Complex functions for Engineering Students

Sheet 6 (Homework)

Exercise 1:

- a) Let C be the unit circle |z| = 1 traversed once in the mathematically positive direction.
 - (i) Compute $\int_C \frac{1}{(e^z i)} dz$.
 - (ii) For a function analytic on \mathbb{C} , it is given that |f(z)| = 4 everywhere on the curve C and f(0) = 4i. What must f look like?
- b) Let $\,C\,$ be a smooth closed piecewise $\,C^1\,$ curve without double points. When is the integral

$$I(C) := \int\limits_C \frac{z}{z^2 + 1} \, dz$$

defined?

What values can the integral take if it is defined?

Exercise 2: Determine the Laurent series for the following functions at the point of expansion z_0 , which converges to f(-3/2) at the point z = -3/2.

a) $f(z) = z^3 \cos(\frac{1}{z}), \qquad z_0 = 0,$

b)
$$f(z) = \frac{z^2 + 1}{z^2 + z - 2}$$
, $z_0 = 0$,

- c) $f(z) = \frac{3}{z^2 + z 2}$, $z_0 = 1$,
- d) $f(z) = \frac{1}{(z-i)^3}$, $z_0 = 1+i$.

Hand in: 24.06.2024 - 30.06.2024