Complex Functions: Auditorium Exercise-07 For Engineering Students

Md Tanvir Hassan University of Hamburg

July 11, 2024

Functions are often not analytic at individual points. Potential/electric field of a charge Q at the point z_0 :

$$\Phi(z) = \frac{k \cdot Q}{\|z - z_0\|}, \qquad E(z) = \nabla \Phi(z) = \frac{k \cdot Q}{\|z - z_0\|^3} (z - z_0)$$

Behavior of the functions near such points:

 z_0 is called an **isolated singularity** of the analytic function $f: G \to \mathbb{C}$, if a punctured neighborhood of z_0 belongs to G, but not z_0 itself:

$$0 < |z - z_0| < r \subset G, \quad z_0 \notin G, \quad r > 0.$$

Example a):

▶ 0 and 1 are isolated singularities of the function $f(z) := \frac{z-1}{z^2(z-1)}$.

Let z_0 be an isolated singularity of f. Then f can be expanded into a Laurent series in $0 < |z - z_0| < r$:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k.$$

- ▶ z_0 is called a **removable singularity** \iff $a_k = 0 \quad \forall k < 0$.
- ▶ z_0 is called a **pole of order** m with $m \in \mathbb{N}$ \iff $a_{-m} \neq 0$, $a_k = 0$ $\forall k < -m$.

The Laurent series then has the form

$$a_{-m} \frac{1}{(z-z_0)^m} + a_{-m+1} \frac{1}{(z-z_0)^{m-1}} + \dots + a_{-1} \frac{1}{(z-z_0)^1} + \sum_{k=0}^{\infty} a_k (z-z_0)^k$$

 $ightharpoonup z_0$ is called an **essential singularity** $\iff a_k \neq 0$ for infinitely many k < 0.

Example b) $f(z) := \frac{1}{z(z^2+4)}$ The function has isolated singularities at the zeros of the denominator 0, 2i, -2i.

For classification, there are (at least) three possibilities.

1st Possibility: Calculate the series for $z_0 = 0$ and 0 < |z| < 2 we have

$$f(z) = \frac{1}{z} \cdot \frac{1}{z^2 + 4} = \frac{1}{z} \cdot \frac{1}{4(1 + \frac{z^2}{4})} = \frac{1}{4z} \cdot \frac{1}{\left(1 - \left(-\frac{z^2}{4}\right)\right)}$$
$$= \frac{1}{4z} \cdot \sum_{k=0}^{\infty} \frac{(-1)^k}{4^k} z^{2k} = \frac{1}{4z} + \underbrace{\sum_{k=1}^{\infty} \frac{(-1)^k}{4^{k+1}} z^{2k-1}}_{\text{positive powers}}$$

Thus, $z_0 = 0$ is a pole of the first order.

2nd Possibility: Series is not calculated

$$f(z) = \frac{1}{z} \cdot \underbrace{\frac{1}{z^2 + 4}}_{g(z)}$$

g(z) is holomorphic (analytic) near $z_0 = 0$ and can be expanded into a Taylor series

$$g(z) = g(z_0) + \sum_{k=1}^{\infty} \frac{g^{(k)}(z_0)}{k!} (z - z_0)^k$$

Thus, f near z_0 is given by

$$f(z) = \frac{g(0)}{z} + \sum_{k=1}^{\infty} \frac{g^{(k)}(0)}{k!} (z - 0)^{k-1}$$

Since $g(0) = 1/4 \neq 0$, the lowest power of (z - 0) appearing in the series is -1.

WARNING: For |z| > 2 one obtains for the same function f

$$f(z) = \frac{1}{z} \cdot \frac{1}{z^2 + 4} = \frac{1}{z} \cdot \left(\frac{1}{z^2 \left(1 + \frac{4}{z^2}\right)}\right) = \dots = \sum_{k = -\infty}^{-1} (-4)^{-k-1} z^{2k-1}$$

Thus, infinitely many terms with negative powers!

Question: So is there actually an essential singularity at $z_0 = 0$?

Is z = 0 is a simple zero of the denominator, so a simple pole of f?

However: The behavior of f near z_0 is given by the Laurent series that converges to f in a punctured neighborhood of z_0 .

Example c)

$$f(z) := \frac{\sin(z)}{z^4} = \frac{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \pm \dots}{z^4}$$

Does f have a pole of order 4 at $z_0 = 0$?

