Prof. Dr. J. Struckmeier,

Dr. H. P. Kiani, Dr. C. R. Goetz

Complex functions for Engineering Students

Solutions for work sheet 3

Exercise 1:

Let $\ln(z)$ be the principal value for the complex logarithm. Given the following complex numbers

$$z_1 = \sqrt{2}(-1+i), \quad z_2 = 3i, \quad z_3 = -4i.$$

a) Calculate the cartesian representations for

$$z_4 := z_1 \cdot z_2, \quad z_5 := \frac{z_1}{z_2}, \quad z_6 := z_1 \cdot z_3, \quad z_7 := \frac{z_1}{z_3}.$$

- b) Calculate $ln(z_k), k = 1, 2, ..., 7$.
- c) Compare

$$\begin{aligned} &\ln(z_1\cdot z_k) \text{ with } \ln(z_1) + \ln(z_k) \\ &\text{and} \\ &\ln(\frac{z_1}{z_k}) \text{ with } \ln(z_1) - \ln(z_k) \text{ for } k=2,3\,. \end{aligned}$$

d) For what complex numbers do the rules for \mathbb{R} apply:

$$\ln(a \cdot b) = \ln(a) + \ln(b), \qquad \ln(\frac{a}{b}) = \ln(a) - \ln(b)?$$

Solution:

a) Calculate the cartesian representations for

$$z_4 := z_1 \cdot z_2 = \sqrt{2}(-1+i) \cdot 3i = 3\sqrt{2}(-1-i),$$

$$z_5 := \frac{z_1}{z_2} = \frac{\sqrt{2}(-1+i)}{3i} = \frac{\sqrt{2}}{3}(1+i),$$

$$z_6 := z_1 \cdot z_3 = \sqrt{2}(-1+i) \cdot (-4i) = 4\sqrt{2}(1+i),$$

$$z_7 := \frac{z_1}{z_3} = \frac{\sqrt{2}(-1+i)}{-4i} = \frac{\sqrt{2}}{4}(-1-i),$$

b) It holds that $\ln(z) = \ln(|z|) + i\arg(z)$ while $\arg(z) \in (-\pi, \pi)$. One obtains:

$$z_{1} = 2e^{i\frac{3\pi}{4}} \implies \ln(z_{1}) = \ln(2) + i\frac{3\pi}{4}$$

$$z_{2} = 3e^{i\frac{\pi}{2}} \implies \ln(z_{2}) = \ln(3) + i\frac{\pi}{2}$$

$$z_{3} = 4e^{-i\frac{\pi}{2}} \implies \ln(z_{3}) = \ln(4) - i\frac{\pi}{2}.$$

$$z_{4} = z_{1} \cdot z_{2} = 6e^{i\frac{5\pi}{4}} = 6e^{-i\frac{3\pi}{4}} \implies \ln(z_{4}) = \ln(6) - i\frac{3\pi}{4},$$

$$z_5 := \frac{z_1}{z_2} = \frac{2}{3}e^{i\frac{\pi}{4}} \implies \ln(z_5) = \ln(\frac{2}{3}) + i\frac{\pi}{4} ,$$

$$z_6 := z_1 \cdot z_3 = 8e^{i\frac{\pi}{4}} \implies \ln(z_6) = \ln(8) + i\frac{\pi}{4} ,$$

$$z_7 := \frac{z_1}{z_3} = \frac{1}{2}e^{i\frac{5\pi}{4}} = \frac{1}{2}e^{-i\frac{3\pi}{4}} \implies \ln(z_7) = \ln(\frac{1}{2}) - i\frac{3\pi}{4} .$$

- c) $\ln(z_1 \cdot z_2) = \ln(6) i\frac{3\pi}{4} \neq \ln(z_1) + \ln(z_2) = \ln(6) + i\frac{5\pi}{4}$. $\ln(z_1 \cdot z_3) = \ln(8) + i\frac{\pi}{4} = \ln(z_1) + \ln(z_3)$. $\ln(\frac{z_1}{z_2}) = \ln(\frac{2}{3}) + i\frac{\pi}{4} = \ln(z_1) - \ln(z_2)$. $\ln(\frac{z_1}{z_3}) = \ln(\frac{1}{2}) - i\frac{3\pi}{4} \neq \ln(z_1) - \ln(z_3) = \ln(\frac{1}{2}) + i\frac{5\pi}{4}$.
- d) $\ln(c_1 \cdot c_2) = \ln(c_1) + \ln(c_2)$ is valid in \mathbb{C} exactly when $-\pi < \arg(c_1) + \arg(c_2) < \pi$. $\ln(\frac{c_1}{c_2}) = \ln(c_1) \ln(c_2)$ is valid in \mathbb{C} exactly when $-\pi < \arg(c_1) \arg(c_2) < \pi$.

