Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Präsenzblatt 3 - Lösungen

Aufgabe 1. Berechnen Sie den *natürlichen Logarithmus* der folgenden komplexen Zahlen und geben Sie jeweils den *Hauptwert* an.

(a)
$$z_1 = -\sqrt{3} + i$$
, (b) $z_2 = 3e^{i\frac{5\pi}{4}}$, (c) $z_3 = \left(\frac{\sqrt{3}}{2} + i\frac{3}{2}\right)^4$.

Berechnen Sie $\left\{4\operatorname{Log}\left(\frac{\sqrt{3}}{2}+\mathrm{i}\frac{3}{2}\right)\right\}$ und vergleichen Sie das Ergebnis mit dem aus Teil (c).

Lösung.

(a) Wir haben

$$|z_1| = \sqrt{\sqrt{3}^2 + 1^2} = 2, \qquad \varphi = \arctan\left(\frac{1}{-\sqrt{3}}\right) + \pi = -\frac{\pi}{6} + \pi = \frac{5\pi}{6}.$$

Somit ist $z_1 = 2e^{i\frac{5\pi}{6}}$ und

$$\left\{ \operatorname{Log}(z_1) \right\} = \left\{ \log(2) + i \left(\frac{5\pi}{6} + 2k\pi \right) \mid k \in \mathbb{Z} \right\},\,$$

Hauptwert: $w_1 = \log(2) + i\frac{5\pi}{6}$.

(b) Die Zahl liegt schon in Polarform vor, aber das Argument liegt nicht in $(-\pi, \pi)$. Wir können schreiben

$$z_2 = 3e^{i\frac{5\pi}{4}} = 3e^{i(\frac{-3\pi}{4})}.$$

und damit

$$\{\operatorname{Log}(z_2)\} = \left\{ \log(3) + i\left(\frac{-3\pi}{4} + 2k\pi\right) \mid k \in \mathbb{Z} \right\}$$

Hauptwert: $w_2 = \log(3) + i\left(\frac{-3\pi}{4}\right)$.

(c) Wir berechnen zunächst

$$v := \frac{\sqrt{3}}{2} + i\frac{3}{2} \quad \Rightarrow \quad |v| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{9}{4}} = \sqrt{3}$$

und

$$\varphi = \arctan\left(\frac{3/2}{\sqrt{3}/2}\right) = \arctan(\sqrt{3}) = \frac{\pi}{3}.$$

Somit ist

$$v = \sqrt{3}e^{i\frac{\pi}{3}} \implies z_3 = v^4 = (\sqrt{3})^4 e^{i\frac{4\pi}{3}} = 9e^{i(-\frac{2\pi}{3})}.$$

Daraus erhalten wir

$$\left\{ \operatorname{Log}(z_3) \right\} = \left\{ \log(9) + i \left(-\frac{2\pi}{3} + 2k\pi \right) \mid k \in \mathbb{Z} \right\}$$

Hauptwert: $w_3 = \log(9) + i\left(-\frac{2}{3}\pi\right)$.

Falls wir in Anlehnung an die Rechnenregeln im Reellen ($\log(a^n) = n \log(a)$) einfach versuchen $4 \operatorname{Log}(v)$ zu berechnen, erhalten wir

$$\begin{aligned}
\{4\operatorname{Log}(v)\} &= \left\{4\operatorname{log}(\sqrt{3}) + 4\mathrm{i}\left(\frac{\pi}{3} + 2k\pi\right) \mid k \in \mathbb{Z}\right\} \\
&= \left\{\operatorname{log}(9) + \mathrm{i}\left(\frac{4\pi}{3} + 8k\pi\right) \mid k \in \mathbb{Z}\right\}.
\end{aligned}$$

Es gilt also $\{4\text{Log}(v)\}\subset \{\text{Log}(v^4)\}$, aber die Mengen sind nicht gleich!

Aufgabe 2.

(a) Bestimmen Sie die Möbius-Transformation

$$T: \mathbb{C}^* \to \mathbb{C}^*, \qquad T(z) = \frac{az+b}{cz+d}, \qquad ad-bc \neq 0,$$

mit

$$T(-3) = 0,$$
 $T(1) = \infty,$ $T(-i) = 1 - 2i.$

- (b) Bestimmen Sie die Bilder der folgenden Mengen unter T:
 - (i) M_1 : reelle Achse;
 - (ii) M_2 : Kreis mit Mittelpunkt 1 i und Radius 1.
 - (iii) M_3 : Kreis mit Mittelpunkt 0 und Radius 3;

Lösung.

