personal homepage

problem loading pic


  1. B. Jacob, F.L.S., J. Wintermayr
    A refinement of Baillon's theorem on maximal regularity
    preprint arXiv: 2008.00459, submitted, 2020.

  2. K. Bickel, P. Gorkin, A. Greenbaum, T. Ransford, F.L.S., E. Wegert
    Crouzeix's Conjecture and related problems,
    preprint arXiv: 2006.04901, submitted, 2020.

  3. R. Hosfeld, B. Jacob, F.L.S., Input-to-state stability of unbounded bilinear control systems,
    preprint arXiv: 1811.08470, submitted, 2020.

  4. B. Jacob, F.L.S., L. Vorberg, Remarks on input-to-state stability of collocated systems with saturated feedback,
    preprint arXiv: 2001.01636, submitted, 2020.

  5. T. Berger, M. Puche, F.L.S., Funnel control in the presence of infinite-dimensional internal dynamics,
    System and Control Letters, 139, 2020.
    arXiv, DOI.

  6. F.L.S., Input-to-state stability for parabolic boundary control: Linear and semi-linear systems,
    accepted for publication in Control Theory of Infinite-Dimensional Systems Eds. Kerner, Laasri, Mugnolo in Linear Operators and Linear Systems, Birkhäuser 2020.
    arXiv: 1908.08317, DOI

  7. M. Puche, T. Reis, F.L.S., Funnel control for boundary control systems,
    accepted in Evolution Equations and Control Theory, 2020.
    preprint arXiv: 1903.03599

  8. T. Berger, M. Puche, F.L.S., Funnel control for a moving water tank,
    preprint arXiv: 1902.00585, submitted, 2019.

  9. B. Jacob, F.L.S., H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability,
    Journal of Differential Equations, 266(10), 2019,
    arXiv, DOI.

  10. M. Puche, T. Reis, F.L.S., Constant-coefficient differential-algebraic operators and the Kronecker form,
    Linear Algebra and its Applications, 552: 29-41, 2018, DOI.

  11. R. Nabiullin, F.L.S., Strong input-to-state stability for infinite dimensional linear systems,
    Mathematics of Control, Signals and Systems, 30(4), 2018.
    arXiv, view-only of published article, DOI.

  12. T. Ransford, F.L.S., Remarks on the Crouzeix-Palencia proof that the numerical range is a \(1+\sqrt{2}\)-spectral set,
    SIAM Journal on Matrix Analysis and Applications 39(1): 342-345, 2018.
    arXiv, DOI, pdf (Copyright SIAM).

  13. B. Jacob, R. Nabiullin, J.R. Partington, F.L.S., Infinite-dimensional input-to-state stability and Orlicz spaces,
    SIAM Journal on Control and Optimization 56(2): 868-889, 2018,
    arXiv, DOI, pdf (Copyright SIAM).

  14. B. Jacob, R. Nabiullin, J.R. Partington, F.L.S., On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems,
    55th IEEE Conference on Decision and Control, Dec 12-14, Las Vegas, 2265-2269, 2016,Preprint, DOI.

  15. F.L.S. Functional calculus estimates for Tadmor-Ritt operators,
    Journal of Mathematical Analysis and Applications, 439(1): 103-124, 2016,
    arXiv (preprint), DOI.

  16. F.L.S. On measuring the unboundedness of the $H^{\infty}$-calculus for generators of analytic semigroups
    Journal of Functional Analysis, 271(1), 49-81, 2016, arXiv, DOI.

  17. F.L.S., H. Zwart. Functional calculus for $C_0$-semigroups using infinite-dimensional systems theory,
    Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Eds. Arendt, Chill and Tomilov, Operator Theory: Advances and Applications, vol. 250, 483-489, Birkhäuser, 2015, arXiv, DOI.

  18. F.L.S., H. Zwart. Less than one implies zero,
    Studia Mathematica 229(2): 181-188, 2015, arXiv, preprint (new version), DOI.

  19. F.L.S., H. Zwart. Zero-two law for cosine families,
    Journal of Evolution Equations 15(3): 559-569, 2015, DOI (open access).

  20. F.L.S., H. Zwart. Generators with a closure relation,
    Operators and Matrices, 8(1): 157-165, 2014, arXiv, DOI.

  21. F.L.S., H. Zwart. Weakly admissible $H_{\infty}$-calculus on reflexive Banach spaces,
    Indagationes Mathematicae, 23(4): 796-815, 2012, DOI.


  1. F.L.S. On Functional Calculus Estimates,
    PhD thesis, University of Twente, Enschede, 2015, pdf.
  2. F.L.S. Generalisations of Semigroups of Operators in the View of Linear Relations,
    MSc thesis, Vienna University of Technology, Vienna, 2011, pdf.

For preprints see also my articles on arXiv.
For further information concerning the articles (copies of them), feel free to send me an email.