Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hausaufgaben 4

Aufgabe 1.

(a) Es sei

$$T: \mathbb{C}^* \to \mathbb{C}^*, \qquad T(z) = \frac{az+b}{cz+d}, \qquad ad-bc \neq 0,$$

eine Möbius-Transformation. Zeigen Sie, dass T in allen $z \neq -\frac{d}{c}$ eine konforme Abbildung ist.

(b) Zeigen Sie, dass die gestreckte Joukowski-Funktion,

$$f(z) = z + \frac{1}{z}, \qquad z \neq 0,$$

in allen $z \neq 0$ komplex differenzierbar ist. In welchen $z \in \mathbb{C}$ ist f konform?

Aufgabe 2.

(a) Für welche $\alpha, \beta \in \mathbb{R}$ ist die Funktion

$$f: \mathbb{C} \to \mathbb{C}, \qquad f(z) = (x^3 + \alpha x y^2) + i \cdot (\beta x^2 y - y^3)$$

in allen $z = x + iy \in \mathbb{C}$ komplex differenzierbar?

(b) In welchen Punkten $z \neq 0$ ist die Funktion

$$g: \mathbb{C} \setminus \{0\} \to \mathbb{C}, \qquad g(z) = \frac{z^2}{\overline{z}}$$

komplex differenzierbar?

Hinweis: Verwenden Sie für g die Cauchy-Riemann Differentialgleichungen in Polarkoordinaten.

Aufgabe 3.

(a) Bestimmen Sie die Möbius-Transformation $T: \mathbb{C}^* \to \mathbb{C}^*$, mit

$$T(0) = 2i, T(4) = 0, T(8) = \infty.$$

- (b) Bestimmen Sie die Bilder der folgenden Geraden unter T:
 - (i) $G_1 = \{ z \in \mathbb{C}^* \mid \text{Im}(z) = 0 \},$
 - (ii) $G_2 = \{ z \in \mathbb{C}^* \mid \text{Im}(z) = 8 \text{Re}(z) \},$
 - (iii) $G_3 = \{z \in \mathbb{C}^* \mid \operatorname{Im}(z) = \operatorname{Re}(z)\}.$
- (c) Auf welche Menge wird das Innere des Dreiecks mit den Ecken 0, 8, 4+4i abgebildet? Skizzieren Sie das Urbild und das Bild.