First, write the series expansion of sin(z):

$$\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \pm \cdots$$

$$f(z) = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} \pm \cdots$$

Example d) $f(z) := e^{\frac{1}{z+3}}$ has an isolated singularity at $z_0 = -3$.

To analyze the nature of this singularity, we expand f(z) as a series:

$$f(z) = e^{\frac{1}{z+3}} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{z+3}\right)^k = \sum_{k=0}^{\infty} \frac{1}{k!} (z - (-3))^{-k}$$

Here, the term $(z - (-3))^{-k}$ indicates that the series contains infinitely many negative powers of z + 3.

Example e)
$$f(z) := \frac{z + 2i}{z^2 + 4}$$

The function $f(z) = \frac{z+2i}{z^2+4}$ has two singularities:

- ▶ A simple pole at $z_1 = 2i$.
- ▶ A simple pole at $z_2 = -2i$.

WARNING: removable \neq cancelable!

Example f):
$$f(z) := \frac{\cos(z) - 1}{z^2}$$

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots$$

Let z_0 be an isolated singularity of f and

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

the Laurent series of f in $0 < |z - z_0| < r$. Then,

$$h_f(z; z_0) = \sum_{n=-\infty}^{-1} a_n (z - z_0)^n$$

is called the **principal part** of f at z_0 .

It holds for any closed curve C with $Ind(C, z_0) = 1$:

$$a_{-1} = \frac{1}{2\pi i} \oint_C f(z) \, dz$$

 a_{-1} is the **residue of** f at $z_0 = \operatorname{Res} f(z_0) = \operatorname{Res} (f; z_0)$.

If f(z) is analytic at z_0

$$\implies \operatorname{Res}(f; z_0) = 0$$

If z_0 is a removable singularity

$$\implies \operatorname{Res}(f; z_0) = 0$$

If z_0 is a pole of the first order

$$\implies h_f(z; z_0) = \frac{a_{-1}}{(z - z_0)} = \frac{\text{Res}(f; z_0)}{(z - z_0)}$$

Partial Fraction Decomposition: A rational function that vanishes at infinity, is the sum of its principal parts!

This means: With
$$f(z) = \frac{p(z)}{q(z)}$$
,

p and q polynomials with $\operatorname{grad}(p) < \operatorname{grad}(q)$

$$z_1, \dots, z_k$$
 be the zeros of q ,

one determines the principal part for each z_l , $l = 1, \dots, k$ and obtains

$$f(z) = h_f(z; z_1) + h_f(z; z_2) + \cdots + h_f(z; z_k)$$

The complex partial fraction decomposition (PFD) of f.

Example:
$$g(z) = \frac{2+3z+z^2}{(z^2+4)(z^2-1)}$$
,

$$g(z) = \frac{2+3z+z^2}{(z^2+4)(z^2-1)} = \frac{(1+z)(2+z)}{(z^2+4)(z+1)(z-1)}$$

g has a removable singularity at $z_0 = -1$ and simple poles $z_1 = 1, z_2 = 2i, z_3 = -2i$. Using their respective principal parts, we have

$$g(z) = h_f(z; z_1) + h_f(z; z_2) + h_f(z; z_3)$$

For $z_1 = 1$:

$$g(z) = \frac{1}{z-1} \frac{(1+z)(2+z)}{(z^2+4)(z+1)} = \frac{1}{z-1} k(z)$$

k is holomorphic in an appropriate neighborhood of 1. Thus,

$$h_g(z;1) = \frac{a_{-1}}{z-1} = \frac{k(1)}{z-1} = \frac{3}{5} \cdot \frac{1}{z-1}$$

For $z_2 = 2i$, we calculate

$$g(z) = \frac{1}{z - 2i} \underbrace{\left[\frac{(1+z)(2+z)}{(z+2i)(z-1)(z+1)} \right]}_{\tilde{k}(z)}$$

$$= \frac{1}{z - 2i} \left(\tilde{k}(2i) + \tilde{k}'(2i)(z - (-2i)) + \ldots \right)$$

$$h_g(z; 2i) = \frac{1}{z - 2i} \left[\frac{(1+z)(2+z)}{(z+2i)(z-1)(z+1)} \right]_{z=2i} = -\frac{3+i}{10} \frac{1}{z-2i}$$

Similarly, for $z_3 = -2i$

$$h_g(z; -2i) = \frac{1}{z - 2i} \left[\frac{(1+z)(2+z)}{(z+2i)(z-1)(z+1)} \right]_{z=-2i} = \frac{i-3}{10} \frac{1}{z+2i}$$