Exercise 2: Let the two sets D_1 and D_2 be

$$D_1 := \left\{ x \in \mathbb{R} : \, -\infty < \, x \leq \, -2 \right\} \cup \left\{ z \in \mathbb{C} \, : z = \, 2e^{i\phi}, \, \phi \in \,]0, \pi[\right\} \cup \left\{ x \in \, \mathbb{R} : \, 2 \leq \, x < \, \infty \right\},$$

and

$$D_2 := \{ x \in \mathbb{R} : -\infty < x \le -2 \} \cup \{ z \in \mathbb{C} : z = 2e^{i\phi}, \, \phi \in]\pi, 2\pi[\} \cup \{ x \in \mathbb{R} : 2 \le x < \infty \} .$$

Determine the images of D_1 and D_2 for the mapping $f(z) = \frac{2}{z} + \frac{z}{2}$.

On which of these sets D_1 , D_2 , $D_1 \cup D_2$ is f invertible?

Solution for exercise 2:

f is differentiable in $\mathbb{C} \setminus 0$ with $f'(z) = -\frac{2}{z^2} + \frac{1}{2}$.

It holds that $f'(z) = 0 \iff z = \pm 2$.

Hence, f is monotone on the intervalls $]-\infty,-2]$ and $[2,\infty[$.

$$\lim_{z \to -\infty} f(z) = -\infty \text{ and } f(-2) = -2 \Longrightarrow f(]-\infty, -2] =]-\infty, -2]$$

$$\lim_{z \to \infty} f(z) = \infty$$
 and $f(2) = 2 \Longrightarrow f([2, \infty[)) = [2, \infty[$

$$f(2e^{i\phi}) = \frac{2}{2e^{i\phi}} + \frac{2e^{i\phi}}{2} = e^{-i\phi} + e^{i\phi} = 2\cos(\phi)$$

For $\phi \in]0,\pi[-f(2e^{i\phi})$ passes through the intervall]-2,2[in mathematically positive manner.

For $\phi \in]\pi, 2\pi[f(2e^{i\phi})$ passes through the intervall]-2,2[in mathematically negative manner.

Hence $f(D_1) = f(D_2) = \mathbb{R}$.

f is invertible in D_1 and D_2 but not in $D_1 \cup D_2$.

Exercise 3:

- a) (i) How many solutions does the equation $(z-2i)^{10}=z^{10}$ have?
 - (ii) Show that all solutions for the equation from i) lie on the line $\operatorname{Im}(z) = 1$.
- b) How many solutions does the equation $(z-2i)^i = z^i$ have?

Solution:

a) (i) After subtracting z^{10} from both sides the roots of a polynomial of degree nine in \mathbb{C} need to be found. As a result, there are nine solutions (considering possible multiplicity).

(ii)
$$(z-2i)^{10} = z^{10} \Longrightarrow |(z-2i)^{10}| = |z^{0}| \Longrightarrow |z-2i|^{10} = |z|^{10}$$

which means that z has the same distance from 2i and 0. z is located on the bisector of the line between 0 and 2i. Hence, the solutions lie on the line

$$z = x + i, \qquad x \in \mathbb{R}.$$

b) Solutions of $(z-2i)^i = z^i$:

Let $w := f(z) := z^i$. Hence

$$w = z^{i} = \exp(\ln(z))^{i} = \exp(\ln(z) \cdot i) = \exp(i \cdot \ln(|z|) + i^{2} \arg(z))$$

So

$$|w| = e^{-\arg(z)}, \quad \arg(w) = \ln(|z|) + 2k\pi \quad \text{for adequate } k \in \mathbb{Z}.$$

If $\tilde{w} := (z - 2i)^i = z^i = w$ holds, we obtain

$$|\tilde{w}| = |w|$$
. So

$$e^{-\arg(z)} = e^{-\arg(z-2i)} \Longrightarrow \arg(z) = \arg(z-2i) \Longrightarrow z = iy, y \in \mathbb{R} \setminus [0,2]$$

Furthermore,

$$\exp(i \cdot \ln(|z|)) = \exp(i \cdot \ln(|z - 2i|))$$

has to hold. With $k \in \mathbb{Z}$:

$$\ln(|z-2i|) = \ln(|z|) + 2k\pi \implies \ln\left(\left|\frac{iy-2i}{iy}\right|\right) = 2k\pi \implies \left|1-\frac{2}{y}\right| = e^{2k\pi}$$

For y < 0 or y > 2 the absolute value is not needed:

$$y_k = \frac{2}{1 - e^{2k\pi}}$$
 with $k \in \mathbb{Z}$, $k \neq 0$.

There are infinitely many solutions

$$z_k = \frac{2i}{1 \pm e^{2k\pi}} \quad k \in \mathbb{N}$$