Prof. Dr. J. Struckmeier, Dr. H.P. Kiani, T. Hassan

Complex functions for Engineering Students Homework sheet 2

Exercise 21:

For the \mathbb{R}^2 , there is a affine linear transformation form any arbitrary rectangle to any arbitrary parallelogram. Check whether the square

$$Q := \{ z \in \mathbb{C}, z = x + iy, x, y \in [-\sqrt{2}, \sqrt{2}], i^2 = -1 \}$$

can be transformed (affine linear) to parallelograms with the following corners in \mathbb{C} and if so give an adequate transformation.

a)
$$\begin{pmatrix} -1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -i \end{pmatrix}$, $\begin{pmatrix} 3 \\ i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$,

b)
$$\begin{pmatrix} -1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -i \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3i \end{pmatrix}$, $\begin{pmatrix} -1 \\ 3i \end{pmatrix}$, c) $\begin{pmatrix} 1 \\ -i \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2i \end{pmatrix}$,

d)
$$\begin{pmatrix} 0 \\ -2i \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$, e) $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2i \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4i \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2i \end{pmatrix}$.

Hint: Sketches can be very beneficial.

Solution:

a)
$$\begin{pmatrix} -1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -i \end{pmatrix}$, $\begin{pmatrix} 3 \\ i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$.

One direction has been stretched differently than the other. Hence, this cannot be represented by an affine transformation in \mathbb{C} .

b)
$$\binom{-1}{-i}$$
, $\binom{3}{-i}$, $\binom{3}{3i}$, $\binom{-1}{3i}$.
 $f_b(z) = \sqrt{2}z + 1 + i$ yields the correct transformation.

c)
$$\begin{pmatrix} 1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2i \end{pmatrix}$.

While the sides are of equal length, the transformation is impossible since successive rotation and stretching cannot change right angles to acute/obtuse angles.

d) $\begin{pmatrix} 0 \\ -2i \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$

We have a rotation which can be achieved by a linear function, such as: $f_d(z):=e^{i\frac{\pi}{4}}z\,.$

e) $\binom{2}{0}$, $\binom{4}{2i}$, $\binom{2}{4i}$, $\binom{0}{2i}$.

One can choose $f_e(z) := f_d(z) + 2 + 2i$ (rotation with translation afterwards).

Exercise 2:

Let i be the imaginary unit. Find all complex solutions for the following equations

a)
$$e^{3z} - \frac{i}{e^z} = 0$$
 bzw. b) $e^{2z+1+i\frac{\pi}{2}} = \frac{1}{\sqrt{2}}(1+i)$.

Solution:

a)
$$e^{3z} - \frac{i}{e^z} = 0 \iff e^{4z} = i = 1 \cdot e^{i\frac{\pi}{2}}.$$

Both equations have to be satisfied:

$$|e^{4z}| = |e^{4x} \cdot e^{4iy}| = e^{4x} \stackrel{!}{=} |i| = 1$$

and

$$e^{i4y} \stackrel{!}{=} e^{i\frac{\pi}{2}} \iff 4y = \frac{\pi}{2} + 2k\pi, \qquad k \in \mathbb{Z}.$$

So
$$x = 0$$
 and $y_k = \frac{\pi}{8} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

b)
$$w := e^{2z+1+i\frac{\pi}{2}} = e^{2x+1} \cdot e^{i(2y+\frac{\pi}{2})}$$
. $|w| = e^{2x+1} \stackrel{!}{=} \left| \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \right| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$ $\iff 2x+1 = \ln(1) = 0 \iff x = -\frac{1}{2}$. $e^{i(2y+\frac{\pi}{2})} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \iff \arg\left(e^{i(2y+\frac{\pi}{2})}\right) = \arg\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) + 2k\pi$ $\iff 2y + \frac{\pi}{2} = \frac{\pi}{4} + 2k\pi \iff 2y = -\frac{\pi}{4} + 2k\pi \iff y = -\frac{\pi}{8} + k\pi$ $k \in \mathbb{Z}$

Exercise 3: (Please read the hints at the end of the exercise)

Given a transformation $w = f(z) := \frac{1}{z}$ mit $z \neq 0$.

