Hamburg papers on
Graph minors and connectivity
- Locally chordal graphs (T. Abrishami, R. W. Jacobs, P. Knappe, J. Kobler), preprint 2025;
ArXiv
- Canonical graph decompositions and local separations: From infinite coverings to a finite combinatorial theory (J. Carmesin, R. W. Jacobs, P. Knappe, J. Kurkofka), preprint 2025;
ArXiv
- Asymptotic half-grid and full-grid minors (S. Albrechtsen, M. Hamann), preprint 2024;
ArXiv
- On vertex sets inducing tangles (S. Albrechtsen, H. von Bergen, R.W. Jacobs, P. Knappe, P. Wollan), preprint 2024;
ArXiv
- A characterisation of graphs quasi-isometric to K4-minor-free graphs (S. Albrechtsen, R.W. Jacobs, P. Knappe, P. Wollan), preprint 2024;
ArXiv
- Connectoids II: existence of normal trees (N. Bowler, F. Reich), preprint 2024;
ArXiv
- Connectoids I: a universal end space theory (N. Bowler, F. Reich), preprint 2024;
ArXiv
- A structural duality for path-decompositions into parts of small radius (S. Albrechtsen, R. Diestel, A. Elm, E. Fluck, R. Jacobs, P. Knappe and P. Wollan), preprint 2023; ArXiv
- A Menger-type theorem for two induced paths
(S. Albrechtsen, T. Huynh, R. Jacobs, P. Knappe and P. Wollan), preprint 2023;
ArXiv
- A grid theorem for strong immersions of walls
(R. Diestel, R. Jacobs, P. Knappe and P. Wollan), to appear in JGT;
ArXiv
- The immersion-minimal infinitely edge-connected graph (P.
Knappe and J. Kurkofka), Journal of Combinatorial Theory B 164 (2024), 492-516; ArXiv
- Canonical graph decompositions via coverings (R. Diestel, R. Jacobs, P. Knappe and J. Kurkofka), preprint 2022; ArXiv
- Agile Sets in Graphs (C. Elbracht, J. Kneip, and M. Teegen), preprint 2021; ArXiv
- Edge-connectivity and tree-structure in finite and infinite graphs (C. Elbracht, J. Kurkofka and M. Teegen), preprint 2020; ArXiv
- Greedoids from flames (A. Joó), Journal of Graph Theory 98(1) (2021), 49-56; ArXiv
- The Farey graph is uniquely determined by its connectivity
(J. Kurkofka), JCTB 151 (2021), 223-234; ArXiv
- Every infinitely edge-connected graph contains the Farey
graph or T_{\aleph_0}*t as a minor (J. Kurkofka), Mathematische Annalen 382 (2022), 1881-1900;
ArXiv
- A note on minor antichains of uncountable graphs (M. Pitz), J. Graph Theory (2022); ArXiv.
- Proof of Halin's normal spanning tree conjecture (M. Pitz), Israel J. Math. 246 (2021), 353-370 ; ArXiv.
- All graphs have tree-decompositions displaying their
topological ends (J. Carmesin), Combinatorica 39 (2019), 545–596; PDF
- Constructing tree-decompositions that display all topological ends (M. Pitz), Combinatorica 42(5) (2022), 763-769; ArXiv.
- Circuits through prescribed edges (P. Knappe and M. Pitz),
J. Graph Theory 93(4) (2020) 470-482; ArXiv
- A short derivation of the structure theorem for graphs with
excluded topological minors (J. Erde and D. Weißauer), SIAM J.
Discrete Math., 33, 1654-1661; ArXiv
- In absence of long chordless cycles, large tree-width becomes
a local phenomenon (D. Weißauer), JCTB 139 (2019), 342-352; ArXiv
- Algebraically grid-like graphs have large tree-width (D.
Weißauer), Electronic J. Comb. 26 (2019), #P1.15; ArXiv
- Directed path-decompositions (J. Erde), SIAM Journal on Discrete Mathematics 34(1) (2020), 415-430; ArXiv
- A unified treatment of linked and lean tree-decompositions
(J. Erde), JCTB 130 (2018), 114-143; ArXiv
- On the block number of graphs (D. Weißauer), SIAM J. Discret.Math. 33 (2019), 346-357; ArXiv
- Canonical tree-decompositions of a graph that display its k-blocks
(J. Carmesin and P. Gollin), JCTB 122 (2017), 1-20; ArXiv
- Ends and tangles (R. Diestel), Abhandlungen Math. Sem. Univ.
