|
Stefan Suhr
|
Fachbereich Mathematik
Bereich AD
Bundesstraße 55 (Geomatikum)
20146 Hamburg
|
Raum 336
Tel.: +49 40 42838-5187
E-Mail:
Stefan.Suhr (at) math.uni-hamburg.de
|
Lehrveranstaltungen im SoSe 2017:
Forschungsseminar über Differentialgeometrie /Research Seminar on Differential Geometry
Termin: Montag 16 Uhr, Geom. 142
List of talks
Sprechstunden im SoSe 2017: Donnerstag 14-15 Uhr
Research interests:
Closed orbits in dynamical systems
Lorentzian geometry
Geometric calculus of variations
Theory of optimal transportation
Publications:
1. (with V. Cortés and M. Dyckmanns) Completeness of projective special Kähler and quaternionic Kähler manifolds.
to appear in the proceedings of the
workshop "New perspectives in differential geometry: special metrics and quaternionic geometry" in honour of Simon Salamon (Rome, 16-20 November 2015).
arXiv
2. (with K. Zehmisch ) Polyfolds, Cobordisms, and the Strong Weinstein Conjecture. Adv. Math.305 (2017), 1250-1267.
science direct
3. (with V. Cortés and M. Nardmann) Completeness of Hyperbolic Centroaffine Hypersurfaces. Comm. Anal. Geom. 24 (2016), no. 1, 59--92.
intl. press
4. ( with P. Mounoud) On Spacelike Zoll Surfaces With Symmetries. J. Differ. Geom. 102 (2016), 243--284.
euclid
5. (with K. Zehmisch) Linking and Closed Orbits. Abh. Math. Sem. Hamburg. 86 (2016), 133--150.
springerlink
6. A counterexample to Guillemin's Zollfrei conjecture. J. Topol. Anal., 05, 251 (2013). worldscientific
7. (with P. Mounoud) Pseudo-Riemannian geodesic foliations by circles. Math. Z. 274 (2013), 225--238.
springerlink
8. Closed geodesics in Lorentzian surfaces. Trans. Amer. Math. Soc. 365 (2013), 1469-1486.
Trans. Amer. Math. Soc.
9. Class A spacetimes. Geom. Dedicata, 160 (2012), 91--117.
springerlink
10. Maximal geodesics in Lorentzian geometry. Dissertation. Freiburg (2010). freidok
11. Homologically Maximizing geodesics in conformally flat tori. 125--143, AMS/IP Stud. Adv. Math., 49, Amer. Math. Soc., Providence, RI, 2011.
arXiv
Preprints:
1. (with U. Frauenfelder and C. Lange) A Hamiltonian version of a result of Gromoll and Grove.
arXiv
2. Theory of optimal transport for Lorentzian cost functions. arXiv
3. (with P. Bernard) Lyapounov Functions of closed Cone Fields: from Conley Theory to Time Functions. arXiv
3. Aubry-Mather Theory and Lipschitz Continuity of the Time Separation. arXiv
4. Length Maximizing Invariant Measures in Lorentzian Geometry. arXiv
CV (in german)
|
|