- Tangles are decided by weighted vertex sets (C. Elbracht, J. Kneip and M. Teegen), preprint 2018; ArXiv
- Circuits through prescribed edges (P. Knappe and M. Pitz), preprint 2018; ArXiv
- Separations of sets (N. Bowler and J. Kneip), preprint 2018; ArXiv
- A short derivation of the structure theorem for graphs with excluded topological minors (J. Erde and D. Weißauer), preprint 2018; ArXiv
- Structural submodularity and tangles in abstract separation systems (R. Diestel, J. Erde and D. Weißauer), preprint 2018; PDF
- In absence of long chordless cycles, large tree-width becomes a local phenomenon (D. Weißauer), to appear in JCTB; ArXiv
- Algebraically grid-like graphs have large tree-width (D. Weißauer), preprint 2018; ArXiv
- Profinite separation systems (R. Diestel and J. Kneip), preprint 2018; short/ long version
- Directed path-decompositions (J. Erde), preprint 2017; ArXiv
- A unified treatment of linked and lean tree-decompositions (J. Erde), JCTB 130 (2018), 114-143; ArXiv
- On the block number of graphs (D. Weißauer), preprint 2017; ArXiv
- Abstract separation systems (R. Diestel), Order 35 (2018), 157-170; PDF
- All graphs have tree-decompositions displaying their topological ends (J. Carmesin), to appear in Combinatorica; PDF
- Tangle-tree duality in abstract separation systems (R. Diestel and S. Oum), preprint 2017; PDF
- Tangle-tree duality: in graphs, matroids and beyond (R. Diestel and S. Oum), to appear in Combinatorica; PDF
- Tangles and the Mona Lisa (R. Diestel and G. Whittle), preprint 2016; PDF
- Duality theorems for blocks and tangles in graphs (R. Diestel, J. Erde and Ph. Eberenz), SIAM Journal on Discrete Mathematics 31 (2017), 1514-1528; PDF
- Canonical tree-decompositions of a graph that display its
*k*-blocks (J. Carmesin and P. Gollin), JCTB 122 (2017), 1-20; ArXiv - Profiles of separations: in graphs, matroids and beyond (R. Diestel, F. Hundertmark and S. Lemanczyk), to appear in Combinatorica; PDF
- Tree sets (R. Diestel), Order 35 (2018), 171-192; PDF
- A short proof that every finite graph has a tree-decomposition displaying its tangles (J. Carmesin), European J. Combin. 58 (2016), 61–65; PDF
- Refining a tree-decomposition which distinguishes tangles (J. Erde), SIAM Journal on Discrete Mathematics 31 (2017), 1529-1551; ArXiv
- Bounding connected tree-width (M. Hamann and D. Weißauer), SIAM Journal on Discrete Mathematics 30 (2016), 1391-1400; PDF
- Connected tree-width (R. Diestel and M. Müller), Combinatorica 38 (2018), 381-398; PDF
- Unifying duality theorems for width parameters in graphs and matroids I. Weak and strong duality (R. Diestel and S. Oum), preprint 2014; PDF
- Unifying duality theorems for width parameters in graphs and matroids II. General duality (R. Diestel and S. Oum), preprint 2014; ArXiv
- Linkages in large graphs of bounded tree-width (J. Fröhlich, K. Kawarabayashi, T. Müller, J. Pott and P. Wollan), preprint 2013; PDF
- k-Blocks: a connectivity invariant for graphs (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), SIDMA 28 (2014), 1876-1891; PDF
- Canonical tree-decompositions of finite graphs I. Existence and algorithms (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), JCTB 116 (2016), 1–24; PDF
- Canonical tree-decompositions of finite graphs II. Essential parts (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark), JCTB 118 (2016), 268–283; PDF
- Profiles. An algebraic approach to combinatorial connectivity (Fabian Hundertmark), preprint 2011; ArXiv
- Connectivity and tree-structure in finite graphs (J. Carmesin, R. Diestel, F. Hundertmark and M. Stein), Combinatorica 34 (2014), 1-35; PDF
- The Erdös-Pósa property for clique minors in highly connected graphs (Reinhard Diestel, Ken-ichi Kawarabayashi and Paul Wollan), J. Combin. Theory (Series B) 102 (2012), 454-469; PDF
- On the excluded minor structure theorem for graphs of large tree-width (Reinhard Diestel, Ken-ichi Kawarabayashi, Theo Müller and Paul Wollan), J. Combin. Theory (Series B) 102 (2012), 1189-1210; PDF
- Linear connectivity forces large complete bipartite minors: An alternative approach (Jan-Oliver Fröhlich and Theo Müller), J. Combin. Theory (Series B), 101 (2011), 502–508; ArXiv
- Graph minor hierarchies (R. Diestel and D. Kühn), Discrete Applied Mathematics 145 (2005), 167-182; PDF
- Dense minors in graphs of large girth (R. Diestel and C. Rempel), Combinatorica 25 (2005), 111-116; PDF
- Two short proofs concerning tree-decompositions (R. Diestel and P. Bellenbaum), Combinatoric, Probability and Computing 11 (2002), 1-7; PDF
- Highly connected sets and the excluded grid theorem (R. Diestel, K.Yu. Gorbunov, T.R. Jensen and C. Thomassen), J. Combin. Theory (Series B) 75 (1999), 61-73; DVI
- Graph Minors I: a short proof of the pathwidth theorem (R.
Diestel), Combinatorics, Probability and Computing 4 (1995),
27-30; DVI
(A better exposition with figures is available here in PDF
- an excerpt from the chapter on graph minors in
*Graph Theory*, 1st ed'n.)

- On Tangles and Trees (D. Weißauer), PhD dissertation, Hamburg 2018; PDF
- Tangles determined by majority vote (C. Elbracht), MSc dissertation, Hamburg 2017; PDF
- Characteristics of profiles (Ph. Eberenz), MSc dissertation, Hamburg 2015; PDF
- Tree-decomposition in finite and infinite graphs (J. Carmesin), PhD dissertation, Hamburg 2015; PDF
- Limit structures and ubiquity in finite and infinite graphs (J. Pott), PhD dissertation, Hamburg 2015; PDF
- Linkages in Large Graphs and Matroid Union (J.O. Fröhlich), PhD dissertation, Hamburg 2014; PDF
- The excluded minor structure theorem, and linkages in large graphs of bounded tree-width (T. Müller), PhD dissertation, Hamburg 2014; PDF
- Polishing tree-decompositions to bring out the k-blocks (P. Gollin), MSc dissertation, Hamburg 2014; PDF
- The tree-like connectivity structure of finite graphs and matroids (F. Hundertmark), PhD dissertation, Hamburg 2013; PDF
- Erzwingung von Teilstrukturen in Graphen durch globale Parameter (C. Rempel), PhD dissertation, Hamburg 2001; PDF
- Schlanke Baumzerlegungen von Graphen (P. Bellenbaum), Diplomarbeit, Hamburg 2000; PDF