



SoSe 2025

# Complex functions for students of engineering sciences

Notes on the exam

Claus R. Goetz

# Exam Mathematics IV: Date, place, procedure

Date, place, procedures, materials and tools

## Date, place, process

<u>Date:</u> Wed., 27.08.25, 13:00 - 15:00 (KoFu and DGL II)

Place: CU Arena (S - Neugraben)

Am Johannisland 2 21147 Hamburg

#### For PDEs and Complex Fuctions:

- You get two exams.
- You have 120 minutes, which you can spend as you prefer.
- lacksquare In each exam, the maximum number of points is 20.
- In the end, both exams are treated as one big exam.

#### More on the process

#### The hall will be separated into two areas:

- PDEs and Complex Fuctions (German)
- PDEs and Complex Fuctions (English)

#### When you're inside the hall:

- Take a seat, stay seated.
- We hand out the exams. You fill out the covers. You must not open the exam until you get the signal to do so. Opening the exams early counts as an attempt to cheat!

#### During the exam:

- We check the attendance. Please put a photo-ID and the cover of one exam easily visible on your desk.
- Unfortunately, we will have to briefly interrupt you when we're checking the cover of the exam you're working on.

#### Allowed materials

#### You have to bring:

- Something to write with (no pencils, no red ink), you do not need your own paper.
- An official photo-ID (passport, driver's licence, etc.)

#### You can bring:

- Anything on paper (text books, lecture notes, your own notes, ...)
- a non-smart watch that doesn't produce distracting sounds

#### You must not bring:

- smart phones, smart watches
- pocket calculators or other electronic devices

# **2** Exam Complex Functions:

**Typical topics** 

# Preliminary remarks

In the following we discuss some topics that have typically occurred in previous exams. This should give you some orientation when preparing for the exam.

#### **However:**

- If a topic from the lecture / the exercises does not show up in these notes it does not
  follow that it cannot show up on the exam.
- We cannot repeat everything in these notes, there will only be some bullet points.
- In particular, I will not go into all details concerning conditions under which certain statements hold.

Basics: Representation of complex numbers, elementary operations, simple sets

# **Representation of complex numbers**

$$z=x+\mathrm{i} y,\quad x,y\in\mathbb{R}\qquad\text{or}\qquad z=r\mathrm{e}^{\mathrm{i}\varphi},\;r>0,\;\varphi\in[-\pi,\pi)$$

# **Elementary operations**

 $\operatorname{Re}(z)$ ,  $\operatorname{Im}(z)$ ,  $\overline{z}$ , |z|,  $\operatorname{arg}(z)$ 

# Simple subsets of $\mathbb C$

Circles, rings, sectors, quadrants, stripes, rectangles

Solutions of complex equations  $(\rightarrow$  P2, P3)

# **Roots and logarithms**

For  $k \in \mathbb{Z}$ ,  $\arg(z) \in (-\pi, \pi)$ :

• 
$$w^n = z \implies w = |z|^{1/n} \cdot \exp\left(i\left(\frac{\arg(z)}{n} + \frac{2k\pi}{n}\right)\right)$$

• 
$$e^{nw} = z$$
  $\Rightarrow$   $w = \ln\left(|z|^{1/n}\right) + i \cdot \left(\frac{\arg(z)}{n} + \frac{2k\pi}{n}\right)$ 

We call  $\ln(z) = \ln(|z|) + i \cdot \arg(z)$ , with  $\arg(z) \in (-\pi, \pi)$ , the principal values of the complex logarithm.

Images of elementary functions ( o P2, HA 2)

# **Elementary functions**

 $az+b, \quad z^k, \quad {
m e}^z, \quad {
m ln}(z)$  and their compositions

What are the images of circles, rings, sectors, quadrants, stripes, rectangles, under elementary functions?

The Möbius transformation ( ightarrow P3, P4, HA3, HA4)

# **Möbius transformation**

$$T: \mathbb{C}^* \to \mathbb{C}^*$$
,  $T(z) = \frac{az+b}{cz+d}$ ,  $ad-bc \neq 0$ 

For a Möbius transformation T the following hods:

- T is uniquely determined by three interpolation conditions,  $T(z_1)=y_1,\quad T(z_2)=y_2,\quad T(z_3)=y_3.$  In particular, for  $y_1=0,\ y_2=\infty:\quad T(z)=\alpha\frac{z-z_1}{z-z_2}.$
- T maps generalized circles to generalized circles.
- G generalized circle:  $-d/c \in G \iff T(G)$  is a straight line.
- ullet T preserves symmetries w.r.t. generalized circles.
- T is conformal in all  $z \neq -d/c$ .