Hamburg 87 (2017), 223–244; PDF
- A short proof that every finite graph has a tree-decomposition
displaying its tangles (J. Carmesin), European J. Combin. 58
(2016), 61–65; PDF
- Refining a tree-decomposition which distinguishes tangles (J.
Erde), SIAM Journal on Discrete Mathematics 31 (2017),
1529–1551; ArXiv
- Bounding connected tree-width (M. Hamann and D. Weißauer),
SIAM Journal on Discrete Mathematics 30 (2016), 1391–1400; PDF
- Connected tree-width (R. Diestel and M. Müller),
Combinatorica 38 (2018), 381-398; PDF
- Linkages in large graphs (J. Fröhlich,
K. Kawarabayashi, T. Müller, J. Pott and P. Wollan), Limit structures and ubiquity in finite and infinite graphs (2015), 155; PDF
- k-Blocks: a connectivity invariant for graphs (J. Carmesin,
R. Diestel, M. Hamann and F. Hundertmark), SIDMA 28 (2014),
1876-1891; PDF
- Canonical tree-decompositions of finite graphs I. Existence
and algorithms (J. Carmesin, R. Diestel, M. Hamann and F.
Hundertmark), JCTB 116 (2016), 1–24; PDF
- Canonical tree-decompositions of finite graphs II. Essential
parts (J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark),
JCTB 118 (2016), 268–283; PDF
- Connectivity and tree-structure in finite graphs (J. Carmesin,
R. Diestel, F. Hundertmark and M. Stein), Combinatorica 34
(2014), 1–35; PDF
- The Erdös-Pósa property for clique minors in highly connected
graphs (Reinhard Diestel, Ken-ichi Kawarabayashi and Paul
Wollan), J. Combin. Theory (Series B) 102 (2012), 454-469; PDF
- On the excluded minor structure theorem for graphs of large
tree-width (Reinhard Diestel, Ken-ichi Kawarabayashi, Theo
Müller and Paul Wollan), J. Combin. Theory (Series B) 102
(2012), 1189-1210; PDF
- Linear connectivity forces large complete bipartite minors:
An alternative approach (Jan-Oliver Fröhlich and Theo Müller),
J. Combin. Theory (Series B), 101 (2011), 502–508;
ArXiv
- Graph minor hierarchies (R. Diestel and D. Kühn), Discrete
Applied Mathematics 145 (2005), 167-182; PDF
- Dense minors in graphs of large girth (R. Diestel and C.
Rempel), Combinatorica 25 (2005), 111-116; PDF
- Two short proofs concerning tree-decompositions (R. Diestel
and P. Bellenbaum), Combinatoric, Probability and Computing 11
(2002), 1-7; PDF
- Highly connected sets and the excluded grid theorem (R.
Diestel, K.Yu. Gorbunov, T.R. Jensen and C. Thomassen), J.
Combin. Theory (Series B) 75 (1999), 61-73; DVI
- Graph Minors I: a short proof of the pathwidth theorem (R.
Diestel), Combinatorics, Probability and Computing 4 (1995),
27-30; DVI
(A better exposition with figures is available here in PDF
- an excerpt from the chapter on graph minors in Graph
Theory, 1st ed'n.)
Some theses in the area:
- Tree-structure in separation systems and infinitary
combinatorics (J. Erde), Habilitationsschrift, Hamburg 2019; PDF
- On Tangles and Trees (D. Weißauer), PhD dissertation, Hamburg
2018; PDF
- Tangles determined by majority vote (C. Elbracht), MSc
dissertation, Hamburg 2017; PDF
- Characteristics of profiles (Ph. Eberenz), MSc dissertation,
Hamburg 2015; PDF
- Tree-decomposition in finite and infinite graphs (J.
Carmesin), PhD dissertation, Hamburg 2015; PDF
- Limit structures and ubiquity in finite and infinite graphs
(J. Pott), PhD dissertation, Hamburg 2015; PDF
- Linkages in Large Graphs and Matroid Union (J.O. Fröhlich),
PhD dissertation, Hamburg 2014; PDF
- The excluded minor structure theorem, and linkages in large
graphs of bounded tree-width (T. Müller), PhD dissertation,
Hamburg 2014; PDF
- Polishing tree-decompositions to bring out the k-blocks (P.
Gollin), MSc dissertation, Hamburg 2014; PDF
- The tree-like connectivity structure of finite graphs and
matroids (F. Hundertmark), PhD dissertation, Hamburg 2013; PDF
- Erzwingung von Teilstrukturen in Graphen durch globale
Parameter (C. Rempel), PhD dissertation, Hamburg 2001; PDF
- Schlanke Baumzerlegungen von Graphen (P. Bellenbaum),
Diplomarbeit, Hamburg 2000; PDF