Prof. Dr. J. Struckmeier, Dr. H.P. Kiani, T. Hassan

Complex functions for Engineering Students Homework sheet 2

Exercise 21:

For the \mathbb{R}^2 , there is a affine linear transformation form any arbitrary rectangle to any arbitrary parallelogram. Check whether the square

$$Q := \{ z \in \mathbb{C}, z = x + iy, x, y \in [-\sqrt{2}, \sqrt{2}], i^2 = -1 \}$$

can be transformed (affine linear) to parallelograms with the following corners in $\mathbb C$ and if so give an adequate transformation.

a)
$$\begin{pmatrix} -1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -i \end{pmatrix}$, $\begin{pmatrix} 3 \\ i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$,

b)
$$\begin{pmatrix} -1 \\ -i \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -i \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3i \end{pmatrix}$, $\begin{pmatrix} -1 \\ 3i \end{pmatrix}$, c) $\begin{pmatrix} 1 \\ -i \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -1 \\ i \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2i \end{pmatrix}$,

d)
$$\begin{pmatrix} 0 \\ -2i \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2i \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$, e) $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2i \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4i \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2i \end{pmatrix}$.

Hint: Sketches can be very beneficial.

Exercise 2:

Let i be the imaginary unit. Find all complex solutions for the following equations

a)
$$e^{3z} - \frac{i}{e^z} = 0$$
 bzw. b) $e^{2z+1+i\frac{\pi}{2}} = \frac{1}{\sqrt{2}}(1+i)$.

Exercise 3: (Please read the hints at the end of the exercise)

Given a transformation $w = f(z) := \frac{1}{z}$ mit $z \neq 0$.

- a) Find the images of
 - (i) the ray $arg(z) = \varphi_0$,
 - (ii) the line $\operatorname{Re}(z) = x_0$, so that $z + \overline{z} = 2x_0$,
 - (iii) the line $\operatorname{Im}(z) = y_0$.
- b) Find the image of the circle $|z \frac{i}{2}| = \frac{1}{2}$ without z = 0.

Hints:

1) In all subtasks except a)i), substitute $z = \frac{1}{w}$ into the equations that describe the master images and rearrange these equations so that you can see which quantities are

described in the image space. 2) The equation |z-c|=r describes a circle around c with radius r. Be aware that there is the following equivalence that allows for a use without absolute values:

$$|z - c| = R \iff (z - c)\overline{(z - c)} = R^2$$

$$\iff (z-c)(\overline{z}-\overline{c})=R^2$$

$$\iff z\overline{z} - z\overline{c} - c\overline{z} + c\overline{c} = R^2.$$

Hand in: 22.04.24 - 26.04.24