Complex derivatives ( ightarrow P4, HA4)

### **Cauchy-Riemann-ODEs**

$$f(z)=u(x,y)+\mathrm{i} v(x,y)$$
 is complex differentiable in  $z=x+\mathrm{i} y$   $\Leftrightarrow$   $u_x(x,y)=v_y(x,y)$  and  $u_y(x,y)=-v_x(x,y).$ 

In that case,  $f'(z) = u_x(x,y) + iv_x(x,y)$ .

- f diff.able in a neighbourhood of  $z_0 \Rightarrow u, v$  harmonic
- For u with  $\Delta u=0$  we can find v with  $\Delta v=0$ , such that  $f=u+\mathrm{i}v$  is diff.able (conjugate harmonic function, potential problem from CR-ODEs).
- f conformal (angle preserving) in  $z_0 \Leftrightarrow f'(z_0) \neq 0$
- $\exp'(z) = \exp(z)$ ,  $\sin'(z) = \cos(z)$ ,  $(z^n)' = nz^{n-1}$ ,...
- lacktriangledown G: open domain, f diff.able in all  $z\in G$ : f is called analytic.

Complex curve integrals (
ightarrow P5, HA5)

 $G \subset \mathbb{C}$ ,  $\Gamma$ : Curve in G, parametrized by  $\Gamma = \{c(t) \mid t \in [a,b]\}$ ,  $f: G \to \mathbb{C}$ 

# **Complex curve integral**

$$\int_{\Gamma} f(z) dz = \int_{a}^{b} f(c(t)) c'(t) dt.$$

• If G simply connected and f analytic on G with F'=f:

$$\int_{\Gamma} f(z) \, \mathrm{d}z \, = \, F(c(b)) - F(c(a)) \qquad (\rightarrow \mathsf{path} \; \mathsf{independence})$$

• If additionally  $\Gamma$  is closed:

$$\int_{\Gamma} f(z) \, \mathrm{d}z \, = \, 0 \qquad (\rightarrow \text{ Cauchy integral theorem})$$

Cauchy integral formulas 
$$( \rightarrow P5, HA5 )$$

G: simply connected open domain,  $z_0 \in G$ 

 $\Gamma$ : closed curve in G,  $\operatorname{Ind}(z_0,\Gamma)=1$ 

f: analytic on G

### **Cauchy integral formulas**

$$\int_{\Gamma} \frac{f(z)}{(z-z_0)^n} dz = 2\pi i \cdot \frac{f^{(n-1)}(z_0)}{(n-1)!}$$

# **Analytic functions**

G : open domain,  $\ f$  analytic on G

# **Taylor series**

$$f(z)=\sum_{n=0}^{\infty}c_n\cdot(z-z_0)^n, \qquad z\in B_R(z_0) \quad ext{(largest circle around } z_0 ext{ in } G$$
 )

- $c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z z_0)^{n+1}} dz$ 
  - Usually simpler: Use known series expansions.

Laurent series  $(\rightarrow$  P6, HA 6)

### **Laurent series**

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n = \underbrace{\sum_{n = -\infty}^{-1} c_n (z - z_0)^n}_{principal\ part} + \underbrace{\sum_{n = 0}^{\infty} c_n (z - z_0)^n}_{minor\ part}$$

Expansion point  $z_0 \in \mathbb{C}$ ,  $z \in R_{r_1}^{r_2} = \{z \in \mathbb{C} \mid r_1 < |z - z_0| < r_2\}$ Converges in the largest ring around  $z_0$  that contains no singularities.

- In different rings we get different Laurent series.
- $c_n = \frac{1}{2\pi} \int_{\Gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$
- If f in  $B_{r_2}(z_0)$  is analytic, the principal part vanishes.
- If possible, use know series expansions of the function (or of parts of the function).
   Often we can use the trick with the geometric series.

Isolated singularities  $(\rightarrow$  P6, P7, HA6, HA 7)

# **Isolated singularities**

f analytic: isolated singularity at  $z_0$ , if for some r>0 the function f in defined for all z with  $0<|z-z_0|< r$ , but not in  $z_0$ .

We distinguish between removable singularities, poles and essential singularities.

