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Isolated Singularities 2

—

Functions are often not analytic at individual points. Potential/electric field of a
charge @ at the point zg:

k-Q

Iz =zl

k-Q

[0}
(=) = o=z

E(z) = Vo(z) = (2 = 20)

Behavior of the functions near such points:
zp is called an isolated singularity of the analytic function f: G — C, if a
punctured neighborhood of zy belongs to G, but not zg itself:

O0<|z—20|<r CG, 2¢G, r>0.
Example a):

z—1
22(z—1)"
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» 0 and 1 are isolated singularities of the function f(z) :=




Classification of Singularities 3

—

Let zp be an isolated singularity of f. Then f can be expanded into a Laurent
series in 0 < |z — zg| < 7

o0

f(z) = Z ar (z — z)*.

k=—o00

> 2 is called a removable singularity <= a; =0 Vk<O.

> 2 is called a pole of order m withm e N <«—
aem #0, ar=0 Vk<-—m.
The Laurent series then has the form

1 1 1 = k
a_m(z_z())m—i-a_m—i-l(z_z())m_l+"'+a—1(z_20)1+kz_oak(z_zo)

> 2, is called an essential singularity <= a; # 0 for infinitely many k < 0.
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Example: Poles of Order One
P——

1
Example b) f(z):= p The function has isolated singularities at the

zeros of the denominator 0, 27, —2i.
For classification, there are (at least) three possibilities.
1st Possibility: Calculate the series for zp = 0 and 0 < |z| < 2 we have

1 1 1 1 1 1
LA e e Tl F Y
Do (o)
1 S (_l)k 2k 1 S (_1)k 2k—1
:472 Ak < :ZZ+Z 4k+1z
k=0 k=1

positive powers

Thus, zg = 0 is a pole of the first order.

Department of
Mathematics @ —_—



Example: Poles of Order One (Cont.) 5

—
2nd Possibility: Series is not calculated
1 1
z) = 2 22+4
——
9(z)

Thus, f near zg is given by

CEUSS
k=1

®) (0 3
g k'( )(Z—O)k 1

Since g(0) = 1/4 # 0, the lowest power of (z — 0) appearing in the series is -1.
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Example: Laurent Series Regions 6

—

WARNING: For |z| > 2 one obtains for the same function f

11 1 1 _ et o
f(z>—z'z2+4—z'<zz(1+;))—-~— D (TR

k=—o00

Thus, infinitely many terms with negative powers!
Question: So is there actually an essential singularity at zg = 07
Is z = 0 is a simple zero of the denominator, so a simple pole of f?

However: The behavior of f near zy is given by the Laurent series that converges
to f in a punctured neighborhood of z.
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Example: Pole of Order m 7

—

Example c)

f(Z) _Sin(z):Z_ZzS!_F%_%i
24 24
Does f have a pole of order 4 at zp = 07
First, write the series expansion of sin(z):
3 5 7
. 22z oz
sm(z):z—g—l—ﬁ—ﬁ +
1 1 P
Jo) = 2Ty

z 3z 5 7
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Example: Essential Singularity 8

—

Example d) f(z) := 73 has an isolated singularity at zg = —3.

To analyze the nature of this singularity, we expand f(z) as a series:

! < 1 N | _
f(Z):ez+3 :Zkl<z+3) :Zg(z—(—?))) k

k=0 k=0

Here, the term (z — (—3))_k indicates that the series contains infinitely many
negative powers of z + 3.
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Example: Simple Poles

E l ’ =
Th(ifll i ’()— 2 lh ‘gl iti
! z 4 !

» A simple pole at z; = 2i.
> A simple pole at zo = —2i.
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Removable vs. Cancelable Singularities 10

—

WARNING: removable # cancelable!

