personal homepage
B. Jacob, F.L.S., J. Wintermayr
A refinement of Baillon's theorem on maximal regularity
preprint arXiv: 2008.00459, submitted, 2020.
K. Bickel, P. Gorkin, A. Greenbaum, T. Ransford, F.L.S., E. Wegert
Crouzeix's Conjecture and related problems,
preprint arXiv: 2006.04901, submitted, 2020.
R. Hosfeld, B. Jacob, F.L.S., Input-to-state stability of unbounded bilinear control systems,
preprint arXiv: 1811.08470, submitted, 2020.
B. Jacob, F.L.S., L. Vorberg, Remarks on input-to-state stability of collocated systems with saturated feedback,
preprint arXiv: 2001.01636, submitted, 2020.
T. Berger, M. Puche, F.L.S., Funnel control in the presence of infinite-dimensional internal dynamics,
System and Control Letters, 139, 2020.
arXiv,
DOI.
F.L.S., Input-to-state stability for parabolic boundary control: Linear and semi-linear systems,
accepted for publication in Control Theory of Infinite-Dimensional Systems
Eds. Kerner, Laasri, Mugnolo in Linear Operators and Linear Systems, Birkhäuser 2020.
arXiv: 1908.08317, DOI
M. Puche, T. Reis, F.L.S., Funnel control for boundary control systems,
accepted in Evolution Equations and Control Theory, 2020.
preprint arXiv: 1903.03599
T. Berger, M. Puche, F.L.S., Funnel control for a moving water tank,
preprint arXiv: 1902.00585, submitted, 2019.
B. Jacob, F.L.S., H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability,
Journal of Differential Equations, 266(10), 2019,
arXiv, DOI.
M. Puche, T. Reis, F.L.S., Constant-coefficient differential-algebraic operators and the Kronecker form,
Linear Algebra and its Applications, 552:
29-41, 2018, DOI.
R. Nabiullin, F.L.S., Strong input-to-state stability for infinite dimensional linear systems,
Mathematics of Control, Signals and Systems, 30(4), 2018.
arXiv,
view-only of published article,
DOI.
T. Ransford, F.L.S., Remarks on the Crouzeix-Palencia proof that the numerical range is a \(1+\sqrt{2}\)-spectral set,
SIAM Journal on Matrix Analysis and Applications 39(1): 342-345, 2018.
arXiv, DOI, pdf (Copyright SIAM).
B. Jacob, R. Nabiullin, J.R. Partington, F.L.S., Infinite-dimensional input-to-state stability and Orlicz spaces,
SIAM Journal on Control and Optimization 56(2): 868-889, 2018,
arXiv, DOI, pdf (Copyright SIAM).
B. Jacob, R. Nabiullin, J.R. Partington, F.L.S., On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems,
55th IEEE Conference on Decision and Control, Dec 12-14, Las Vegas, 2265-2269, 2016,Preprint, DOI.
F.L.S. Functional calculus estimates for Tadmor-Ritt operators,
Journal of Mathematical Analysis and Applications, 439(1): 103-124, 2016,
arXiv (preprint), DOI.
F.L.S. On measuring the unboundedness of the $H^{\infty}$-calculus for generators of analytic semigroups
Journal of Functional Analysis, 271(1), 49-81, 2016, arXiv, DOI.
F.L.S., H. Zwart. Functional calculus for $C_0$-semigroups using infinite-dimensional systems theory,
Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Eds. Arendt, Chill and Tomilov, Operator Theory: Advances and Applications, vol. 250, 483-489, Birkhäuser, 2015, arXiv, DOI.
F.L.S., H. Zwart. Less than one implies zero,
Studia Mathematica 229(2): 181-188, 2015, arXiv, preprint (new version), DOI.
F.L.S., H. Zwart. Zero-two law for cosine families,
Journal of Evolution Equations 15(3): 559-569, 2015, DOI (open access).
F.L.S., H. Zwart. Generators with a closure relation,
Operators and Matrices, 8(1): 157-165, 2014, arXiv, DOI.
F.L.S., H. Zwart. Weakly admissible $H_{\infty}$-calculus on reflexive Banach spaces,
Indagationes Mathematicae, 23(4): 796-815, 2012, DOI.
For preprints see also my articles on arXiv.
For further information concerning the articles (copies of them), feel free to send me an
email.