Hamburg papers on
Finite graph minors, tree-structure and connectivity
- Tangles are decided by weighted vertex sets (C. Elbracht, J.
Kneip and M. Teegen), preprint 2018; ArXiv
- Circuits through prescribed edges (P. Knappe and M. Pitz),
preprint 2018; ArXiv
- Separations of sets (N. Bowler and J. Kneip), preprint 2018;
ArXiv
- A short derivation of the structure theorem for graphs with
excluded topological minors (J. Erde and D. Weißauer), preprint
2018; ArXiv
- Structural submodularity and tangles in abstract separation
systems (R. Diestel, J. Erde and D. Weißauer), preprint 2018; PDF
- In absence of long chordless cycles, large tree-width becomes
a local phenomenon (D. Weißauer), to appear in JCTB; ArXiv
- Algebraically grid-like graphs have large tree-width (D.
Weißauer), preprint 2018; ArXiv
- Profinite separation systems (R. Diestel and J. Kneip),
preprint 2018; short/
long
version
- Directed path-decompositions (J. Erde), preprint 2017; ArXiv
- A unified treatment of linked and lean tree-decompositions
(J. Erde), JCTB 130 (2018), 114-143; ArXiv
- On the block number of graphs (D. Weißauer), preprint 2017; ArXiv
- Abstract separation systems (R. Diestel), Order 35 (2018),
157-170; PDF
- All graphs have tree-decompositions displaying their
topological ends (J. Carmesin), to appear in Combinatorica; PDF
- Tangle-tree duality in abstract separation systems (R.
Diestel and S. Oum), preprint 2017; PDF
- Tangle-tree duality: in graphs, matroids and beyond (R.
Diestel and S. Oum), to appear in Combinatorica; PDF
- Tangles and the Mona Lisa (R. Diestel and G. Whittle),
preprint 2016; PDF
- Duality theorems for blocks and tangles in graphs (R.
Diestel, J. Erde and Ph. Eberenz), SIAM Journal on Discrete
Mathematics 31 (2017), 1514-1528; PDF
- Canonical tree-decompositions of a graph that display its k-blocks
(J. Carmesin and P. Gollin), JCTB 122 (2017), 1-20; ArXiv
- Profiles of separations: in graphs, matroids and beyond (R.
Diestel, F. Hundertmark and S. Lemanczyk), to appear in
Combinatorica; PDF
- Tree sets (R. Diestel), Order 35 (2018), 171-192; PDF
- A short proof that every finite graph has a
tree-decomposition displaying its tangles (J. Carmesin),
European J. Combin. 58 (2016), 61–65; PDF
- Refining a tree-decomposition which distinguishes tangles (J.
Erde), SIAM Journal on Discrete Mathematics 31 (2017),
1529-1551; ArXiv
- Bounding connected tree-width (M. Hamann and D. Weißauer),
SIAM Journal on Discrete Mathematics 30 (2016), 1391-1400; PDF
- Connected tree-width (R. Diestel and M. Müller),
Combinatorica 38 (2018), 381-398; PDF
- Unifying duality theorems for width parameters in graphs and
matroids I. Weak and strong duality (R. Diestel and S. Oum),
preprint 2014; PDF
- Unifying duality theorems for width parameters in graphs and
matroids II. General duality (R. Diestel and S. Oum),
preprint 2014; ArXiv
- Linkages in large graphs of bounded tree-width (J. Fröhlich,
K. Kawarabayashi, T. Müller, J. Pott and P. Wollan), preprint
2013; PDF
- k-Blocks: a connectivity invariant for graphs (J. Carmesin,
R. Diestel, M. Hamann and F. Hundertmark), SIDMA 28 (2014),
1876-1891; PDF
- Canonical tree-decompositions of finite graphs I. Existence
and algorithms (J. Carmesin, R. Diestel, M. Hamann and F.
Hundertmark), JCTB 116 (2016), 1–24; PDF
- Canonical tree-decompositions of finite graphs II. Essential
parts (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark),
JCTB 118 (2016), 268–283; PDF
- Profiles. An algebraic approach to combinatorial connectivity
(Fabian Hundertmark), preprint 2011; ArXiv
- Connectivity and tree-structure in finite graphs (J.
Carmesin, R. Diestel, F. Hundertmark and M. Stein),
Combinatorica 34 (2014), 1-35; PDF
- The Erdös-Pósa property for clique minors in highly connected
graphs (Reinhard Diestel, Ken-ichi Kawarabayashi and Paul
Wollan), J. Combin. Theory (Series B) 102 (2012), 454-469; PDF
- On the excluded minor structure theorem for graphs of large
tree-width (Reinhard Diestel, Ken-ichi Kawarabayashi, Theo
Müller and Paul Wollan), J. Combin. Theory (Series B) 102
(2012), 1189-1210; PDF
- Linear connectivity forces large complete bipartite minors:
An alternative approach (Jan-Oliver Fröhlich and Theo Müller),
J. Combin. Theory (Series B), 101 (2011), 502–508;
ArXiv
- Graph minor hierarchies (R. Diestel and D. Kühn), Discrete
Applied Mathematics 145 (2005), 167-182; PDF
- Dense minors in graphs of large girth (R. Diestel and C.
Rempel), Combinatorica 25 (2005), 111-116; PDF
- Two short proofs concerning tree-decompositions (R. Diestel
and P. Bellenbaum), Combinatoric, Probability and Computing 11
(2002), 1-7; PDF
- Highly connected sets and the excluded grid theorem (R.
Diestel, K.Yu. Gorbunov, T.R. Jensen and C. Thomassen), J.
Combin. Theory (Series B) 75 (1999), 61-73; DVI
- Graph Minors I: a short proof of the pathwidth theorem (R.
Diestel), Combinatorics, Probability and Computing 4 (1995),
27-30; DVI
(A better exposition with figures is available here in PDF
- an excerpt from the chapter on graph minors in Graph
Theory, 1st ed'n.)
Theses:
- On Tangles and Trees (D. Weißauer), PhD dissertation, Hamburg
2018; PDF
- Tangles determined by majority vote (C. Elbracht), MSc
dissertation, Hamburg 2017; PDF
- Characteristics of profiles (Ph. Eberenz), MSc dissertation,
Hamburg 2015; PDF
- Tree-decomposition in finite and infinite graphs (J.
Carmesin), PhD dissertation, Hamburg 2015; PDF
- Limit structures and ubiquity in finite and infinite graphs
(J. Pott), PhD dissertation, Hamburg 2015; PDF
- Linkages in Large Graphs and Matroid Union (J.O. Fröhlich),
PhD dissertation, Hamburg 2014; PDF
- The excluded minor structure theorem, and linkages in large
graphs of bounded tree-width (T. Müller), PhD dissertation,
Hamburg 2014; PDF
- Polishing tree-decompositions to bring out the k-blocks (P.
Gollin), MSc dissertation, Hamburg 2014; PDF
- The tree-like connectivity structure of finite graphs and
matroids (F. Hundertmark), PhD dissertation, Hamburg 2013; PDF
- Erzwingung von Teilstrukturen in Graphen durch globale
Parameter (C. Rempel), PhD dissertation, Hamburg 2001; PDF
- Schlanke Baumzerlegungen von Graphen (P. Bellenbaum),
Diplomarbeit, Hamburg 2000; PDF