- a) Find the images of
 - (i) the ray $arg(z) = \varphi_0$,
 - (ii) the line Re $(z) = x_0$, so that $z + \overline{z} = 2x_0$,
 - (iii) the line $\operatorname{Im}(z) = y_0$.
- b) Find the image of the circle $|z \frac{i}{2}| = \frac{1}{2}$ without z = 0.

Hints:

1) In all subtasks except a)i), substitute $z = \frac{1}{w}$ into the equations that describe the master images and rearrange these equations so that you can see which quantities are described in the image space. 2) The equation |z-c|=r describes a circle around c with radius r. Be aware that there is the following equivalence that allows for a use without absolute values:

$$|z - c| = R \iff (z - c)\overline{(z - c)} = R^2$$

$$\iff (z-c)(\overline{z}-\overline{c}) = R^2$$

$$\iff z\overline{z} - z\overline{c} - c\overline{z} + c\overline{c} = R^2.$$

Solution:

a) (i)
$$f: z \to \frac{1}{z}$$
 $z = re^{i\varphi_0}$
 $\frac{1}{z} = \frac{1}{r}e^{-i\varphi_0}$ ray with phase $-\varphi_0$ passing from outside to the inside!

(ii) Re
$$z = x_0 \iff z + \overline{z} = 2x_0 \iff \frac{1}{w} + \frac{1}{\overline{w}} = 2x_0$$

A)
$$x_0 = 0$$

 $\frac{1}{z}$ is not defined for $y = x_0 = 0$.
Otherwise, $\frac{1}{z} = \frac{1}{iy} = \frac{-1}{y}i$.
The image is the imaginary axis without zero.

B)
$$x_0 \neq 0$$

$$\frac{1}{w} + \frac{1}{\overline{w}} = 2x_0 \iff \overline{w} + w = 2x_0 w \overline{w} \iff w \overline{w} - \frac{1}{2x_0} \overline{w} - \frac{1}{2x_0} w = 0$$

The image is a circle around $\frac{1}{2x_0}$ with radius $\frac{1}{2|x_0|}$.

(iii)
$$\operatorname{Im}(z) = y_0 \iff z - \overline{z} = 2iy_0$$

A)
$$y_0 = 0$$
 $\frac{1}{z}$ is not defined for $x = y_0 = 0$.
Otherwise, $z^{-1} = \frac{1}{x}$. The image is the real axis without zero.

B)
$$\text{Im}(z) = y_0 \neq 0$$

Complex functions, J. Struckmeier/P. Kiani, T. Hassan SoSe 2024, Homework sheet 2 - solutions5

$$\iff \frac{1}{2i}(z - \overline{z}) = y_0$$

$$z - \overline{z} = 2iy_0 \implies \frac{1}{w} - \frac{1}{\overline{w}} - 2iy_0 = 0$$

$$w\overline{w} - \frac{1}{2iy_0}\overline{w} + \frac{1}{2iy_0}w = 0$$

$$\iff w\overline{w} + \frac{i}{2y_0}\overline{w} - \frac{i}{2y_0}w + \frac{1}{4y_0^2} = \frac{1}{4y_0^2}$$

The image is a circle around $\frac{-i}{2y_0}$ with radius $\frac{1}{|2y_0|}$.

b) The circle $\left|z-\frac{i}{2}\right|=\frac{1}{2}$ passes through the origin. For z=i $\frac{1}{z}=-i$ is obtained. For $z\to 0$ $\frac{1}{z}\to \infty$ is obtained.

It holds that $z\overline{z} - \frac{i}{2}\overline{z} + \frac{i}{2}z = 0$ or for $z \neq 0$

$$\frac{1}{w\overline{w}} - \frac{i}{2\overline{w}} + \frac{i}{2w} = 0 \iff 1 - \frac{i}{2}w + \frac{i}{2}\overline{w} = 0$$
$$\iff 1 = \frac{i}{2}(w - \overline{w}) = -\operatorname{Im}(w)$$

The image is an axis parallel to the real axis passing through -i.

Hand in: 22.04.24 - 26.04.24