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Isolated Singularities 2

Functions are often not analytic at individual points. Potential/electric field of a
charge Q at the point z0:

Φ(z) =
k ·Q

∥z − z0∥
, E(z) = ∇Φ(z) =

k ·Q
∥z − z0∥3

(z − z0)

Behavior of the functions near such points:
z0 is called an isolated singularity of the analytic function f : G → C, if a
punctured neighborhood of z0 belongs to G, but not z0 itself:

0 < |z − z0| < r ⊂ G, z0 /∈ G, r > 0 .

Example a):

▶ 0 and 1 are isolated singularities of the function f(z) :=
z − 1

z2(z − 1)
.



Classification of Singularities 3

Let z0 be an isolated singularity of f . Then f can be expanded into a Laurent
series in 0 < |z − z0| < r:

f(z) =

∞∑
k=−∞

ak (z − z0)
k .

▶ z0 is called a removable singularity ⇐⇒ ak = 0 ∀k < 0 .

▶ z0 is called a pole of order m with m ∈ N ⇐⇒
a−m ̸= 0 , ak = 0 ∀k < −m.
The Laurent series then has the form

a−m
1

(z − z0)m
+ a−m+1

1

(z − z0)m−1
+ · · · + a−1

1

(z − z0)1
+

∞∑
k=0

ak (z− z0)
k

▶ z0 is called an essential singularity ⇐⇒ ak ̸= 0 for infinitely many k < 0.



Example: Poles of Order One 4

Example b) f(z) :=
1

z(z2 + 4)
The function has isolated singularities at the

zeros of the denominator 0, 2i, −2i.
For classification, there are (at least) three possibilities.
1st Possibility: Calculate the series for z0 = 0 and 0 < |z| < 2 we have

f(z) =
1

z
· 1

z2 + 4
=

1

z
· 1

4(1 + z2

4 )
=

1

4z
· 1(

1− (− z2

4 )
)

=
1

4z
·

∞∑
k=0

(−1)k

4k
z2k =

1

4z
+

∞∑
k=1

(−1)k

4k+1
z2k−1

︸ ︷︷ ︸
positive powers

Thus, z0 = 0 is a pole of the first order.



Example: Poles of Order One (Cont.) 5

2nd Possibility: Series is not calculated

f(z) =
1

z
· 1

z2 + 4︸ ︷︷ ︸
g(z)

g(z) is holomorphic (analytic) near z0 = 0 and can be expanded into a Taylor series

g(z) = g(z0) +

∞∑
k=1

g(k)(z0)

k!
(z − z0)

k

Thus, f near z0 is given by

f(z) =
g(0)

z
+

∞∑
k=1

g(k)(0)

k!
(z − 0)k−1

Since g(0) = 1/4 ̸= 0, the lowest power of (z − 0) appearing in the series is -1.



Example: Laurent Series Regions 6

WARNING: For |z| > 2 one obtains for the same function f

f(z) =
1

z
· 1

z2 + 4
=

1

z
·

(
1

z2
(
1 + 4

z2

)) = . . . =

−1∑
k=−∞

(−4)−k−1 z2k−1

Thus, infinitely many terms with negative powers!

Question: So is there actually an essential singularity at z0 = 0?

Is z = 0 is a simple zero of the denominator, so a simple pole of f?

However: The behavior of f near z0 is given by the Laurent series that converges
to f in a punctured neighborhood of z0.



Example: Pole of Order m 7

Example c)

f(z) :=
sin(z)

z4
=

z − z3

3! +
z5

5! −
z7

7! ± . . .

z4

Does f have a pole of order 4 at z0 = 0?

First, write the series expansion of sin(z):

sin(z) = z − z3

3!
+

z5

5!
− z7

7!
± · · ·

f(z) =
1

z3
− 1

3!z
+

z

5!
− z3

7!
± · · ·



Example: Essential Singularity 8

Example d) f(z) := e
1

z+3 has an isolated singularity at z0 = −3.

To analyze the nature of this singularity, we expand f(z) as a series:

f(z) = e
1

z+3 =

∞∑
k=0

1

k!

(
1

z + 3

)k

=

∞∑
k=0

1

k!
(z − (−3))−k

Here, the term (z − (−3))−k indicates that the series contains infinitely many
negative powers of z + 3.



Example: Simple Poles 9

Example e) f(z) :=
z + 2i

z2 + 4

The function f(z) =
z + 2i

z2 + 4
has two singularities:

▶ A simple pole at z1 = 2i.

▶ A simple pole at z2 = −2i.



Removable vs. Cancelable Singularities 10

WARNING: removable ̸= cancelable!

Example f): f(z) :=
cos(z)− 1

z2

cos(z) = 1− z2

2!
+

z4

4!
− z6

6!
+ · · ·



Residue Definition 11

Let z0 be an isolated singularity of f and

f(z) =

∞∑
n=−∞

an (z − z0)
n

the Laurent series of f in 0 < |z − z0| < r. Then,

hf (z; z0) =

−1∑
n=−∞

an (z − z0)
n

is called the principal part of f at z0.
It holds for any closed curve C with Ind(C, z0) = 1:

a−1 =
1

2πi

∮
C
f(z) dz

a−1 is the residue of f at z0 = Res f(z0) = Res (f ; z0).



