Proof. By Lemma 12.3.4, we have $tw(K^4) \ge 3$. By Proposition 12.4.2, therefore, a graph of tree-width < 3 cannot contain K^4 as a minor.

Conversely, let G be a graph without a K^4 minor; we assume that $|G| \ge 3$. Add edges to G until the graph G' obtained is edge-maximal without a K^4 minor. By Proposition 8.3.1, G' can be constructed recursively from triangles by pasting along K^2 s. By induction on the number of recursion steps and Lemma 12.3.4, every graph constructible in this way has a tree-decomposition into triangles (as in the proof of Proposition 12.3.8). Such a tree-decomposition of G' has width 2, and by Lemma 12.3.1 it is also a tree-decomposition of G.

A question converse to the above is to ask for which X (other than K^3 and K^4) the tree-width of the graphs in $\operatorname{Forb}_{\preccurlyeq}(X)$ is bounded. Interestingly, it is not difficult to show that any such X must be planar. Indeed, consider the graph on $\{1, \ldots, n\}^2$ with the edge set

$$\{(i,j)(i',j'): |i-i'|+|j-j'|=1\};\$$

this graph is called the $n \times n$ grid. Clearly, the $n \times n$ grid is planar (for every n), and hence lies in every class $\operatorname{Forb}_{\preccurlyeq}(X)$ with non-planar X. On the other hand, it is not difficult to show that the tree-width of the $n \times n$ grid tends to infinity with n (Exercise 19). Therefore, the tree-width of the graphs in $\operatorname{Forb}_{\preccurlyeq}(X)$ cannot be bounded unless X is planar.

The following deep and surprising theorem says that, conversely, the tree-width of the graphs in Forb_{\leq}(X) is bounded for every planar X:

Theorem 12.4.4. (Robertson & Seymour 1986)

The tree-width of the graphs in $\operatorname{Forb}_{\preccurlyeq}(X)$ is bounded if and only if X is planar.

The proof of Theorem 12.4.4 is too involved to be presented here. However, there is a similar result on the related notion of 'path-width', which we shall prove instead: its proof is much simpler, but it gives an indication of some of the techniques used for the proof of Theorem 12.4.4.

A tree-decomposition whose tree is a path is called a *path-decompo*sition. We usually denote a path-decomposition (P, \mathcal{V}) simply by listing the sets $V_1, \ldots, V_s \in \mathcal{V}$ in the order defined by P. The least width of a path-decomposition of G is the *path-width* pw(G) of G.

The analogue of Theorem 12.4.4 for path-width is obtained simply by replacing planarity with acyclicity:

Theorem 12.4.5. (Robertson & Seymour 1983)

The path-width of the graphs in $\operatorname{Forb}_{\preccurlyeq}(X)$ is bounded if and only if X is a forest.

The forward implication of Theorem 12.4.5 is again easy. All we have to show is that trees can have arbitrarily large path-width: since

path-decomposition

 $\begin{array}{c} path-width \\ pw(G) \end{array}$

grid

For $b_{\preccurlyeq}(X)$ contains all trees if X has a cycle, this will imply that forbidding X cannot bound the path-width unless X is a forest.

How can one show that a graph—in our case, a tree—has large path-width? Let (V_1, \ldots, V_s) be a path-decomposition of some connected graph G, of width pw(G) and such that $V_1, V_s \neq \emptyset$. Pick vertices $v_1 \in V_1$ and $v_s \in V_s$, and let Q be a v_1-v_s path in G. By Lemma 12.3.2, Q meets every $V_r, r = 1, \ldots, s$. Hence, the path-decomposition $(V_1 \smallsetminus V(Q), \ldots, V_s \searrow V(Q))$ of G - Q has width at most pw(G) - 1, so pw(G - Q) < pw(G).

Thus every connected graph G contains a path whose deletion reduces the path-width of G. If we may further assume (e.g. by some suitable induction hypothesis) that G - Q has large path-width for every path $Q \subseteq G$, then G has even larger path-width.

