Complex functions for Engineering Students
 Work sheet 1

Excercise 1:

a) Rewrite these complex numbers into polar representation ($z=r e^{i \phi}$) and draw a sketch of them in the complex plane.

$$
\begin{aligned}
& z_{0}=-4, \quad z_{1}=\sqrt{8}(-1-i), \quad z_{2}=-4 i, \quad z_{3}=\sqrt{8}(1-i), \quad z_{4}=4, \\
& \tilde{z}_{k}=i^{k}, \quad k \in \mathbb{Z} .
\end{aligned}
$$

b) Rewrite these complex numbers into cartesian representation $(z=x+i y)$.

$$
z_{5}=3 e^{i \frac{\pi}{3}}, \quad z_{6}=2 e^{i \frac{-\pi}{6}}, \quad z_{7}=2 e^{i \frac{-13 \pi}{6}} .
$$

Excercise 2: Let z_{1}, \ldots, z_{6} be defined as in exercise 1. Calculate the Cartesian representations of the following complex numbers.

$$
\begin{array}{lrlccc}
\operatorname{Re}\left(z_{1}\right), & \operatorname{Im}\left(z_{1}\right), & \operatorname{Re}\left(z_{3}\right), & \operatorname{Im}\left(z_{3}\right), & z_{1}+z_{3}, & z_{1}-z_{3}, \\
2 z_{5}+\sqrt{8} z_{3}, & \bar{z}_{1}, & z_{1} \cdot \bar{z}_{1}, & z_{1} \cdot z_{2}, & \left(z_{6}\right)^{2} \cdot\left(z_{5}\right)^{4}, & \frac{z_{5}}{z_{6}} .
\end{array}
$$

Excercise 3:Characterize these subsets of the complex plane by sketch or explanation:

$$
\begin{aligned}
& M_{1}=\{z \in \mathbb{C}| | z+4-3 i \mid \leq 5\} \\
& M_{2}=\{z \in \mathbb{C}| | z-i|=|z-2-i|\} \\
& M_{3}=\{z \in \mathbb{C} \mid z+\bar{z}=2\}, \\
& M_{4}=\{0\} \cup\left\{z \in \mathbb{C} \backslash\{0\} \left\lvert\, \operatorname{Re}\left(\frac{z}{\bar{z}}\right)=0\right.\right\} .
\end{aligned}
$$

Excercise 4: Describe the following subsets of the complex number plane using formulas similar to those in task 3.
M_{5} : strip parallel to the imaginary axis with a width of 4 , symmetric to $z_{0}=1+i$, including the boundary.
M_{6} : circular disk around the origin with inner radius 1 and outer radius 3, without boundary.
M_{7} : circular disk (punctured disk) around the origin with inner radius 0 and outer radius 3 , without boundary.
M_{8} : sector between the lines $\operatorname{Re}(z)=\operatorname{Im}(z)$ and $-\operatorname{Re}(z)=\operatorname{Im}(z)$ in the upper half-space, without boundary.

Class: 08.04.24