The complex partial fraction decomposition is therefore

$$g(z) = \frac{3}{5} \frac{1}{z-1} - \frac{3+i}{10} \frac{1}{z-2i} - \frac{3-i}{10} \frac{1}{z+2i}$$

- ▶ Rule 1) z_0 simple pole: (Enclosure method) Res $f(z_0) = \lim_{z\to z_0} (z-z_0)f(z)$
- ▶ Rule 2) $f(z) = \frac{p(z)}{q(z)}$, p and q holomorphic in a neighborhood of z_0 , z_0 simple zero of q, $p(z_0) \neq 0 \Longrightarrow z_0$ is a first-order pole of f with Res $f(z_0) = \frac{p(z_0)}{q'(z_0)}$
- ▶ Rule 3) z_0 pole of order mRes $f(z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} ((z - z_0)^m f(z))^{(m-1)}$

Let, $D \subset \mathbb{C}$ be a domain, $f: D \setminus \{z_1, \dots, z_m\} \to \mathbb{C}$ holomorphic,

C a closed path in $D \setminus \{z_1, \dots, z_m\}$, piecewise C^1 . Then,

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^m \operatorname{Ind}(C, z_k) \operatorname{Res}(f; z_k)$$

In particular, if C is a simply closed, positively oriented curve and z_1, \dots, z_m are inside C (i.e., $\operatorname{Ind}(C, z_k) = 1$),

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^m \text{Res} f(z_k)$$

Calculation of Residues:

$$f(z) = \frac{z}{z^4 - 1} = \frac{z}{(z^2 - 1)(z^2 + 1)} = \frac{z}{(z - 1)(z + 1)(z - i)(z + i)}$$

Rule 1 for
$$z = i$$

Res
$$f(i) = \lim_{z \to i} ((z - i)f(z)) = \lim_{z \to i} \frac{(z - i)z}{(z - 1)(z + 1)(z - i)(z + i)}$$
$$= \frac{z}{(z - 1)(z + 1)(z + i)} \Big|_{z = i} = -\frac{1}{4}$$

Rule 2 for
$$z = -i$$

Res
$$f(-i) = \frac{z}{(z^4 - 1)'} \Big|_{z = -i} = \frac{z}{4z^3} \Big|_{z = -i} = -\frac{1}{4}$$

Res
$$f(-1) = \frac{1}{4}$$
 Res $f(1) = \frac{1}{4}$

Rule of Thumb for First-Order Poles: Rule 1) simpler if the denominator is presented as a product of terms. Rule 2) simpler if the denominator is fully expanded.

$$\oint_{C_1} f(z) dz = -2\pi i \operatorname{Res} f(i) = \frac{\pi i}{2}$$

$$\oint_{C_2} f(z) dz = +2\pi i \left[\text{Res} f(-i) + \text{Res}(-1) \right] = 0$$

$$\oint_{C_3} f(z) dz = -2\pi i \sum_{k=1}^4 \operatorname{Res} f(z_k) = -2\pi i \left(\frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right) = 0$$

The solution involves calculating residues at the singularities of the function and then applying these residues to evaluate the integrals over different contours. If f has only simple poles, then each principal part consists of a single term, namely $\operatorname{Res}(f \cdot z_t)$

$$h_f(z; z_k) = \frac{\operatorname{Res}(f; z_k)}{z - z_k}$$

Previously, we had: $f(z) = \frac{z}{z^4 - 1} = \frac{z}{(z - 1)(z + 1)(z - i)(z + i)}$

Thus, we have: $f(z) = h_f(z; -i) + h_f(z; i) + h_f(z; -1) + h_f(z; 1)$.

With $\operatorname{Res} f(\pm i) = -\frac{1}{4}$, $\operatorname{Res} f(\pm 1) = \frac{1}{4}$, we immediately obtain the partial fraction decomposition:

$$f(z) = \sum_{k=1}^{4} \frac{\text{Res}(f; z_k)}{z - z_k}$$
$$= \frac{\frac{-1}{4}}{z + i} + \frac{\frac{-1}{4}}{z - i} + \frac{\frac{1}{4}}{z + 1} + \frac{\frac{1}{4}}{z - 1}.$$

Be cautious with the Cover-Up Method: For example, with

$$f(z) = \frac{1}{(z-1)(2z-4)}$$

it holds that $\operatorname{Res} f(2) \neq \frac{1}{(z-1)}\Big|_{z=2}$?

