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Proof. By Lemma 12.3.4, we have tw(K*) > 3. By Proposition 12.4.2,
therefore, a graph of tree-width < 3 cannot contain K* as a minor.
Conversely, let G be a graph without a K¢ minor; we assume that
|G| > 3. Add edges to G until the graph G’ obtained is edge-maximal
without a K* minor. By Proposition 8.3.1, G’ can be constructed re-
cursively from triangles by pasting along K?2s. By induction on the
number of recursion steps and Lemma 12.3.4, every graph constructible
in this way has a tree-decomposition into triangles (as in the proof of
Proposition 12.3.8). Such a tree-decomposition of G’ has width 2, and
by Lemma 12.3.1 it is also a tree-decomposition of G. |

A question converse to the above is to ask for which X (other than
K3 and K?) the tree-width of the graphs in Forb4(X) is bounded. In-
terestingly, it is not difficult to show that any such X must be planar.
Indeed, consider the graph on {1,...,n }? with the edge set

{@DE ) li=i' |+ 15 =41 =1}

this graph is called the n x n grid. Clearly, the n x n grid is planar (for
every n), and hence lies in every class Forb4(X) with non-planar X. On
the other hand, it is not difficult to show that the tree-width of the n x n
grid tends to infinity with n (Exercise 19). Therefore, the tree-width of
the graphs in Forb4(X) cannot be bounded unless X is planar.

The following deep and surprising theorem says that, conversely, the
tree-width of the graphs in Forbg(X) is bounded for every planar X:

Theorem 12.4.4. (Robertson & Seymour 1986)
The tree-width of the graphs in Forbg(X) is bounded if and only if X
is planar.

The proof of Theorem 12.4.4 is too involved to be presented here.
However, there is a similar result on the related notion of ‘path-width’,
which we shall prove instead: its proof is much simpler, but it gives an
indication of some of the techniques used for the proof of Theorem 12.4.4.

A tree-decomposition whose tree is a path is called a path-decompo-
sition. We usually denote a path-decomposition (P, V) simply by listing
the sets Vi,..., Vs € V in the order defined by P. The least width of a
path-decomposition of G is the path-width pw(G) of G.

The analogue of Theorem 12.4.4 for path-width is obtained simply
by replacing planarity with acyclicity:

Theorem 12.4.5. (Robertson & Seymour 1983)
The path-width of the graphs in Forb4(X) is bounded if and only if X
is a forest.

The forward implication of Theorem 12.4.5 is again easy. All we
have to show is that trees can have arbitrarily large path-width: since
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Forb4(X) contains all trees if X has a cycle, this will imply that forbid-
ding X cannot bound the path-width unless X is a forest.

How can one show that a graph—in our case, a tree—has large
path-width? Let (Vi,...,V;) be a path-decomposition of some connect-
ed graph G, of width pw(G) and such that Vi,Vy # 0. Pick vertices
v1 € Vi and vy € Vi, and let Q be a v1—vs path in G. By Lemma
12.3.2, @Q meets every V., r = 1,...,s. Hence, the path-decomposition
(VINV(Q),..., Vs \V(Q)) of G— Q has width at most pw(G) — 1, so
pw(G — Q) < pw(G).

Thus every connected graph G contains a path whose deletion re-
duces the path-width of G. If we may further assume (e.g. by some
suitable induction hypothesis) that G — @ has large path-width for every
path @ C G, then G has even larger path-width.

We now use this idea to show that trees can have arbitrarily large
path-width. Let T4 denote the tree in which one specified vertex r has
degree 3, all other vertices (except the leaves) have degree 4, and all
leaves have distance k from r. If T = Tf“ and @ is any path in T, then
@ contains at most two of the three edges at r; hence, T — @) contains a
component of T — r, which is a copy of T&. Induction on k thus shows
that pw(T%) > k for all k.

For the proof of the backward implication of Theorem 12.4.5 we
need some definitions and two lemmas. Let G = (V, E) be a graph. For
X C V, we denote by 0X the set of all vertices in X with a neighbour
in G — X. For every integer n > 0 we define a set B,, = B,,(G) of subsets
of V' by the following recursion:

(i) 0 € By;
(i) it X € B,, X CY CVand |[0X|+|Y \X| <n, thenY € B,
(Fig. 12.4.1).
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Fig. 12.4.1. If X lies in By, then so does Y
Thus, a set X C V lies in B, if and only if there is a sequence
P=X,C...CX, =X

such that [0X,| + |X;41 N~ X;| < n for all » < s. For example, if
(V4,...,Vs) is a path-decomposition of G of width < n, then all its
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‘initial segments’ V1 U... UV, (r < s) lie in B, including V for r = s
(exercise). Conversely, we have the following:

Lemma 12.4.6. IfV € B,, then pw(G) < n.

Proof. If V € B, then there is a sequence ) = Xy C ... C X, = V such
that |0X, |+ | X,41 N X,| < nfor all r < s. We set

‘/7-4_1 = 8XT U (X7-+1 N X,)

and show that (V1,...,Vs) is a path-decomposition of G (Fig. 12.4.2).

i=Xi - g

X7' Xr+1/

Fig. 12.4.2. Constructing a path-decomposition from B,

Induction on r shows that X,, = Vi U...UV, for all r < s; in
particular, V.= X, = V3 U...UV;. Hence (T1) holds. For the proof
of (T2), let zy € E be given. Let r(x) be minimum with x € X,.(,), and
7(y) minimum with y € X, (). We assume that r(z) < r(y) =: r, and
show that z, like y, lies in V.. This is clear if r(z) = r. Yet if r(z) < r,
then x lies in X,_1, and hence in 0X,_1 C V, since zy € E. For the
proof of (T3), finally, let p < ¢ < r and = € V, NV, be given. Then
zeV,CViU...UV,1 =X,1 CX,_1,502 € X,_1NV,. By definition
of V,. this implies € 0X,_1,s0x € 0X,_1NXq—1 CO0Xq—1 C V. O

Lemma 12.4.7. Let Y € B, and Z C Y. If there is a family (P,).coz

of disjoint Z-0Y paths in G with z € P, for all z € 0Z, then Z € B,
(Fig. 12.4.3).