- Singularities can be characterized using the principal part of the Laurent series.
- Rational functions never have essential singularities.
- Often it's simpler:
  - $\triangleright$   $z_0$  is removable if  $\lim_{z\to z_0}(z-z_0)f(z)=0$ .
  - $ightharpoonup z_0$  is a pole of order m, if  $\lim_{z\to z_0}(z-z_0)^m f(z)$  exists and is not zero.
  - In particular, for  $f(z)=1/q(z),\ q$  polynomial: Roots of q are poles with order corresponding to their multiplicity.

Residues  $(\rightarrow$  P7, HA 7)

#### The residue

f analytic, iso. singularity at  $z_0$ , Laurent series:  $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$  We call  $\operatorname{Res}(f,z_0) := c_{-1} = \frac{1}{2\pi \mathrm{i}} \int_{\Gamma} f(z) \,\mathrm{d}z$  the residue of f at  $z_0$ .

Computing residues:

• 
$$z_0$$
 removable  $\Rightarrow \operatorname{Res}(f, z_0) = 0$ 

• 
$$z_0$$
 simple pole  $\Rightarrow$   $\operatorname{Res}(f,z_0) = \lim_{z \to z_0} (z-z_0) f(z)$ 

• 
$$z_0$$
 pole of order  $m$   $\Rightarrow$   $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \frac{(z - z_0)^m f(z)}{(m-1)!}$ 

• 
$$f(z)=\frac{p(z)}{q(z)}$$
,  $p,\ q$  analytic witch  $q(z_0)=0,\ q'(z_0)\neq 0$    
  $\Rightarrow \operatorname{Res}(f,z_0)=\frac{p(z_0)}{q'(z_0)}$ 

Residue theorem  $(\rightarrow$  P7, HA 7)

f: analytic on  $G \setminus \{z_1, \dots, z_n\}$  $\Gamma$ : closed curve in G which goes

 $\Gamma$ : closed curve in G , which goes around each  $z_k$  with respective index  $\operatorname{Ind}(z_k,\Gamma)$ 

Residue theorem 
$$( o$$
 P7, HA 7) 
$$\int_{\Gamma} f(z) \, \mathrm{d}z \, = \, 2\pi \mathrm{i} \cdot \sum_{k=1}^n \mathrm{Ind}(z_k, \Gamma) \cdot \mathrm{Res}(f, z_k)$$

 $\operatorname{Ind}(z_k,\Gamma)=$  # positive loops - # negative loops

More applications of residues  $(\rightarrow$  P7, HA7)

# **Improper integrals**

$$f(z)=rac{p(z)}{q(z)}$$
,  $p,\ q$  polynomials with real coefficients and  $\deg(q)\geq \deg(p)+2$ ,

no root 
$$z_k$$
 of  $q$  is real  $\Rightarrow \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2\pi \mathrm{i} \cdot \sum_{\mathrm{Im}(z_k) > 0} \mathrm{Res}(f, z_k)$ 

# **Partial fractions**

$$f(z) = \frac{p(z)}{q(z)}$$
,  $p, q$  polynomials with  $m = \deg(q) > \deg(p)$ ,

$$z_1, \ \ldots, z_m \ \ \text{simple roots of} \ q \quad \Rightarrow \quad f(z) = \frac{\operatorname{Res}(f,z_1)}{z-z_1} + \cdots + \frac{\operatorname{Res}(f,z_m)}{z-z_m}$$

# 3 Additional remarks

#### Additional remarks

- The content of the exam will mostly follow the material discussed in the working sheets.
- There are  $2\cdot 20$  points and 120 minutes time, i.e. on average 3 minutes per point. For a problem with three points you should not spend 20 minutes on computations. If a problem has seven points, it is unlikely that you can solve it by one line of computations.

#### What will **not** be on the exam:

- Fourier transformations
- (complicated) proofs

#### Additional resources

#### Old exams:

- You can find old exams on the website for the teaching export (link in Stud.IP). Most of the are in German only, though.
- Note that teachers in previous courses may have put their emphasis on different topics and may have used a different notation.
- The exam this year could also contain different types of problems.

#### Office hours / contact:

- In the week 18.08. 22.08. we will offer additional office hours at UHH (dates will follow on the website for teaching export and in Stud.IP)
- Simple questions can be answered by mail (claus.goetz@uni-hamburg.de or DM in Stud.IP).