Schriftzug: Fachbereich Mathematik 
  UHH > Fakultäten > MIN-Fakultät > Mathematik > Personen   STiNE |  KUS-Portal |  Sitemap Suchen Hilfe there is no english version of this page  

Stefan Suhr

St Fachbereich Mathematik
Bereich AD
Bundesstraße 55 (Geomatikum)
20146 Hamburg
Raum 336
Tel.: +49 40 42838-5187
E-Mail: Stefan.Suhr (at)

Lehrveranstaltungen im SoSe 2017:

Forschungsseminar über Differentialgeometrie /Research Seminar on Differential Geometry
Termin: Montag 16 Uhr, Geom. 142

List of talks

Sprechstunden im SoSe 2017: Donnerstag 14-15 Uhr

Research interests:

Closed orbits in dynamical systems
Lorentzian geometry
Geometric calculus of variations
Theory of optimal transportation


1. (with V. Cortés and M. Dyckmanns) Completeness of projective special Kähler and quaternionic Kähler manifolds.
to appear in the proceedings of the workshop "New perspectives in differential geometry: special metrics and quaternionic geometry" in honour of Simon Salamon (Rome, 16-20 November 2015). arXiv
2. (with K. Zehmisch ) Polyfolds, Cobordisms, and the Strong Weinstein Conjecture. Adv. Math.305 (2017), 1250-1267. science direct
3. (with V. Cortés and M. Nardmann) Completeness of Hyperbolic Centroaffine Hypersurfaces. Comm. Anal. Geom. 24 (2016), no. 1, 59--92. intl. press
4. ( with P. Mounoud) On Spacelike Zoll Surfaces With Symmetries. J. Differ. Geom. 102 (2016), 243--284. euclid
5. (with K. Zehmisch) Linking and Closed Orbits. Abh. Math. Sem. Hamburg. 86 (2016), 133--150. springerlink
6. A counterexample to Guillemin's Zollfrei conjecture. J. Topol. Anal., 05, 251 (2013). worldscientific
7. (with P. Mounoud) Pseudo-Riemannian geodesic foliations by circles. Math. Z. 274 (2013), 225--238. springerlink
8. Closed geodesics in Lorentzian surfaces. Trans. Amer. Math. Soc. 365 (2013), 1469-1486. Trans. Amer. Math. Soc.
9. Class A spacetimes. Geom. Dedicata, 160 (2012), 91--117. springerlink
10. Maximal geodesics in Lorentzian geometry. Dissertation. Freiburg (2010). freidok
11. Homologically Maximizing geodesics in conformally flat tori. 125--143, AMS/IP Stud. Adv. Math., 49, Amer. Math. Soc., Providence, RI, 2011. arXiv


1. (with U. Frauenfelder and C. Lange) A Hamiltonian version of a result of Gromoll and Grove. arXiv
2. Theory of optimal transport for Lorentzian cost functions. arXiv
3. (with P. Bernard) Lyapounov Functions of closed Cone Fields: from Conley Theory to Time Functions. arXiv
3. Aubry-Mather Theory and Lipschitz Continuity of the Time Separation. arXiv
4. Length Maximizing Invariant Measures in Lorentzian Geometry. arXiv
CV (in german)

  Seitenanfang  Impressum 2017-04-05, Stefan Suhr