Y € B,

Fig. 12.4.3. Five paths P;; three of them trivial
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Proof. By definition of B,,, there are sets ) = Yy, C ... C Y, = Y such
that

0Y; |+ Vi N Y| <

for all » < s. We shall deduce from this that, setting Z, := Y, N Z, we
also have

|0Z,| +|Zr41 N Zr| <1

for all r < s; then Z = Z, € B,.

Fix r. Since Z, 11\ Z, = Z,41 N\ Y, C Y, 11 \Y,, it suffices to show
that [0Z,.] < |0Y,|. We prove this by constructing an injective map
z +— y from 0Z, \ 9Y, to 9Y,. \ 07, (Fig. 12.4.4).

Fig. 12.4.4. An injective path linkage between 0Z, \ 0Y; and
oY, \ 07,

Consider a vertex z € 9Z, ~ 0Y,. Then z has a neighbour in
Y.NZ, =Y, NZ, s0 z € dZ. Now P, is a path from (Z, C) Y, to 9Y,
so P, has a vertex y in dY,; note that y # z by the choice of z. As z is
the only vertex of P, in Z, we have y € 3Y,. \ 0Z,.. Since the paths P,
are disjoint, these vertices y are distinct for different z, so |0Z,| < |0Y,|
as claimed. O

Proof of Theorem 12.4.5. The forward implication of the theorem
was proved earlier. For the converse, we prove the following:

If pw(G) 2 n € N, then G contains every forest F' with (%)
|F|—1 = n as a minor.

Clearly, by (*), if X is any forest then every graph in Forb4(X) has
path-width less than |X|— 1.

So let pw(G) = n, and assume without loss of generality that F is a
tree. Let (vy,...,vp41) be an enumeration of V(F) as in Corollary 1.5.2,
i.e. so that v;11 has exactly one neighbour in {vq,...,v; }, for all i < n.
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For every i = 0,...,n, we shall define a family X* = (X{,..., X})
of disjoint subsets of V', such that lec - Xf whenever 7 < k < £ and all
X J’ with 7 > 0 are connected in G. We then write

X':=Xju...uX}.

For each i, the following three statements will hold:

(i) G contains an X}FX,i edge whenever 1 < j < k < ¢ and vjvy, €
E(F) (so F[vy,...,v;] is aminor of G[XiU...UX!]);
(ii) [XiNoX'| =1forall 1 <j <i;
(ili) X? is maximal in B,, with [0X"] < i.

Note that (ii) and (iii) together imply [0X?| = i.

Fig. 12.4.5. Constructing an F' minor in G

Let X{ € B,, be maximal with |0X{| = 0 (possibly X = 0). Then
(i)—(iii) hold for i = 0. Assume now that X* has been defined so that
(i)—(iii) hold, for given i < n. If i = 0, let x be any vertex of G — X;
note that G — X% # (), since X° € B,, but V ¢ B,, by Lemma 12.4.6. If
i > 0, consider the unique j < i with v;v;41 € E(F), and let z € G— X"
be a neighbour of the unique vertex in X} NaX"; cf. (ii). Set

X = X'U{x}.

If i = n, we have F' < G[X] by (i) and the choice of z, so we are
done. Assume then that ¢ < n. Then X € B,, and |0X| > 14, by (iii) and
the definition of B,,. Since X N X* C 0X?, this means that

[0X] =1+1
and
0X =0X'u{x}.

X'L
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Let Y € B,, be maximal with X C Y and
0Y] =i+1;

this set Y will later become X1

By Menger’s theorem (3.3.1), there exist a set P of disjoint X-9Y
pathsin G [Y ] and a set S C Y which separates X from Y in G[Y ] and
contains exactly one vertex from each path in P (but no other vertices).
Let Z denote the union of S with the vertex sets of the components of
G — S that meet X. Clearly,

0Z C S
and X’ ¢ X C Z; let us show that even
XCZzZCY.

Let z € Z be given. If z € S, then z € Y by the choice of S. If z ¢ S,
then z can be reached from X by a path avoiding S. If z ¢ Y, then by
X C Y this path contains an X-9Y path in G[Y'], contradicting the
definition of S.

Thus Z CY € B, so Z € B, by Lemma 12.4.7 applied to the Z-90Y
paths contained in the paths from P. By (iii), ¢ < |0Z] < |S| = |P|. As
every path in P meets 0X, this gives i < |P| < |0X| =i+ 1 and hence

Pl =i+1,

so P links 0X to Y bijectively.
We now define X*+*. For 1 < k <ilet X, := X} UV (P), where
Py is the path in P containing the unique vertex of X" in X} ; cf. (ii).
Similarly, let X errll be the vertex set of the path in P that contains z. Fi-
nally, put X(i)+1 =Y~ (Xittu... UXer'll) Clearly,
Xi+1 —Y.

Condition (i) for i + 1 holds by choice of z; (ii) holds by X*! =Y and de-
finition of P; (iii) holds by X' = Y and the choice of Y, com-
bined with X C Y and (iii) for 4.

As remarked earlier, F' < G follows from the definition of X when
1 =n. |