(a) Da wir bereist eine Nullstelle und eine Polstelle kennen, können wir ansetzen:

$$T(z) = \alpha \frac{z+3}{z-1}.$$

Das α erhalten wir aus der dritten Bedingung:

$$T(-i) = \alpha \frac{-i+3}{-i-1} = \alpha \frac{(i-3)(1-i)}{(1+i)(1-i)} = \alpha(2i-1) \stackrel{!}{=} 1-2i \implies \alpha = -1,$$

also
$$T(z) = \frac{z+3}{1-z}$$
.

- (b) (i) Da $-d/c = 1 \in \mathbb{R}$, wird \mathbb{R} durch T auf eine Gerade abgebildet. Da alle Koeffizienten von T reell sind, sind die Bilder reeller Zahlen reell. Also ist $T(\mathbb{R}) = \mathbb{R}$.
 - (ii) Da $1 \in M_2$, wird M_2 durch T auf eine Gerade abgebildet. Wir können also zwei Punkte aus M_2 in T einsetzen und die zugehörige Bildgerade bestimmen. Wir wissen schon, dass für $-\mathbf{i} \in M_2$ gilt: $T(-\mathbf{i}) = 1 2\mathbf{i}$. Für $2 \mathbf{i} \in M_2$ erhalten wir:

$$T(2-i) = \frac{5-i}{i-1} = \frac{(5-i)(i+1)}{-2} = -\frac{6+4i}{2} = -3-2i.$$

Wir erhalten also die Gerade $T(M_2) = \{z \in \mathbb{C} \mid \operatorname{Im}(z) = -2\}$.

(iii) Da $1 \notin M_3$, wird M_3 durch T auf einen echten Kreis abgebildet. Da M_3 symmetrisch zu \mathbb{R} ist und eine Möbius-Transformation diese Symmetrie erhält, muss $T(M_3)$ symmetrisch zu $T(\mathbb{R}) = \mathbb{R}$ sein. Also ist $T(M_3)$ ein Kreis mit Mittelpunkt auf der reellen Achse. Der Bildkreis hat also zwei Schnittpunkte mit der reellen Achse und der Mittelpunkt liegt in der Mitte zwischen diesen Schnittpunkten.

Wegen

$$T(-3) = \frac{-3+3}{1+3} = 0 \in \mathbb{R}, \qquad T(3) = \frac{3+3}{1-3} = -3 \in \mathbb{R},$$

können wir also schließen, dass der Mittelpunkt bei $z_0=(0+(-3))/2=-3/2$ liegt und der Radius 3/2 ist, d.h. $T(M_3)=\{z\in\mathbb{C}\ |\ |z+3/2|=3/2\}$.

Aufgabe 3. Gegeben sei die Möbius-Transformation $T(z) = \frac{\mathrm{i}(z-1-\mathrm{i})}{z+2-\mathrm{i}}$, sowie der Kreis $K = \{z \in \mathbb{C} \mid |z-2-\mathrm{i}| = 2\}.$

Bestimmen Sie das Bild von K unter T.

Hinweis: Untersuchen Sie zunächst die Punkte $\ z_1=1+{\rm i}\$ und $\ z_2=-2+{\rm i}$ auf Symmetrie bzgl. K .

Lösung. Der Kreis K hat den Mittelpunkt $z_0 = 2 + i$ und den Radius R = 2. Damit ist

$$(z_1-z_0)\cdot(\overline{z_2}-\overline{z_0})=(1+\mathrm{i}-(2+\mathrm{i}))\cdot(-2-\mathrm{i}-(2-\mathrm{i}))=-1\cdot(-4)=4=R^2,$$
 also sind z_1 und z_2 zueinander symmetrisch bzgl. K .

Da T diese Symmetrie erhält, müssen $T(z_1)$ und $T(z_2)$ symmetrisch bzgl. T(K) sein. Aus $(-2+i) \notin K$ folgt, dass T(K) ein echter Kreis ist. Wir haben $T(z_1) = 0$ und $T(z_2) = \infty$, wobei $z_1, z_2 \notin K$. Weil 0 und ∞ symmetrisch bzgl. des Kreises T(K) sind, und ∞ symmetrisch zum Mittelpunkt ist, muss 0 der Mittelpunkt des Kreises sein.

Wegen $\mathbf{i} \in K$ ist der Radius R von T(K) gegeben durch $|T(\mathbf{i})|$. Es gilt

$$T(i) = \frac{i(i-1-i)}{i+2-i} = \frac{-i}{2} \implies R = |T(i)| = \frac{1}{2}.$$

Also:

$$T(K) = \left\{ w \in \mathbb{C} \mid |w| = \frac{1}{2} \right\}.$$