Properties of Residues 12

If f(z) is analytic at z0

=⇒ Res (f ; z0) = 0

If z0 is a removable singularity

=⇒ Res (f ; z0) = 0

If z0 is a pole of the first order

=⇒ hf (z; z0) =
a−1

(z−z0)
= Res (f ;z0)

(z−z0)



Partial Fraction Decomposition 13

Partial Fraction Decomposition: A rational function that vanishes at infinity,
is the sum of its principal parts!

This means: With f(z) =
p(z)

q(z)
,

p and q polynomials with grad(p) < grad(q)

z1, · · · , zk be the zeros of q,

one determines the principal part for each zl, l = 1, · · · , k and obtains

f(z) = hf (z; z1) + hf (z; z2) + · · ·+ hf (z; zk)

The complex partial fraction decomposition (PFD) of f.



Example: Partial Fraction Decomposition 14

Example : g(z) =
2 + 3z + z2

(z2 + 4)(z2 − 1)
,

g(z) =
2 + 3z + z2

(z2 + 4)(z2 − 1)
=

(1 + z)(2 + z)

(z2 + 4)(z + 1)(z − 1)
·

g has a removable singularity at z0 = −1 and simple poles
z1 = 1, z2 = 2i, z3 = −2i. Using their respective principal parts, we have

g(z) = hf (z; z1) + hf (z; z2) + hf (z; z3)

For z1 = 1:

g(z) =
1

z − 1

(1 + z)(2 + z)

(z2 + 4)(z + 1)
=

1

z − 1
k(z)

k is holomorphic in an appropriate neighborhood of 1. Thus,



Example: Partial Fraction Decomposition 15

hg(z; 1) =
a−1

z − 1
=

k(1)

z − 1
=

3

5
· 1

z − 1

For z2 = 2i, we calculate

g(z) =
1

z − 2i

[
(1 + z)(2 + z)

(z + 2i)(z − 1)(z + 1)

]
︸ ︷︷ ︸

k̃(z)

=
1

z − 2i

(
k̃(2i) + k̃′(2i)(z − (−2i)) + . . .

)
hg(z; 2i) =

1

z − 2i

[
(1 + z)(2 + z)

(z + 2i)(z − 1)(z + 1)

]
z=2i

= −3 + i

10

1

z − 2i



Example: Partial Fraction Decomposition 16

Similarly, for z3 = −2i

hg(z;−2i) =
1

z − 2i

[
(1 + z)(2 + z)

(z + 2i)(z − 1)(z + 1)

]
z=−2i

=
i− 3

10

1

z + 2i

The complex partial fraction decomposition is therefore

g(z) =
3

5

1

z − 1
− 3 + i

10

1

z − 2i
− 3− i

10

1

z + 2i



Rules for Calculating Residues 17

▶ Rule 1) z0 simple pole: (Enclosure method)
Res f(z0) = limz→z0 (z − z0)f(z)

▶ Rule 2) f(z) = p(z)
q(z) , p and q holomorphic in a neighborhood of z0,

z0 simple zero of q, p(z0) ̸= 0 =⇒
z0 is a first-order pole of f with Res f(z0) = p(z0)

q′(z0)

▶ Rule 3) z0 pole of order m

Res f(z0) = 1
(m−1)! limz→z0 ((z − z0)

m f(z))(m−1)



Residue Theorem 18

Let, D ⊂ C be a domain, f : D \ {z1, · · · , zm} → C holomorphic,

C a closed path in D \ {z1, · · · , zm}, piecewise C1. Then,∮
C
f(z) dz = 2πi

m∑
k=1

Ind(C, zk)Res(f ; zk)

In particular, if C is a simply closed, positively oriented curve and z1, · · · , zm are
inside C (i.e., Ind(C, zk) = 1),∮

C
f(z) dz = 2πi

m∑
k=1

Resf(zk)



Example: Residue Calculation 19

Calculation of Residues:

f(z) =
z

z4 − 1
=

z

(z2 − 1)(z2 + 1)
=

z

(z − 1)(z + 1)(z − i)(z + i)

Rule 1 for z = i
Res f(i) = lim

z→i
((z − i)f(z)) = lim

z→i

(z − i)z

(z − 1)(z + 1)(z − i)(z + i)

=
z

(z − 1)(z + 1)(z + i)

∣∣∣∣
z=i

= −1

4

Rule 2 for z = −i

Res f(−i) =
z

(z4 − 1)′

∣∣∣∣
z=−i

=
z

4z3

∣∣∣
z=−i

= −1

4

Res f(−1) = 1
4 Res f(1) = 1

4



Rule of Thumb and Integral Examples 20

Rule of Thumb for First-Order Poles: Rule 1) simpler if the denominator is presented

as a product of terms. Rule 2) simpler if the denominator is fully expanded.∮
C1

f(z) dz = −2πiResf(i) =
πi

2

∮
C2

f(z) dz = +2πi [Resf(−i) + Res(−1)] = 0

∮
C3

f(z) dz = −2πi

4∑
k=1

Resf(zk) = −2πi

(
1

4
+

1

4
− 1

4
− 1

4

)
= 0

The solution involves calculating residues at the singularities of the function and
then applying these residues to evaluate the integrals over different contours.



