Prof. Dr. J. Struckmeier, Dr. H.P. Kiani ## Complex functions for Engineering Students Work sheet 1 ## Excercise 1: a) Rewrite these complex numbers into polar representation ($z=re^{i\phi}$) and draw a sketch of them in the complex plane. $$z_0 = -4$$, $z_1 = \sqrt{8}(-1-i)$, $z_2 = -4i$, $z_3 = \sqrt{8}(1-i)$, $z_4 = 4$, $\tilde{z}_k = i^k$, $k \in \mathbb{Z}$. b) Rewrite these complex numbers into cartesian representation (z = x + iy). $$z_5 = 3e^{i\frac{\pi}{3}}, \quad z_6 = 2e^{i\frac{-\pi}{6}}, \quad z_7 = 2e^{i\frac{-13\pi}{6}}.$$ **Excercise 2:** Let z_1, \ldots, z_6 be defined as in exercise 1. Calculate the Cartesian representations of the following complex numbers. Re $$(z_1)$$, Im (z_1) , Re (z_3) , Im (z_3) , $z_1 + z_3$, $z_1 - z_3$, $2z_5 + \sqrt{8}z_3$, \bar{z}_1 , $z_1 \cdot \bar{z}_1$, $z_1 \cdot z_2$, $(z_6)^2 \cdot (z_5)^4$, $\frac{z_5}{z_6}$. Excercise 3: Characterize these subsets of the complex plane by sketch or explanation: $$M_{1} = \{z \in \mathbb{C} \mid |z+4-3i| \leq 5\},$$ $$M_{2} = \{z \in \mathbb{C} \mid |z-i| = |z-2-i|\},$$ $$M_{3} = \{z \in \mathbb{C} \mid z+\bar{z}=2\},$$ $$M_{4} = \{0\} \cup \{z \in \mathbb{C} \setminus \{0\} \mid \operatorname{Re}\left(\frac{z}{\bar{z}}\right) = 0\}.$$ Excercise 4: Describe the following subsets of the complex number plane using formulas similar to those in task 3. M_5 : strip parallel to the imaginary axis with a width of 4, symmetric to $z_0 = 1 + i$, including the boundary. M_6 : circular disk around the origin with inner radius 1 and outer radius 3, without boundary. M_7 : circular disk (punctured disk) around the origin with inner radius 0 and outer radius 3, without boundary. M_8 : sector between the lines $\operatorname{Re}(z) = \operatorname{Im}(z)$ and $-\operatorname{Re}(z) = \operatorname{Im}(z)$ in the upper half-space, without boundary. Class: 08.04.24