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Homework 6 - Solutions

Problem 1. Let ln denote the principal branch of the natural logarithm and consider

f(z) = ln(1 + z) + ln(1− z).

(a) Show that for n ∈ N the n -th derivative of f is given by

f (n)(z) = −(n− 1)!

(
(−1)n

(1 + z)n
+

1

(1− z)n

)
.

(b) Compute the Taylor series of f around z0 = i and determine its radius of conver-
gence.

Solution.

(a) Of course, we can compute this directly. But we show the claim by induction for n :

Base, n = 1 :

f ′(z) =
1

1 + z
− 1

1− z
= − (1− 1)!

(
(−1)1

(1 + z)1
+

1

(1− z)1

)
.

Proposition: For some n ∈ N it holds

f (n)(z) = −(n− 1)!

(
(−1)n

(1 + z)n
+

1

(1− z)n

)
.

Step: n → n+ 1

f (n+1)(z) =
d

dz
f (n) =

d

dz

(
−(n− 1)!

(
(−1)n

(1 + z)n
+

1

(1− z)n

))
= − (n− 1)!

(
−n · (−1)n

(1 + z)n+1
+

−n · (−1)

(1− z)n+1

)
= − n!

(
(−1)n+1

(1 + z)n+1
+

1

(1− z)n+1

)
.

(b) We have
1± i =

√
2e±iπ

4
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and therefore

c0 = f(i) = ln(
√
2) + i · π

4
+ ln(

√
2)− i · π

4
= 2 ln(

√
2) = ln(2).

For n ∈ N we get

cn =
f (n)(i)

n!
= − 1

n

(
ei·nπ

(
√
2)nei·nπ/4

+
1

(
√
2)ne−i·nπ/4

)
= − ei·nπ/2

n · (
√
2)n

(
ei·nπ/4 + e−i·nπ/4) = − 2

n
·
(

i√
2

)n

· cos
(nπ

4

)
.

The Taylor series is

f(z) = ln(2) +
∞∑
n=1

− 2

n · n!
·
(

i√
2

)n

· cos
(nπ

4

)
· (z − i)n.

The series converges in the largest disk aroud z0 = i that contains no singularity of
f . The nearest singularities of f lie at ±1 , so the radius of convergence is

R = | ± 1− i| =
√
2.

Problem 2. Find all power series expansions of

f(z) =
5z

z2 + z − 6

around z0 = i . Where do these series converge, respectively?

Solution: Factoring the denominator z2+ z− 6 = (z− 2)(z+3) we find the singularities
at z1 = 2 and z2 = −3 .

Decomposing into partial fractions we get

f(z) =
5z

z2 + z − 6
=

3

z + 3
+

2

z − 2
.

We are expanding around z0 = i , so from the position of the singularities at z1 = 2 and
z2 = −3 we can see we will have a Taylor expansion inside the disk |z− i| <

√
5 , a Laurent

expansion in the ring
√
5 < |z − i| <

√
10 and another different Laurent expansion in the

exterior
√
10 < |z − i| .
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We use the trick with the geometric series to expand the partial fractions:

For |z − i| <
√
5 :

2

z − 2
=

2

−2 + i + (z − i)
=

2

−2 + i
· 1

1− (z − i)/(2− i)

=
2

−2 + i

∞∑
n=0

(z − i)n

(2− i)n
=

∞∑
n=0

−2

(2− i)n+1
(z − i)n.

For |z − i| >
√
5 :

2

z − 2
=

2

−2 + i + (z − i)
=

2

z − i
· 1

1− (2− i)/(z − i)

=
2

z − i

∞∑
n=0

(2− i)n

(z − i)n
=

−1∑
n=−∞

2

(2− i)n+1
(z − i)n.

For |z − i| <
√
10 :

3

z + 3
=

3

3 + i + (z − i)
=

3

3 + i
· 1

1 + (z − i)/(3 + i)

=
3

3 + i

∞∑
n=0

(−1)n

(3 + i)n
(z − i)n =

∞∑
n=0

−3

(−3− i)n+1
(z − i)n.

For |z − i| >
√
10 :

3

z + 3
=

3

3 + i + (z − i)
=

3

z − i
· 1

1 + (3 + i)/(z − i)

=
3

z − i

∞∑
n=0

(−1)n(3 + i)n

(z − i)n
=

−1∑
n=−∞

3

(−3− i)n+1
(z − i)n.
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Taylor series converging inside the disk |z − i| <
√
5 :

f(z) =
3

z + 3
+

2

z − 2
=

∞∑
n=0

(
−2

(2− i)n+1
+

−3

(−3− i)n+1

)
(z − i)n︸ ︷︷ ︸

minor part

.

Laurent series converging inside the ring
√
5 < |z − i| <

√
10 :

f(z) =
3

z + 3
+

2

z − 2
=

−1∑
n=−∞

2

(2− i)n+1
(z − i)n︸ ︷︷ ︸

principal part

+
∞∑
n=0

−3

(−3− i)n+1
(z − i)n︸ ︷︷ ︸

minor part

.

Laurent series converging inside the exterior
√
10 < |z − i| :

f(z) =
3

z + 3
+

2

z − 2
=

−1∑
n=−∞

(
2

(2− i)n+1
+

3

(−3− i)n+1

)
(z − i)n︸ ︷︷ ︸

principal part

.
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Problem 3. For a given R > 0 let f : BR(0) → C be an analytic function with
f(0) = 0 . Here, BR(0) ⊂ C denotes the open disk around zero with radius R > 0 .

Consider the function

g(z) :=


f(z)

z
, For z ̸= 0,

f ′(0), For z = 0.

Clearly, we have f(z) = z · g(z) for all z ∈ BR(0) .

Show that g is analytic. Show that g that the Taylor series of g around zero is given
by

g(z) =
∞∑
n=1

cnz
n−1,

where cn, n ∈ N0 are the coefficients of the Taylor series of f around zero.

Solution. Let f be analytic with f(0) = 0 . Inside BR(0) \ {0} the function g is the
quotient of analytic functions and thus itself analytic. The question is: What happens at
z = 0 ?

Because f(0) = 0 , in the Taylor series around zero,

f(z) =
∞∑
n=0

cnz
n,

we have c0 = 0 . This series converges for all z ∈ BR(0) and because

∞∑
n=1

cnz
n = z

∞∑
n=1

cnz
n−1

also the power series g̃(z) =
∑∞

n=1 cnz
n−1 converges for all z ∈ BR(0) . For all z ∈ BR(0)\{0}

we then have g̃(z) = g(z) .

Moreover,
g̃(0) = c1 = f ′(0) = g(0),

so g is given on the entirety of BR(0) by a convergent power series and therefore analytic.
Because the series representation is unique, this means that this is the Taylor series of g .