We now use this idea to show that trees can have arbitrarily large path-width. Let T_3^k denote the tree in which one specified vertex r has degree 3, all other vertices (except the leaves) have degree 4, and all leaves have distance k from r. If $T = T_3^{k+1}$ and Q is any path in T, then Q contains at most two of the three edges at r; hence, T - Q contains a component of T - r, which is a copy of T_3^k . Induction on k thus shows that $pw(T_3^k) \ge k$ for all k.

For the proof of the backward implication of Theorem 12.4.5 we G = (V, E) need some definitions and two lemmas. Let G = (V, E) be a graph. For ∂X $X \subseteq V$, we denote by ∂X the set of all vertices in X with a neighbour \mathcal{B}_n in G - X. For every integer $n \ge 0$ we define a set $\mathcal{B}_n = \mathcal{B}_n(G)$ of subsets of V by the following recursion:

- (i) $\emptyset \in \mathcal{B}_n$;
- (ii) if $X \in \mathcal{B}_n$, $X \subseteq Y \subseteq V$ and $|\partial X| + |Y \setminus X| \leq n$, then $Y \in \mathcal{B}_n$ (Fig. 12.4.1).

Fig. 12.4.1. If X lies in \mathcal{B}_n , then so does Y

Thus, a set $X \subseteq V$ lies in \mathcal{B}_n if and only if there is a sequence

$$\emptyset = X_0 \subseteq \ldots \subseteq X_s = X$$

such that $|\partial X_r| + |X_{r+1} \setminus X_r| \leq n$ for all r < s. For example, if (V_1, \ldots, V_s) is a path-decomposition of G of width < n, then all its

(12.3.1)

'initial segments' $V_1 \cup \ldots \cup V_r$ $(r \leq s)$ lie in \mathcal{B}_n , including V for r = s (exercise). Conversely, we have the following:

Lemma 12.4.6. If $V \in \mathcal{B}_n$, then pw(G) < n.

Proof. If $V \in \mathcal{B}_n$, then there is a sequence $\emptyset = X_0 \subseteq \ldots \subseteq X_s = V$ such that $|\partial X_r| + |X_{r+1} \smallsetminus X_r| \leq n$ for all r < s. We set

$$V_{r+1} := \partial X_r \cup (X_{r+1} \smallsetminus X_r)$$

and show that (V_1, \ldots, V_s) is a path-decomposition of G (Fig. 12.4.2).

Fig. 12.4.2. Constructing a path-decomposition from \mathcal{B}_n

Induction on r shows that $X_r = V_1 \cup \ldots \cup V_r$ for all $r \leq s$; in particular, $V = X_s = V_1 \cup \ldots \cup V_s$. Hence (T1) holds. For the proof of (T2), let $xy \in E$ be given. Let r(x) be minimum with $x \in X_{r(x)}$, and r(y) minimum with $y \in X_{r(y)}$. We assume that $r(x) \leq r(y) =: r$, and show that x, like y, lies in V_r . This is clear if r(x) = r. Yet if r(x) < r, then x lies in X_{r-1} , and hence in $\partial X_{r-1} \subseteq V_r$ since $xy \in E$. For the proof of (T3), finally, let p < q < r and $x \in V_p \cap V_r$ be given. Then $x \in V_p \subseteq V_1 \cup \ldots \cup V_{q-1} = X_{q-1} \subseteq X_{r-1}$, so $x \in X_{r-1} \cap V_r$. By definition of V_r this implies $x \in \partial X_{r-1}$, so $x \in \partial X_{r-1} \cap X_{q-1} \subseteq \partial X_{q-1} \subseteq V_q$. \Box

Lemma 12.4.7. Let $Y \in \mathcal{B}_n$ and $Z \subseteq Y$. If there is a family $(P_z)_{z \in \partial Z}$ of disjoint $Z - \partial Y$ paths in G with $z \in P_z$ for all $z \in \partial Z$, then $Z \in \mathcal{B}_n$ (Fig. 12.4.3).