-1
Example f): f(z) := %
z
22 S8
COE(Z) =1 5 + E ﬁ +
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Residue Definition 11

—

Let zp be an isolated singularity of f and
o0

f(z): Z an(Z—Zo)"

n=—oo

the Laurent series of f in 0 < |z — 29| < 7. Then,

-1

hy(z;20) = Z an (z — z9)"

n=—oo

is called the principal part of f at zg.
It holds for any closed curve C' with Ind(C, zp) = 1:

27mff

a_1 is the residue of f at zp = Res f(z0) = Res(f;z0).
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Properties of Residues 12

—

If f(z) is analytic at z

= Res(f;20) =0

If 2z is a removable singularity

= Res(f;20) =0

If 2y is a pole of the first order

= hy(z20) = 5y = RFEEJLLZ)O)
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Partial Fraction Decomposition 13
Partial Fraction Decomposition: A rational function that vanishes at infinity,
is the sum of its principal parts!

This means: With  f(z) = p(z)

p and ¢ polynomials with grad(p) < grad(q)
z1,- -+ , 2 be the zeros of q,

one determines the principal part for each z;, [ = 1,--- , k and obtains
f(z) = hg(z;21) + hyp(z322) + -+ + hy(z; 23)
The complex partial fraction decomposition (PFD) of f.
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Example: Partial Fraction Decomposition 14

—
2+ 3z + 22
E le : =
xample : g(z) (2244)(22-1)"
(2) = 2432422 (1+2)(2+2)
T = 22— T @A)+ )(z-1)
g has a removable singularity at zp = —1 and simple poles
z1 =1, z9 = 2, z3 = —2¢. Using their respective principal parts, we have
9(2) = hy(z21) + hy(z 22) + hy(2; 23)
For z; = 1:
1 14+2)(24 = 1
o) = - GO Ly

z2—1(2+4)(z+1)  =z2-1

k is holomorphic in an appropriate neighborhood of 1. Thus,
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Example: Partial Fraction Decomposition 15

a1 k1) 3 1
'1 = = = — -
hg(z:1) = —7 = 1 =5 71

For z9 = 2i, we calculate

1 { (1+2)(2+2) ]

9(z) = z2—2i [(z+2)(z—1)(z+1)

/

k(2)

= - _1 T (12;(2@) FE2i) (2 — (—20) + .. )
1 [ 1+ 2)(2+ 2) } 3401
(z+20)(z—1)(z+1)] .y, 10 z—2i

hg(z;2i) =

z—2
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Example: Partial Fraction Decomposition 16

—

Similarly, for z3 = —2i

1 (14+2)(2+2) i—3 1

h(z: —2i) = -
o(% —2i) z2—=2i [(z+20)(z—1)(z+1) 10 z+ 21

z=—21

The complex partial fraction decomposition is therefore

3 1 3+ 1 3—1 1

T 52-1 10 z—2i 10 2+ 2

9(2)
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Rules for Calculating Residues 17

—

» Rule 1) z simple pole: (Enclosure method)
Res f(z0) = lim,—, (2 — 20) f(2)
» Rule 2) f(z) = }; Ezg , p and ¢ holomorphic in a neighborhood of 2,

2o simple zero of ¢, p(zp) # 0 =

2o is a first-order pole of f with  Res f(z9) =

» Rule 3) z pole of order m
Res f(20) = gty limaosz, (2 = 20)™ £(2))™"
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Residue Theorem 18

—

Let, D C C be a domain, f: D\ {z1, - ,2,} — C holomorphic,

C a closed path in D\ {z1,--- , z }, piecewise C'. Then,

f f(z)dz = 2mi Z Ind(C, zx) Res(f; zx)
¢ k=1

In particular, if C' is a simply closed, positively oriented curve and z1,-- - , 2, are
inside C (i.e., Ind(C, 2zx) = 1),

% f(z)dz = 2mi Z Resf(zk)
C k=1
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Example: Residue Calculation 19

—

Calculation of Residues:

f(z) = A1 (z2=1)(22 + 1) - z=1)(z+1)(z—1i)(z+1)
Rule 1 for z =

) =1lim ((z — 1) f(z)) = lim (2 — i)z
Res J(0) =l ((z =0/ (=) = I oG — oG 10
z 1

(z=1)(z4+1)(z+1)

