Complex Functions: Auditorium Exercise-02 For Engineering Students

Md Tanvir Hassan
University of Hamburg

April 19, 2024

Addition in $\mathbb{R}^{2} \longleftrightarrow \mathbb{C}$

Reminder: Addition
$z=x+i y \in D \subset \mathbb{C}, \quad c=a+i b \in$ fixed.
$f: D \rightarrow \mathbb{C}, \quad f: z \mapsto z+c=(x+a)+i(y+b)$
Geometric Interpretation:
The subset D of the complex plane is shifted by c.

Multiplication in $\mathbb{R}^{2} \longleftrightarrow \mathbb{C}$

Multiplication

$z=r e^{i \varphi} \in D \subset \mathbb{C}, \quad c=\rho e^{i \alpha} \in$ fixed.

$$
f(z)=c \cdot z=r e^{i \varphi} \cdot \rho e^{i \alpha}=\rho r e^{i \varphi} e^{i \alpha}
$$

- The magnitudes are multiplied: ρr.
- The arguments are added: $\alpha+\varphi$

Example A: Rectangle under affine linear function

$$
\begin{aligned}
& D:=\{z \in \mathbb{C}:-3<\operatorname{Re}(z)<0,0<\operatorname{Im}(z)<6\} \\
& f(z):=\frac{2}{3} e^{-i \frac{\pi}{2}} z-(2+i)
\end{aligned}
$$

Geometric Solution:

- The rectangle is rotated by $\frac{\pi}{2}$ in a mathematically negative direction (clockwise),
- scaled by a factor of $\frac{2}{3}$,
- and shifted by $c=-2-i$.

Example A:

Geometric Solution:

Computational:
Provide ranges for u, v or r, φ for $f(z)=u+i v$ or $f(z)=r e^{i \varphi}$

$$
f(z)=u+i v==\frac{2}{3}\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right)(x+i y)-(2+i)
$$

Solution:

$$
\begin{aligned}
f(z)=u+i v & =\frac{2}{3}\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right)(x+i y)-(2+i) \\
& =\frac{2}{3}(-i)(x+i y)-(2+i) \\
& =\left(\frac{2}{3} y-2\right)+i\left(-\frac{2}{3} x-1\right) \\
& -2<u<2-1<v<1
\end{aligned}
$$

Geometric Interpretation of affine linear function

$$
f(z)=c z+d
$$

Rotation and scaling + subsequent translation

- Scaling is uniform in all directions
- Angles are preserved

Difference from linear mappings in \mathbb{R}^{2} :

$$
\text { for example: } \quad \mathbf{v} \mapsto\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 3
\end{array}\right) \mathbf{v}
$$

Scaling by $1 / 2$ in the x-direction and by 3 in the y-direction oepartmentof

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \Longrightarrow \mathbf{A}\binom{0}{1}=\binom{1}{1} \quad \mathbf{A}\binom{1}{0}=\binom{1}{0}
$$

Angle between pre-images $=\frac{\pi}{2}$,
Angle between images $=\frac{\pi}{4}$.
In complex multiplication $c \cdot z$,

- only rotation and stretching occur
- Angles remain preserved.

Linear functions in \mathbb{C} can do much less than linear functions in \mathbb{R}^{2}
Differentiability in \mathbb{C} : implies more than differentiability in \mathbb{R}^{2}.

Locally: $f(z)=: u(x, y)+i v(x, y) \approx a z+b$
In $\mathbb{R}^{2}: \quad \tilde{f}\binom{x}{y}=\binom{u(x, y)}{v(x, y)} \Longrightarrow J \tilde{f}(x, y)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)$
Rotation and scaling in $\mathbb{R}^{2}:\binom{x}{y} \rightarrow \mathbf{A} \cdot\binom{x}{y}$ with
$\mathbf{A}=\left(\begin{array}{cc}k \cos (\alpha) & -k \sin (\alpha) \\ k \sin (\alpha) & k \cos (\alpha)\end{array}\right)$

Next: Differentiability in \mathbb{C} :

$$
u_{x}=v_{y}, \quad v_{x}=-u_{y}
$$

(Cauchy-Riemann equations).

The function $f: D \rightarrow \mathbb{C}, w=f(z):=z^{-1}$
Pointwise calculation \longrightarrow easier in polar coordinates.
Example B: Image of the sector
$D:=\left\{z \in \mathbb{C}: z=r e^{i \phi}: \phi \in\right] \frac{\pi}{6}, \frac{\pi}{3}\left[, r \in \mathbb{R}^{+}\right\}$
Let $\rho e^{i \alpha}$ be the polar coordinate representation of $w:=f(z)$. Then we have

$$
\begin{aligned}
& w:=f(z)=\rho e^{i \alpha}=\frac{1}{r e^{i \phi}}=\frac{1}{r} e^{-i \phi} \\
& \left.\Longrightarrow \rho=\frac{1}{r} \in\right] 0, \infty[, \quad \alpha=-\phi \in]-\frac{\pi}{3},-\frac{\pi}{6}[
\end{aligned}
$$

The image is the sector mirrored at the real axis.

