Complex functions for Engineering Students

Solutions for work sheet 4

Exercise 1:

- a) Determine a Möbius transform $T : \mathbb{C}^* \to \mathbb{C}^*$, $T(z) := \frac{az+b}{cz+d}$ with T(i) = 0, T(0) = 2, $T(2i) = \infty$.
- b) Determine the images of the following generalized circles using T.
 - (i) K := imaginary axis,
 - (ii) $K_2 := \{ z \in \mathbb{C} : |z| = 2 \},\$
 - (iii) $\tilde{K} :=$ real axis.
- c) Determine the image of the quarter plane

 $S := \{ z \in \mathbb{C} : \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0 \}.$

d) Determine the image of

$$H := \{ z \in \mathbb{C} : \operatorname{Re}(z) > 3 \}.$$

Solution for exercise 1)

a)
$$T(i) = 0, T(2i) = \infty \iff T(z) = \frac{a(z-i)}{z-2i}.$$

 $T(0) = 2, \implies T(z) = \frac{4(z-i)}{z-2i}.$

b) (i) Because of the given images of 0, *i*, 2*i* the transform is $T(i\mathbb{R}) = \mathbb{R}$. Alternatively: $2i \in i\mathbb{R} \iff T(i\mathbb{R})$ is a line. $T(0) = 2, T(\infty) = 4 \iff T(i\mathbb{R}) = \mathbb{R}$

(ii) $2i \in K_2 \iff T(K_2)$ is a line. K_2 is symmetric to $i\mathbb{R} \implies T(K_2)$ is symmetric to \mathbb{R} . $T(-2i) = \frac{4(-3i)}{-4i} = 3 \iff T(K_2)$ is the parallel line to the imaginary axis through the point 3

$$g_2 := T(K_2) = \{ w \in \mathbb{C} : w = 3 + iv, v \in \mathbb{R} \}.$$

- (iii) $2i \notin \mathbb{R} \iff T(\mathbb{R})$ is a real circle K_R . \mathbb{R} is symmetric to $i\mathbb{R}$ and $K_2 \implies T(\mathbb{R})$ is symmetric to \mathbb{R} and g_2 . The center of the circle in the image is M = 3. Because of T(0) = 2 the radius R = 1.
- c) The image of the quarter plane is bounded by \mathbb{R} and K_R .

Now, we can calculate:

$$T(2i) = \infty \implies$$
 upper halfspace \longrightarrow outside of K_R .
 $T(2) = \frac{8-4i}{2-2i} = \frac{2(2-i)(1+i)}{1-i^2} = 2+2i-i+1 = 3+i$.

The right halfspace is mapped onto the upper halfspace.

$$T(S) = \{ w \in \mathbb{C} : \operatorname{Im}(w) > 0, |w - 3| > 1 \}.$$

Or for example:

$$T(1+2i) = \frac{4+8i-4i}{1+2i-2i} = 4+4i$$

Lies in the upper halfspace and outside of K_R , so

$$T(S) = \{ w \in \mathbb{C} : \operatorname{Im}(w) > 0, |w - 3| > 1 \}.$$

d) The image of the line $\operatorname{Re}(z) = 3$ is a real circle, since 2i does not lie on the line. The center C and ∞ are symmetric to the circle in the image. Hence

 $T^{-1}(\infty) = 2i$ is symmetric to $T^{-1}(C)$ regarding the line $\operatorname{Re}(z) = 3$.

$$\implies T^{-1}(C) = 2i + 6 \iff C = T(2i + 6) = \frac{4(2i + 6 - i)}{2i + 6 - 2i} = 4 + \frac{2i}{3}$$

Because of $T(\infty) = 4$ the circle's radius is $r = \frac{2}{3}$. Because of T(0) = 2 E: Re(z) > 3 is mapped onto the interior of the circle.

$$T(H) = \{ w \in \mathbb{C} : |w - 4 - \frac{2i}{3}| < \frac{2}{3} \}.$$

Exercise 2:

In which points of their domain are the following functions complex differentiable?

- a) $f_1 : \mathbb{C} \to \mathbb{C}, f_1(z) = \operatorname{Re}(z) \cdot \operatorname{Im}(z).$
- b) $f_2 : \mathbb{C} \to \mathbb{C},$ $f_2(z) = (\operatorname{Re}(z) + 2)^2 - (\operatorname{Im}(z) + 2)^2 + i \left[\operatorname{Im}(z)(\operatorname{Re}(z) + 4) + \operatorname{Re}(z)(\operatorname{Im}(z) + 4) \right].$
- c) $f_3: \mathbb{C} \setminus \{0\} \to \mathbb{C}, f_3(z) = \frac{z^2}{\bar{z}}$. Hint: Use Cauchy Riemann equations in polar representation: $u_r = \frac{1}{r} v_{\varphi}$ and $v_r = -\frac{1}{r} u_{\varphi}$.