Fig. 12.4.3. Five paths P_z ; three of them trivial

Proof. By definition of \mathcal{B}_n , there are sets $\emptyset = Y_0 \subseteq \ldots \subseteq Y_s = Y$ such that

$$|\partial Y_r| + |Y_{r+1} \smallsetminus Y_r| \leqslant n$$

for all r < s. We shall deduce from this that, setting $Z_r := Y_r \cap Z$, we also have

$$|\partial Z_r| + |Z_{r+1} \smallsetminus Z_r| \leqslant n$$

for all r < s; then $Z = Z_s \in \mathcal{B}_n$.

Fix r. Since $Z_{r+1} \smallsetminus Z_r = Z_{r+1} \smallsetminus Y_r \subseteq Y_{r+1} \smallsetminus Y_r$, it suffices to show that $|\partial Z_r| \leq |\partial Y_r|$. We prove this by constructing an injective map $z \mapsto y$ from $\partial Z_r \smallsetminus \partial Y_r$ to $\partial Y_r \smallsetminus \partial Z_r$ (Fig. 12.4.4).

Fig. 12.4.4. An injective path linkage between $\partial Z_r \smallsetminus \partial Y_r$ and $\partial Y_r \smallsetminus \partial Z_r$

Consider a vertex $z \in \partial Z_r \setminus \partial Y_r$. Then z has a neighbour in $Y_r \setminus Z_r = Y_r \setminus Z$, so $z \in \partial Z$. Now P_z is a path from $(Z_r \subseteq) Y_r$ to ∂Y , so P_z has a vertex y in ∂Y_r ; note that $y \neq z$ by the choice of z. As z is the only vertex of P_z in Z, we have $y \in \partial Y_r \setminus \partial Z_r$. Since the paths P_z are disjoint, these vertices y are distinct for different z, so $|\partial Z_r| \leq |\partial Y_r|$ as claimed.

(1.5.2)
(3.3.1) Proof of Theorem 12.4.5. The forward implication of the theorem was proved earlier. For the converse, we prove the following:

$$n, F If pw(G) \ge n \in \mathbb{N}, \text{ then } G \text{ contains every forest } F \text{ with} |F| - 1 = n \text{ as a minor.} (*)$$

Clearly, by (*), if X is any forest then every graph in $Forb_{\preccurlyeq}(X)$ has path-width less than |X| - 1.

So let $pw(G) \ge n$, and assume without loss of generality that F is a v_1, v_2, \ldots tree. Let (v_1, \ldots, v_{n+1}) be an enumeration of V(F) as in Corollary 1.5.2, i.e. so that v_{i+1} has exactly one neighbour in $\{v_1, \ldots, v_i\}$, for all $i \le n$.

 Z_r

z

y

262

For every i = 0, ..., n, we shall define a family $\mathcal{X}^i = (X_0^i, ..., X_i^i)$ of disjoint subsets of V, such that $X_j^k \subseteq X_j^\ell$ whenever $j \leq k \leq \ell$ and all X_j^i with j > 0 are connected in G. We then write

$$X^i := X_0^i \cup \ldots \cup X_i^i. \qquad \qquad X^i$$

For each *i*, the following three statements will hold:

- (i) G contains an $X_j^i X_k^i$ edge whenever $1 \leq j < k \leq i$ and $v_j v_k \in E(F)$ (so $F[v_1, \ldots, v_i]$ is a minor of $G[X_1^i \cup \ldots \cup X_i^i]$);
- (ii) $|X_i^i \cap \partial X^i| = 1$ for all $1 \leq j \leq i$;
- (iii) X^i is maximal in \mathcal{B}_n with $|\partial X^i| \leq i$.

Note that (ii) and (iii) together imply $|\partial X^i| = i$.

