Home Teaching Conferences About Me
Sven Möller

Sven Möller

Emmy-Noether Junior Research Group Leader
Bereich Algebra und Zahlentheorie
Fachbereich Mathematik
Universität Hamburg, Germany

Contact Information

business Geomatikum, Room 314 (directionsopen_in_new, mapopen_in_new)
alternate_email math@moeller-sv...
alternate_email sven.moeller@uni-ha... (for internal use)
lock public PGP key (encrypted mails are welcome)
link Link to this webpage: www.moeller-sven.de
phone+49 40 42838 5183
mail Mailing address

Research Projects and Interests

I am broadly interested in representation theory, number theory and mathematical physics. In particular, I study vertex algebras, conformal field theory, automorphic forms, infinite-dimensional Lie algebras and their connections.

I am principal investigator in the SFB 1624 Higher Structures, Moduli Spaces and Integrability.

I am key researcher in the cluster of excellence Quantum Universe.

Together with Claudia Alfes-Neumann I organised a workshop on Modular Forms and Representation Theory in 2022.

Research Group

Ph.D. students:

Curriculum Vitæ

Academic CV file_downloadPDF
(last updated: Mar. 2023)

Selected Publications

  1. Hilbert Schemes of Points in the Plane and Quasi-Lisse Vertex Algebras with N = 4 Symmetry.
    Submitted, 2023. (arXiv:2309.17308 [math.RT]).
    With Tomoyuki Arakawa and Toshiro Kuwabara.
  2. Dimension Formulae and Generalised Deep Holes of the Leech Lattice Vertex Operator Algebra.
    Ann. of Math., 197(1):221–288, 2023. (arXiv:1910.04947 [math.QA]).
    With Nils R. Scheithauer.
    (Video of talk by Nils R. Scheithaueropen_in_new)
  3. Construction and Classification of Holomorphic Vertex Operator Algebras.
    J. Reine Angew. Math. (Crelle's Journal), 759:61–99, 2020. (arXiv:1507.08142 [math.RT]).
    With Jethro van Ekeren and Nils R. Scheithauer.
    (Videos of talks by Jethro van Ekerenopen_in_new and Nils R. Scheithaueropen_in_new)

All Publications

My publications on Google Scholar open_in_new, the arXiv open_in_new (incomplete: zbMath open_in_new, MathSciNet open_in_new)

  1. Hilbert Schemes of Points in the Plane and Quasi-Lisse Vertex Algebras with N = 4 Symmetry.
    Submitted, 2023. (arXiv:2309.17308 [math.RT]).
    With Tomoyuki Arakawa and Toshiro Kuwabara.
  2. Classification of Self-Dual Vertex Operator Superalgebras of Central Charge at Most 24.
    Submitted, 2023. (arXiv:2303.17190 [math.QA]).
    With Gerald Höhn.
    (Video of talk by Gerald Höhn and meopen_in_new)
  3. A Geometric Classification of the Holomorphic Vertex Operator Algebras of Central Charge 24.
    Algebra Number Theory, to appear, 2024. (arXiv:2112.12291 [math.QA]).
    With Nils R. Scheithauer.
  4. Systematic Orbifold Constructions of Schellekens' Vertex Operator Algebras from Niemeier Lattices.
    J. Lond. Math. Soc., 106(4):3162–3207, 2022. (arXiv:2010.00849 [math.QA]).
    With Gerald Höhn.
  5. Schellekens' List and the Very Strange Formula.
    Adv. Math., 380:107567, 2021. (arXiv:2005.12248 [math.QA]).
    With Jethro van Ekeren, Ching Hung Lam and Hiroki Shimakura.
    (Video of talk by Jethro van Ekerenopen_in_new)
  6. Dimension Formulae and Generalised Deep Holes of the Leech Lattice Vertex Operator Algebra.
    Ann. of Math., 197(1):221–288, 2023. (arXiv:1910.04947 [math.QA]).
    With Nils R. Scheithauer.
    (Video of talk by Nils R. Scheithaueropen_in_new)
  7. Natural Construction of Ten Borcherds-Kac-Moody Algebras Associated with Elements in M23.
    Comm. Math. Phys., 383(1):35–70, 2021. (arXiv:1905.09629 [math.QA]).
  8. Orbifold Vertex Operator Algebras and the Positivity Condition.
    In: Research on Algebraic Combinatorics and Representation Theory of Finite Groups and Vertex Operator Algebras.
    RIMS Kôkyûroku, (2086):163–171, 2018. (arXiv:1803.03702 [math.QA]).
  9. Dimension Formulae in Genus Zero and Uniqueness of Vertex Operator Algebras.
    Int. Math. Res. Not., 2020(7):2145–2204, 2020. (arXiv:1704.00478 [math.QA]).
    With Jethro van Ekeren and Nils R. Scheithauer.
  10. A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications.
    Ph.D. thesis, Technische Universität Darmstadt, 2016. (arXiv:1611.09843 [math.QA]).
  11. Construction and Classification of Holomorphic Vertex Operator Algebras.
    J. Reine Angew. Math. (Crelle's Journal), 759:61–99, 2020. (arXiv:1507.08142 [math.RT]).
    With Jethro van Ekeren and Nils R. Scheithauer.
    (Videos of talks by Jethro van Ekerenopen_in_new and Nils R. Scheithaueropen_in_new)

Mailing Address

Sven Möller
Bereich Algebra und Zahlentheorie
Fachbereich Mathematik
Universität Hamburg
Bundesstraße 55
20146 Hamburg
Germany