Complex functions for Engineering Students Work sheet 2

Exercise 1:

Find the images of the domains D, \tilde{D} and \hat{D} , respectively, regarding the following functions. Sketch the domains and the images or describe them in words.

- a) $D = \{z \in \mathbb{C} : |\operatorname{Re}(z)| \le 4, |\operatorname{Im}(z)| \le 2\},\$ $f_1(z) = 0.5z, \quad f_2(z) = 0.5e^{i\frac{\pi}{2}}z,$
- b) $\tilde{D} = \{z \in \mathbb{C} : 1 \le |z| \le 2, \operatorname{Re}(z) > 0, \operatorname{Im}(z) < 0\},\$ $f_3(z) = \left(e^{i\frac{\pi}{4}}z\right)^2, f_4(z) = \left(e^{i\frac{\pi}{4}}z\right)^2 + 1 + i, f_5(z) = \frac{1}{z}.$
- c) $\hat{D} := \left\{ z \in \mathbb{C} : z = x + iy, x \in (0, 2), y \in \left(0, \frac{\pi}{2}\right) \right\},$ $f(z) := i \cdot e^{z}.$

Solution for exercise 1:

a) D: rectangle parallel to the axes with side lengths 8 and 4 and centered around the origin.

D is stretched by f_1 by a factor of 0.5 and in addition f_2 rotates D by $\frac{\pi}{2}$. $f_1(D) = \{ w \in \mathbb{C} : w = u + iv, -2 \le u \le 2, -1 \le v \le 1 \}.$ $f_2(D) : \{ \hat{w} \in \mathbb{C} : \hat{w} = \hat{u} + i\hat{v}, -1 \le \hat{u} \le 1, -2 \le \hat{v} \le 2 \}.$

b) \tilde{D} : Lower right fourth of the circular cisk around the origin with inner radius = 1, outer radius = 2. $z = re^{i\phi}, r \in [1, 2], -\frac{\pi}{2} < \phi < 0$.

$$\begin{split} \tilde{D} & \text{ is rotated by } f_3 \text{ by } \pi/4: \\ \tilde{w} &= e^{i\pi/4}z = \rho \, e^{i\alpha}, \, \rho \in [1,2], \, -\frac{\pi}{4} < \alpha < \frac{\pi}{4} \,. \\ \text{Afterwards, it is squared which yields:} \\ w &= R \, e^{i\beta}, \, R \in [1,4], \, -\frac{\pi}{2} < \beta < \frac{\pi}{2} \,. \end{split}$$

 $f_3(D)$ is right half of the circular disk around the origin with inner radius = 1, outer radius = 4.

 $f_4(\tilde{D})$ is the transformed image of \tilde{D} by f_3 which then is translated by 1+i, so die right half of the circular disk around 1+i with inner radius = 1, outer radius = 4.

Note: Multiplication of a (constant) complex number results in successive rotation and stretching. Addition of a (constant) complex number results in a translation.

$$f_5(\tilde{D}):$$
 $z = re^{i\varphi} \implies \frac{1}{z} = \frac{1}{re^{-i\varphi}}.$

In \tilde{D} it holds that $1 \leq r \leq 2$ and $-\frac{\pi}{2} \leq \varphi \leq 0$. For the images $f_5(z)$ obtained with the points z from \tilde{D} it holds that:

 $w = f_5(z) = \rho e^{i\alpha}$ with $\frac{1}{2} \le \rho \le 1$ and $0 \le \alpha \le \frac{\pi}{2}$.

The image is the upper right quarter of the circular disk around the origin with inner radius 0.5 and outer radius 1.

c) \hat{D} : rectangle paralel to the axes with edges $(0,0), (2,0), (2,\frac{\pi}{2}), (0,\frac{\pi}{2})$. $\tilde{f}(z) := e^z = e^{x+iy} = e^x \cdot e^{iy} \implies$ $\left| \tilde{f}(z) \right| = e^x \in (e^0, e^2) = (1, e^2), \quad \arg\left(\tilde{f}(z)\right) = y \in \left(0, \frac{\pi}{2}\right)$ $f(z) = i \cdot \tilde{f}(z)$: rotated by $\pi/2$. Hence $\left| f(z) \right| = \left| \tilde{f}(z) \right| \in (1, e^2),$ $\arg\left(f(z) \right) \in \left(\frac{\pi}{2}, \pi\right).$

Image: Quarter circular disk in the second quadrant with inner radius 1 und outer radius $e^2\,.$

Exercise 2)

Find all solutions $z \in \mathbb{C}$ of the following equations

i)
$$e^{z} = -1$$
, ii) $e^{z} = -2\sqrt{2} - 2\sqrt{2}i$,
iii) $z^{5} = 32$, iv) $z^{5} = 16(1 + i\sqrt{3})$,

Solution: i) $e^z = e^x \cdot e^{iy} = -1$

$$\begin{split} |e^{z}| &= e^{x} = 1 \iff x = 0. \\ e^{iy} &= -1 = e^{i\pi} \iff y = \pi + 2k\pi, \quad k \in \mathbb{Z} \\ \text{ii)} \ e^{z} &= -2\sqrt{2} - 2\sqrt{2}i \implies |e^{z}| = \sqrt{(-2\sqrt{2})^{2} + (-2\sqrt{2})^{2}} = \sqrt{8+8} = 4 \,. \\ \text{Analogous to i)} \ x &= \ln(4) \,. \\ e^{z} &= e^{x} \cdot e^{iy} = -2\sqrt{2} - 2\sqrt{2}i = 4 \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \cdot i \right) = 4e^{-i\frac{\pi}{4}} \,. \end{split}$$

$$\implies e^{iy} = e^{-i\frac{\pi}{4}} \implies y = 2k\pi - \frac{\pi}{4}, \quad k \in \mathbb{Z}.$$

This yields infinitely many points of the complex plane that all lie on a line parallel to the imaginary axis.

iii)
$$z^5 = 32 \iff |z^5| = |z|^5 = 32 \implies |z| = 2$$

For $z = re^{i\phi}$ it holds that

$$z^5 = r^5 e^{i5\phi} = 2^5 e^0 \implies 5\phi = 0 + 2k\pi \implies \phi = \frac{2k\pi}{5}, \qquad k \in \mathbb{Z}.$$

This leads to five different points in the complex plane that all lie on the circle with radius two around the origin. The phases are $\{\frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}, \frac{10\pi}{5}\}$.

iv)
$$z^5 = 16(1 + i\sqrt{3})$$

 $|z^5| = |z|^5 = \sqrt{16^2 + 3 \cdot 16^2} = \sqrt{4 \cdot 16^2} = 32 \implies |z| = 2$
For $z = re^{i\phi}$ it holds that
 $z^5 = r^5 e^{i5\phi} = 2^5(\frac{1}{2} + i\frac{\sqrt{3}}{2}) = 32e^{i\frac{\pi}{3}}$

$$\implies 5\phi = \frac{\pi}{3} + 2k\pi \implies \phi = \frac{\pi}{15} + \frac{2k\pi}{5}, \qquad k \in \mathbb{Z}.$$

These are again five points around that circle with radius two around the origin. The points are the same as in part iii) except that they are rotated by $\frac{\pi}{15}$.

Class: 22.04.24