Complex Functions for students of engineering sciences Homework 1

Using the *Euler formula* we can represent cosine and sine as

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right), \qquad \sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) \qquad \text{for} \quad x \in \mathbb{R}$$

Use these representations to proof the following statements.

Problem 1: Show that for all $x \in \mathbb{R}$:

$$\cos^3(x) = \frac{1}{4}\cos(3x) + \frac{3}{4}\cos(x).$$

Problem 2:

(a) For some $n \in \mathbb{N}$, let a_0, \ldots, a_n and b_1, \ldots, b_n be given real numbers. We consider the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$, defined by

$$f_n(x) := \frac{a_0}{2} + \sum_{\ell=1}^n \left[a_\ell \cos(\ell x) + b_\ell \sin(\ell x) \right] \quad \text{for} \quad x \in \mathbb{R}.$$
 (*)

Show that the function f_n can be expressed as

$$f_n(x) = \sum_{k=-n}^n c_k \mathrm{e}^{\mathrm{i}kx} \qquad \text{for all } x \in \mathbb{R},$$

with *complex* coefficients $c_{-n}, \ldots, c_n \in \mathbb{C}$. Determine these coefficients

(b) Now let complex numbers $c_{-n}, \ldots, c_n \in \mathbb{C}$, $n \in \mathbb{N}$ be given and consider the function $g_n : \mathbb{R} \longrightarrow \mathbb{C}$, defined by

$$g_n(x) := \sum_{k=-n}^n c_k \mathrm{e}^{\mathrm{i}kx} \qquad \text{for } x \in \mathbb{R}.$$

We assume the following:

- (i) $c_0 \in \mathbb{R}$;
- (ii) $c_{\ell} = \overline{c_{-\ell}}$, for $\ell = 1, \ldots, n$. I.e., c_{ℓ} is the complex conjugate of $c_{-\ell}$.

Show that g_n is real and can be expressed in the form (*) with real coefficients a_0, \ldots, a_n and b_1, \ldots, b_n .