Fig. 12.4.5. Constructing an F minor in G

Let $X_0^0 \in \mathcal{B}_n$ be maximal with $|\partial X_0^0| = 0$ (possibly $X_0^0 = \emptyset$). Then (i)–(iii) hold for i = 0. Assume now that \mathcal{X}^i has been defined so that (i)–(iii) hold, for given $i \leq n$. If i = 0, let x be any vertex of $G - X^0$; xnote that $G - X^0 \neq \emptyset$, since $X^0 \in \mathcal{B}_n$ but $V \notin \mathcal{B}_n$ by Lemma 12.4.6. If i > 0, consider the unique $j \leq i$ with $v_j v_{i+1} \in E(F)$, and let $x \in G - X^i$ xbe a neighbour of the unique vertex in $X_j^i \cap \partial X^i$; cf. (ii). Set

$$X := X^i \cup \{x\}.$$

If i = n, we have $F \preccurlyeq G[X]$ by (i) and the choice of x, so we are done. Assume then that i < n. Then $X \in \mathcal{B}_n$ and $|\partial X| > i$, by (iii) and the definition of \mathcal{B}_n . Since $\partial X \cap X^i \subseteq \partial X^i$, this means that

$$|\partial X| = i+1$$

and

$$\partial X = \partial X^i \cup \{x\}.$$

 \mathcal{X}^{i}

Let $Y \in \mathcal{B}_n$ be maximal with $X \subseteq Y$ and

$$\partial Y| = i+1;$$

this set Y will later become X^{i+1} .

By Menger's theorem (3.3.1), there exist a set \mathcal{P} of disjoint $X - \partial Y$ paths in G[Y] and a set $S \subseteq Y$ which separates X from ∂Y in G[Y] and contains exactly one vertex from each path in \mathcal{P} (but no other vertices). Let Z denote the union of S with the vertex sets of the components of G - S that meet X. Clearly,

$$\partial Z \subseteq S$$

and $X^i \subsetneq X \subseteq Z$; let us show that even

$$X \subseteq Z \subseteq Y.$$

Let $z \in Z$ be given. If $z \in S$, then $z \in Y$ by the choice of S. If $z \notin S$, then z can be reached from X by a path avoiding S. If $z \notin Y$, then by $X \subseteq Y$ this path contains an $X - \partial Y$ path in G[Y], contradicting the definition of S.

Thus $Z \subseteq Y \in \mathcal{B}_n$, so $Z \in \mathcal{B}_n$ by Lemma 12.4.7 applied to the $Z - \partial Y$ paths contained in the paths from \mathcal{P} . By (iii), $i < |\partial Z| \leq |S| = |\mathcal{P}|$. As every path in \mathcal{P} meets ∂X , this gives $i < |\mathcal{P}| \leq |\partial X| = i + 1$ and hence

$$|\mathcal{P}| = i+1,$$

so \mathcal{P} links ∂X to ∂Y bijectively.

We now define \mathcal{X}^{i+1} . For $1 \leq k \leq i$ let $X_k^{i+1} := X_k^i \cup V(P_k)$, where P_k is the path in \mathcal{P} containing the unique vertex of ∂X^i in X_k^i ; cf. (ii). Similarly, let X_{i+1}^{i+1} be the vertex set of the path in \mathcal{P} that contains x. Finally, put $X_0^{i+1} := Y \smallsetminus (X_1^{i+1} \cup \ldots \cup X_{i+1}^{i+1})$. Clearly,

$$X^{i+1} = Y.$$

Condition (i) for i+1 holds by choice of x; (ii) holds by $X^{i+1} = Y$ and definition of \mathcal{P} ; (iii) holds by $X^{i+1} = Y$ and the choice of Y, combined with $X^i \subseteq Y$ and (iii) for i.

As remarked earlier, $F \preccurlyeq G$ follows from the definition of X when i = n.

264

 \mathcal{P} S

Z

Y