4

z2=1
Rule 2 for z = —3 ;

Res f(—i) = I

Res f(—1) =1 Res f(1) =




Rule of Thumb and Integral Examples 20
P——

Rule of Thumb for First-Order Poles: Rule 1) simpler if the denominator is presented

as a product of terms. Rule 2) simpler if the denominator is fully expanded.

f(z)dz = —2miResf(i) = m
o 2

b f(2)dz = +2mi[Resf(~i) + Res(~1)] =0

. 11 1 1
— _2 ) = —2 ) - - — = — — f—
. f(z)dz i 321 Resf(zx) i <4 + 171 4> 0

The solution involves calculating residues at the singularities of the function and
then applying these residues to evaluate the integrals over different contours.

Department of
Mathematics —_—




21

Partial Fraction Decomposition for Simple Poles

—

If f has only simple poles, then each principal part consists of a single term,
namely Res(f; zk)
he(z; =—'1"
f(Z, Zk) Z— 2
Previously, we ha%é( ) 2 z
=D+ D(z—1i)(z+19)

Z pr
24 -1

Th have:
WO RAE p(2) = hy(z;—i) + hy(z;0) + hyp(z;=1) + hy(2;1).

L, Resf(£l) = 1,

With Resf(+i) = —7,
we immediately obtain the partial fraction decomposition:
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Cover-Up Method and Rule 3 Example 22

—
Be cautious with the Cover-Up Method: For example, with
O e ——
T o2 -9
it holds that Resf(2) # (Zil) 72?
1 1 1 1
R 1)=1 —1)———— =1 = __
es(tfil) =limGz Yooy ~ Mo =y “aa—2 ~ 2
1 1 1 1
2)=1li —2)———F+—— = lim -
Res(/,2) =z = D)oy =g) " Mo -1 “2@-1) ~ 2

Example for Rule 3) )
Z J—

LS e N T
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Example: Higher Order Pole Residue 23

Singularities:
z1=1 Pole of first order
29 =1 Pole of fourth order
z3 = —1 Removable singularity
— Resf(z3) =0
1
1) =
= Resf(1) L
m 1 1 "
. N4 . 4
Res i) = g tim (= 01 7)" = § 1 (G =050
1 1 n 4
STNER -
- 1 - 1 - 1
(i—14 (=202 4
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Example: Pole of Order Three (Revisited) 24
P———

Another Example:

f(a) = 282

f(z):isin(z) = 14<Z_Z:j’+z5_zT + >

1 1 z 23

P TP B

Zero is a pole of third order!
Of course, one does NOT apply Rule 3) to calculate Resf(0). Instead?

The residue at z = 0 is: ) )
R 0)=——==—-=
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Improper Integrals: Theorem A 25

Theorem A) Let H :={z € C: Im(z) > 0}

D a domain with H C D.

f(z) is holomorphic in D\ {z1, -, z,}.
{z1,---,zn} CH\R

(i.e., no singularities on R),

lim z - f(z) = 0 uniformly in H.

Z—00

(e.g., if f(z) = ’q’gjg with grad q > grad p +2)

Then [ f(z)dx = 2mi ;_; Resf(z)
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Example: Improper Integrals 26

The theorem is not applicable! Singularity at z =2 € R.

_ 1
12) = ce=eme

Singularities in the upper half-plane: 21 =14, 29 = 2¢
I = 27i (Resf(i) + Resf(21))

— 1 1

z:2i>

1
R ) ey g
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Theorem B: Integrals with Exponential Factors 27

—

Theorem B) Almost all conditions are as in Theorem A).
In particular: finitely many singularities {z1, -+, z,} in H \ R.
Different from A):

lim f(z)=0 2 =2+ iy

z—00,Im(2)>0

(e.g, f(2) = 3}, Grad (q) > Grad (p)).

then for w > 0,

) n

/ f(x)e“* de = 2mi Z Res (% f; 21)
e k=1

(compare with formulas for Fourier transform. There:

&)=, Fw)e“dw, F(w)= [ f(r)e ™ dr)

—00
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