$$\operatorname{Res}(f,1) = \lim_{z \to 1} (z-1) \frac{1}{2(z-1)(z-2)} = \lim_{z \to 1} \frac{1}{2(z-2)} = \frac{1}{2(1-2)} = -\frac{1}{2}$$

$$\operatorname{Res}(f,2) = \lim_{z \to 2} (z-2) \frac{1}{2(z-1)(z-2)} = \lim_{z \to 2} \frac{1}{2(z-1)} = \frac{1}{2(2-1)} = \frac{1}{2}$$

Example for Rule 3)

$$f(z) = \frac{z^2 - 1}{(z - 1)^2 (z + 1)(z - i)^4}$$

Singularities:

$$\begin{cases} z_1 = 1 & \text{Pole of first order} \\ z_2 = i & \text{Pole of fourth order} \\ z_3 = -1 & \text{Removable singularity} \end{cases}$$

$$\implies \operatorname{Res} f(z_3) = 0$$

$$\implies \operatorname{Res} f(1) = \frac{1}{(1-i)^4}$$

$$\operatorname{Res} f(i) = \frac{1}{3!} \lim_{z \to i} \left((z-i)^4 f(z) \right)^{\prime\prime\prime} = \frac{1}{6} \lim_{z \to i} \left((z-i)^4 \frac{1}{(z-1)(z-i)^4} \right)^{\prime\prime\prime}$$

$$= \frac{1}{6} \lim_{z \to i} \left(\frac{1}{z-1} \right)^{\prime\prime\prime} = -(z-1)^{-4} |_{z=i}$$

$$= -\frac{1}{(i-1)^4} = -\frac{1}{(-2i)^2} = \frac{1}{4}.$$

Another Example:

$$f(z) := \frac{\sin(z)}{z^4}$$

$$f(z) = \frac{1}{z^4} \sin(z) = \frac{1}{z^4} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \pm \dots \right)$$
$$= \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} \pm \dots$$

Zero is a pole of third order!

Of course, one does NOT apply Rule 3) to calculate Res f(0). Instead?

The residue at z = 0 is:

$$\operatorname{Res} f(0) = -\frac{1}{3!} = -\frac{1}{6}$$

Theorem A) Let $H := \{z \in \mathbb{C} : \operatorname{Im}(z) \geq 0\}$

D a domain with $H \subset D$.

$$f(z)$$
 is holomorphic in $D \setminus \{z_1, \dots, z_n\}$.

 $\{z_1, \dots, z_n\} \subset H \setminus \mathbb{R}$ (i.e., no singularities on \mathbb{R}),

$$\lim_{z \to \infty} z \cdot f(z) = 0 \text{ uniformly in } H.$$

(e.g., if
$$f(z) = \frac{p(z)}{q(z)}$$
 with grad $q \ge \text{grad } p + 2$)

Then
$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \text{Res} f(z_k)$$

Example 1)
$$\int_{-\infty}^{\infty} \frac{1}{(x-2)(x^2+1)} dx$$

The theorem is not applicable! Singularity at $z=2\in\mathbb{R}$.

Example 2)
$$I = \int_{-\infty}^{\infty} \frac{1}{(x^2+4)(x^2+1)} dx$$

$$f(z) = \frac{1}{(z+2i)(z-2i)(z+i)(z-i)}$$

Singularities in the upper half-plane: $z_1 = i, z_2 = 2i$

$$I = 2\pi i \left(\text{Res} f(i) + \text{Res} f(2i) \right)$$

$$= 2\pi i \left(\frac{1}{(z+2i)(z-2i)(z+i)} \bigg|_{z=i} \right. \\ \left. + \left. \frac{1}{(z+2i)(z-i)(z+i)} \right|_{z=2i} \right)$$

Theorem B) Almost all conditions are as in Theorem A).

In particular: finitely many singularities $\{z_1, \dots, z_n\}$ in $H \setminus \mathbb{R}$. Different from A):

$$\lim_{z \to \infty, \operatorname{Im}(z) > 0} f(z) = 0 \qquad , z = x + iy$$

(e.g.,
$$f(z) = \frac{p(z)}{q(z)}$$
, Grad (q) > Grad (p)).

then for $\omega > 0$,

$$\int_{-\infty}^{\infty} f(x)e^{i\omega x} dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res}\left(e^{i\omega z}f; z_{k}\right)$$

(compare with formulas for Fourier transform. There:

$$f(t) = \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega$$
, $F(\omega) = \int_{-\infty}^{\infty} f(\tau)e^{-i\omega \tau} d\tau$)

THANK YOU

