∈ Φ̃+

1 (G,V ) \ Φ+
1 (G,V ) (to this end one should: (a) use the fact that

ΩH/W (H) = ΩHo
/W (Ho) (see Proposition 1), i.e. any regular fundamental domain

for the W (Ho)-action on ΩHo is automatically a regular fundamental domain for
the W (H)-action on ΩH ; (b) apply formula (4) to fHo

). Thus,

G-Deg (f, Ω) =
∑

(H)∈Φ̃+
1 (G,V )

nH (H). (27)

Further, since we assumed that there is chosen a fixed invariant orientation on
W (H)o for every (H) ∈ Φ̃+

1 (G,V ), S1 can be canonically identified with the con-
nected component of 1 ∈ W (H)o. Thus we have S1 ⊂ W (H) (in the case G = Γ×S1,
the inclusion S1 ⊂ W (H) is in fact uniquely defined for twisted groups H) and also
S1 acts freely on ΩH as a result of the free W (H)-action on ΩH . Therefore, the
restriction fH := f|R⊕V H is S1-equivariant and has (Z1) as its ”smallest” orbit type
with respect to the partial order defined on the set of all conjugacy classes of closed
subgroups of W (H).

(c): Result. Below we formulate the main result of this section which, to some
extent, may be counted as the Borsuk-Ulam type Theorem in the case of one free
parameter.

Proposition 13. (Recurrence Formula) Let V be an orthogonal G-representa-
tion, Ω ⊂ R ⊕ V an open bounded invariant subset and f : R ⊕ V → V a G-
equivariant Ω-admissible map. Then

G-Deg (f, Ω) =
∑

(H)∈Φ̃+
1 (G)

nH · (H),

where

nH =


deg1(f

H , ΩH)−
∑

(K)>(H)

nK n(H, K) |W (K)/S1|



/ ∣∣W (H)/S1
∣∣

and fH = f|ΩH .

Observe that a particular case of Proposition 13 was established in [22], where
an argument based on the S1-fixed point index was utilized.

7.2. Proof of Proposition 13. The proof of Proposition 13 is based on two lem-
mas below:
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Lemma 5. Let V , Ω and f be as in Proposition 13 and assume that f is regular
normal and G-Deg (f, Ω) is given by (27). Then for (Ho) ∈ Φ̃+

1 (G,V )

nHo
= deg1(f

Ho ,ΩHo
)
/
|W (Ho)/S1|. (28)

In other words, Lemma 5 states that the algebraic count of the W (Ho)-orbits
of solutions for the equation fHo(x) = 0 can be achieved by using the S1-degree
deg1(fHo , ΩHo

) and purely algebraic characteristics depending on the group G only.

Proof: Let us consider an (Ho) in Φ̃+
1 (G, V ). By the regular normality of f , the

set of solution of fHo(x) = 0, x ∈ ΩHo , is composed of a finite number of W (Ho)-
orbits W (Ho)(x1)∪ · · · ∪W (Ho)(xk), where each of the orbits W (Ho)(xj), in turn,
can be represented as a union of m copies of S1-orbits, where m = |W (Ho)/S1|, i.e.
W (Ho)(xj) = S1(xj,1) ∪ · · · ∪ S1(xj,m).

For each orbit W (Ho)(xj) we define the positive orientation on the slice Sxj (cf.
Remark and Definition 1). By formula (4),

nHo =
k∑

j=1

sign det DfHo(xj)|Sxj
. (29)

Similarly,

deg1(f
Ho , ΩHo)

n∑

j=1

m∑

l=1

sign det DfHo(xj,l)|Sxj,l
= m

k∑

j=1

sign det DfHo(xj)|Sxj
,

(30)
where Sxj,l

denotes the slice to the S1-orbit S1(xj,l). Comparing (29) and (30)
yields (28). ¤

Lemma 6. Let V , Ω and f be as in Lemma 5 and (L) ∈ Φ̃+
1 (V, G). Then

deg1(f
L, ΩL) =

∑

(H)≥(L)

n(L,H) deg1(f
H , ΩH).

where (H) ∈ Φ̃+
1 (G,V ).

Proof: Since f is regular normal and

V L =
⋃

H⊃L

VH ,

it is clear that the set Z := (fL)−1(0) of zeros of fL is such that ZH = Z ∩ VH

is compact for every (H) ∈ Φ1(G,V ), H ⊃ L (recall that Φ1(G,V ) stands for the
set of all orbit types (H) in V such that dim W (H) = 1 with no additional bi-
orientability requirement). Let U(ZH) be an isolating neighborhood of ZH in V L

and put W(ZH) := U(ZH)∩ VH . Then, by normality of f , suspension and excision
properties of the S1-degree, it follows

deg1(f
L,U(ZH)) = deg1(f

H ,W(ZH)) = deg1(f
H ,ΩH).
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Consequently, using the additivity of the S1-degree and the geometric meaning of
the numbers n(L,H) (see Lemma 1), combined with Proposition 4, we obtain

deg1(f
L, ΩL) =

∑

H⊃L

deg1(f
L,U(ZH)) +

∑

H̃⊃L

deg1(f
L,U(ZH̃))

=
∑

H⊃L

deg1(f
H , ΩH) +

∑

H̃⊃L

deg1(f
H̃ , ΩH̃)

=
∑

(H)≥(L)

n(L, H) deg1(f
H , ΩH) +

∑

(H̃)≥(L)

n(L, H̃) deg1(f
H̃ , ΩH̃),

where dim W (H) = 1 = dim W (H̃), W (H)o is bi-orientable and W (H̃)o is not bi-
orientable. However, the value of deg1(f H̃ ,ΩH̃) depends on an orientation of the
W (H̃)-orbits in ΩH̃ , which in this case is not uniquely determined. Therefore, by
changing the orientation, instead of deg1(f H̃ , ΩH̃), the value −deg1(f H̃ ,ΩH̃) can
also be obtained. Consequently, we obtain the equality

∑

(H)≥(L)

n(L, H) deg1(f
H , ΩH) +

∑

(H̃)≥(L)

n(L, H̃) deg1(f
H̃ , ΩH̃)

=
∑

(H)≥(L)

n(L,H) deg1(f
H ,ΩH)−

∑

(H̃)≥(L)

n(L, H̃) deg1(f
H̃ , ΩH̃),

which implies ∑

(H̃)≥(L)

n(L, H̃) deg1(f
H̃ ,ΩH̃) = 0.

In this way, we obtain

deg1(f
L, ΩL) =

∑

(H)≥(L)

n(L,H) deg1(f
H , ΩH),

where (H) ∈ Φ̃+
1 (G, V ). ¤

Proof of Proposition 13. By the homotopy property of the primary degree, we can
assume without loss of generality, that f is a regular normal map in Ω.

Consider the fixed point space R ⊕ V Ho and the W (Ho)-equivariant restriction
fHo : R⊕V Ho → V Ho of f . By Lemma 5, the number nHo · |W (Ho)/S1| represents
the S1-degree deg1(fHo , ΩHo). On the other hand, by Lemma 6, we obtain

nHo · |W (Ho)/S1| = deg1(f
Ho , ΩHo)−

∑

(K)>(Ho)

n(Ho,K)nK · |W (K)/S1|,

where (K) ∈ Φ̃+
1 (G,V ), and the result follows. ¤
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