Partial Fraction Decomposition for Simple Poles 21

If f has only simple poles, then each principal part consists of a single term,
namely

hf (z; zk) =
Res(f ; zk)

z − zk

Previously, we had:
f(z) =

z

z4 − 1
=

z

(z − 1)(z + 1)(z − i)(z + i)

Thus, we have:
f(z) = hf (z;−i) + hf (z; i) + hf (z;−1) + hf (z; 1).

With Resf(±i) = −1
4 , Resf(±1) = 1

4 ,
we immediately obtain the partial fraction decomposition:

f(z) =

4∑
k=1

Res(f ; zk)

z − zk

=
−1
4

z + i
+

−1
4

z − i
+

1
4

z + 1
+

1
4

z − 1
.



Cover-Up Method and Rule 3 Example 22

Be cautious with the Cover-Up Method: For example, with

f(z) =
1

(z − 1)(2z − 4)

it holds that Resf(2) ̸= 1
(z−1)

∣∣∣
z=2

?

Res(f, 1) = lim
z→1

(z − 1)
1

2(z − 1)(z − 2)
= lim

z→1

1

2(z − 2)
=

1

2(1− 2)
= −1

2

Res(f, 2) = lim
z→2

(z − 2)
1

2(z − 1)(z − 2)
= lim

z→2

1

2(z − 1)
=

1

2(2− 1)
=

1

2

Example for Rule 3)

f(z) =
z2 − 1

(z − 1)2(z + 1)(z − i)4



Example: Higher Order Pole Residue 23

Singularities: 
z1 = 1 Pole of first order

z2 = i Pole of fourth order

z3 = −1 Removable singularity

=⇒ Resf(z3) = 0

=⇒ Resf(1) =
1

(1− i)4

Resf(i) =
1

3!
lim
z→i

(
(z − i)4f(z)

)′′′
=

1

6
lim
z→i

(
(z − i)4

1

(z − 1)(z − i)4

)′′′

=
1

6
lim
z→i

(
1

z − 1

)′′′
= −(z − 1)−4

∣∣
z=i

= − 1

(i− 1)4
= − 1

(−2i)2
=

1

4
.



Example: Pole of Order Three (Revisited) 24

Another Example:

f(z) := sin(z)
z4

f(z) =
1

z4
sin(z) =

1

z4

(
z − z3

3!
+

z5

5!
− z7

7!
± . . .

)

=
1

z3
− 1

3!z
+

z

5!
− z3

7!
± . . .

Zero is a pole of third order!

Of course, one does NOT apply Rule 3) to calculate Resf(0). Instead?

The residue at z = 0 is:

Resf(0) = − 1

3!
= −1

6



Improper Integrals: Theorem A 25

Theorem A) Let H := {z ∈ C : Im(z) ≥ 0}

D a domain with H ⊂ D.
f(z) is holomorphic in D \ {z1, · · · , zn}.
{z1, · · · , zn} ⊂ H \ R
(i.e., no singularities on R),

lim
z→∞

z · f(z) = 0 uniformly in H.

(e.g., if f(z) = p(z)
q(z) with grad q ≥ grad p +2)

Then
∫∞
−∞ f(x) dx = 2πi

∑n
k=1 Resf(zk)



Example: Improper Integrals 26

Example 1)
∫∞
−∞

1
(x−2)(x2+1)

dx

The theorem is not applicable! Singularity at z = 2 ∈ R.

Example 2) I =
∫∞
−∞

1
(x2+4)(x2+1)

dx

f(z) = 1
(z+2i)(z−2i)(z+i)(z−i)

Singularities in the upper half-plane: z1 = i, z2 = 2i

I = 2πi (Resf(i) + Resf(2i))

= 2πi
(

1
(z+2i)(z−2i)(z+i)

∣∣∣
z=i

+ 1
(z+2i)(z−i)(z+i)

∣∣∣
z=2i

)



Theorem B: Integrals with Exponential Factors 27

Theorem B) Almost all conditions are as in Theorem A).
In particular: finitely many singularities {z1, · · · , zn} in H \ R.
Different from A):

lim
z→∞, Im(z)≥0

f(z) = 0 , z = x+ iy

(e.g., f(z) = p(z)
q(z) , Grad (q) > Grad (p)).

then for ω > 0, ∫ ∞

−∞
f(x)eiωx dx = 2πi

n∑
k=1

Res
(
eiωzf ; zk

)
(compare with formulas for Fourier transform. There:

f(t) =
∫∞
−∞ F (ω)eiωt dω , F (ω) =

∫∞
−∞ f(τ)e−iωτ dτ )
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