Solution:

- a) $f_1(z) = \operatorname{Re}(z) \cdot \operatorname{Im}(z) = xy + 0 \cdot i \iff u = xy, v = 0$ We verify the Cauchy Riemann equations: $u_x = v_y \iff y = 0$, and $u_y = -v_x \iff x = 0$ The function is only complex differentiable in zero.
- b) $f_2(z) = (\operatorname{Re}(z) + 2)^2 (\operatorname{Im}(z) + 2)^2 + i \left[\operatorname{Im}(z)(\operatorname{Re}(z) + 4) + \operatorname{Re}(z)(\operatorname{Im}(z) + 4) \right] \cdot u = (x+2)^2 (y+2)^2 \text{ and } v = y(x+4) + x(y+4)$ So $u_x = 2(x+2) = v_y = x + 4 + x \text{ and } -u_y = 2(y+2) = v_x = y + y + 4$. The function is complex differentiable everywhere. It holds that $f_2(z) = (z+2+2i)^2 - 8i$.

c)
$$f_3(z) = \frac{z^2}{\bar{z}} = \frac{r^2 e^{2i\varphi}}{r e^{-i\varphi}} = r e^{3i\varphi} = r \cdot \cos(3\varphi) + i \cdot r \cdot \sin(3\varphi)$$

 $u_r = \cos(3\varphi), \qquad \frac{1}{r} v_{\varphi} = 3 \cdot \cos(3\varphi)$

 f_3 is only complex differentiable in points with $\cos(3\phi) = 0$.

$$v_r = \sin(3\varphi), \qquad \frac{1}{r}u_{\varphi} = -3 \cdot \sin(3\varphi)$$

 f_3 is only complex differentiable in points with $\sin(3\phi) = 0$.

There is no angle for which both sine and cosine are zero. Hence, f_3 is complex differentiable nowhere.

Alternatively:

The function $f_4(z) = \overline{z} = x - iy$ ist not holomorphic because $u_x = 1 \neq v_y = -1$. If f_3 were holomorphic, so too would

 $z^2 \cdot (f_3(z))^{-1}$ be holomorphic!

Exercise 3: Hint : You do not need to give exact transformations.

a) To solve a potential problem, the area outside the two circles

 $K_1 := \left\{ z \in \mathbb{C} : |z - 2| \le \frac{3}{2} \right\}, \text{ and} \\ K_2 := \left\{ z \in \mathbb{C} : |z + 1| \le \frac{3}{2} \right\}$

is to be mapped onto a strip parallel to or onto the interior of the circle around the origin. Which of these two transformations is achievable by the use of a Möbius transform?

b) Let $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$ be fixed parameters. Which of the following areas can be mapped onto a sector of the form

$$S := \left\{ w \in \mathbb{C} : w = r e^{i\phi}, r \in \mathbb{R}^+, -\pi < \varphi_1 < \phi < \varphi_2 < \pi \right\}$$

using Möbius transforms? Please explain your answer.

(i)

$$G_1 := \{ z \in \mathbb{C} : \alpha < |z| < \beta \}$$

(ii)

$$G_2 := \{ z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta \}$$

(iii)

$$G_{3} := \left\{ z \in \mathbb{C} : |z - \alpha| < \frac{3}{4} |\beta - \alpha|, |z - \beta| < \frac{3}{4} |\beta - \alpha| \right\}.$$

Solution for exercise 3)

a) The domain is bounded by the two circles

$$C_1 := \left\{ z \in \mathbb{C} : |z - 2| = \frac{3}{2} \right\}, \text{ and}$$
$$C_2 := \left\{ z \in \mathbb{C} : |z + 1| = \frac{3}{2} \right\}.$$

These two circles intersect at $z_s = \frac{1}{2}$. To map them onto a ring, the circles would have to be mapped onto two circles that do not intersect each other which is not possible!

For mapping to a strip, the circles have to be mapped onto two lines g_1 und g_2 . These have an intersection at ∞ . The intersection of both circles is mapped to the point at ∞ and we obtain two lines as images of the circles C_1 and C_2 . Since the circles have no other intersections the images (lines) also have no other intersections. Hence, they are parallel to each another.

If real coefficients are chosen, the centers M_1 and M_2 of the circles C_1 and C_2 are mapped onto real numbers, g_1 and g_2 are perpendicular to \mathbb{R} and point at ∞ is mapped onto $(T(M_1) + T(M_2))/2$. The area outside of both cicles is mapped onto the parallel strip between g_1 and g_2 .

Hence, a mapping onto a strip is possible. For example $T(z) = \frac{1}{z - \frac{1}{2}}$.

- b) A sector S of the given form is bounded by two generalized circles with the intersections zero and ∞ .
 - (i) The circular area

$$G_1 := \{ z \in \mathbb{C} : \alpha < |z| < \beta \}$$

is bounded by two generalized circles without intersection. The mapping from G_1 onto S using a Möbius transform is not possible.

(ii) The parallel strip

$$G_2 := \{ z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta \} .$$

is bounded by two generalized circles with an intersection at ∞ . The mapping from G_2 onto S using a Möbius transform is not possible.

(iii) The area

$$G_{3} := \left\{ z \in \mathbb{C} : |z - \alpha| < \frac{3}{4} |\beta - \alpha|, |z - \beta| < \frac{3}{4} |\beta - \alpha| \right\}.$$

is bounded by two generalized circles with intersections at z_1 and z_2 . If one of the intersections is mapped onto zero and the other onto ∞ , a Möbius transform maps G_3 to a sector.

Class: 27.05.24