Example C:

$D=$ Image of the circle with radius 2 around $z_{0}=2$ excluding zero. $D=\{z \in \mathbb{C} \backslash\{0\}:|z-2|=2\}$

Describe the circle without absolute value signs:
$|z-2|^{2}=(z-2)(\overline{z-2})=z \bar{z}-2 \bar{z}-2 z+4=4$
$\Longleftrightarrow z \bar{z}-2 \bar{z}-2 z=0$,
set $z=\frac{1}{w}$ and rearrange until it is clear what we have:
$\frac{1}{w} \frac{1}{\bar{w}}-2 \frac{1}{\bar{w}}-2 \frac{1}{w}=0 \quad$ multiply by $w \bar{w} \neq 0$
$\Longleftrightarrow 1-2 w-2 \bar{w}=1-2(w+\bar{w})=1-4 \operatorname{Re}(w)=0$
So $\operatorname{Re}(w)=\frac{1}{4}$. The image is the line parallel to the imaginary axis passing through the point $z=\frac{1}{4}$.

Natural Powers and Roots

$$
z=r e^{i \varphi} \Longrightarrow z^{n}=r^{n}\left(e^{i \varphi}\right)^{n}=r^{n}\left(e^{i n \varphi}\right)
$$

- Magnitude: raised to the power of n,
- Angle: multiplied by n.

Example D: $D=\left\{z \in \mathbb{C}: z=r e^{i \varphi}, r \in[1,2],-\frac{\pi}{4}<\phi<\frac{\pi}{4}\right\}$
$w=\rho e^{i \alpha}=f(z)=z^{2}=\left(r e^{i \varphi}\right)^{2}=r^{2} e^{i 2 \varphi}$
$\Longrightarrow|w|=$
Angle of $(w)=\arg (w)=$
So $f(D)=\left\{w \in \mathbb{C}: w=\rho e^{i \alpha}, \rho \in \quad, \alpha \in \quad\right\}$

Inverse:

$$
w=\sqrt[n]{z}=\sqrt[n]{r} e^{i \frac{\varphi}{n}}
$$

CAUTION!!

$$
w^{n}=z \Longleftrightarrow\left(w=\rho e^{i \alpha}\right)^{n}=r e^{i \varphi} \Longleftrightarrow \rho^{n} e^{i n \alpha}=r e^{i \varphi}
$$

It does not follow: $n \alpha=\varphi$, but

$$
\rho^{n}=r \quad \text { and } \quad e^{i n \alpha}=e^{i \varphi}
$$

Example E: The second roots of i are sought.

$$
\begin{gathered}
w=\rho \cdot e^{i \alpha}=\sqrt[2]{i} \Longrightarrow w^{2}=i=1 \cdot e^{i \frac{\pi}{2}} \\
w^{2}=\rho^{2} \cdot e^{i 2 \alpha} \stackrel{!}{=} 1^{2} \cdot e^{i \frac{\pi}{2}}
\end{gathered}
$$

Visually:
w lies on the unit circle and if we double the angle to w you land on i.
Computationally: $\rho^{2} \stackrel{!}{=} 1^{2} \underset{\rho>0}{\Longrightarrow} \rho=1$
$e^{i 2 \alpha} \stackrel{!}{=} e^{i \frac{\pi}{2}} \Longrightarrow$

These are infinitely many possible representations of two different points on the complex plane.

General: $\quad n \in \mathbb{N}, \quad z=r e^{i \phi}, \quad w:=z^{\frac{1}{n}}$

$$
w^{n}=\left(\rho \cdot e^{i \alpha}\right)^{n}=\rho^{n} \cdot e^{i n \alpha} \stackrel{!}{=}|z| e^{i \phi} \Longleftrightarrow \rho=|z|^{\frac{1}{n}} \wedge e^{i n \alpha}=e^{i \phi}
$$

$\Longrightarrow n \alpha=\phi+2 k \pi \Longleftrightarrow \alpha=\frac{\phi}{n}+\frac{2 k \pi}{n}, k \in \mathbb{Z}$.
With

$$
w=|z|^{\frac{1}{n}} e^{i\left(\frac{\phi}{n}+\frac{2 k \pi}{n}\right)} \quad k=0,1,2, \cdots, n-1
$$

we obtain the n pairwise different points in the \mathbb{C} - plane, for which $w^{n}=z$ holds.
As principal value we define: $z^{\frac{1}{n}}=|z|^{\frac{1}{n}} e^{i\left(\frac{\phi}{n}\right)},-\pi<\phi<\pi$.

Example F: Find all solutions $z=r e^{i \phi}$ of

$$
\underbrace{\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)}_{\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)} z^{4}=\underbrace{\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)}_{\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)} \cdot 81
$$

Solution:

$$
\begin{gathered}
e^{i \frac{\pi}{3}} z^{4}=81 e^{\frac{i 2 \pi}{3}} \Longleftrightarrow z^{4}=r^{4} e^{i 4 \phi}=81 e^{i \frac{\pi}{3}} \\
r^{4}=|z|^{4}=81 \Longleftrightarrow r=|z|=3 \\
e^{i 4 \phi}=e^{i \frac{\pi}{3}} \Longleftrightarrow 4 \phi=2 k \pi+\frac{\pi}{3} \\
\{\arg (z)\}=\left\{\frac{\pi}{12}, \frac{\pi}{12}+\frac{2 \pi}{4}, \frac{\pi}{12}+\frac{4 \pi}{4}, \frac{\pi}{12}+\frac{6 \pi}{4}, \cdots\right\}
\end{gathered}
$$

These are infinitely many representations, but only four different points in the complex plane.

Illustration of the Exponential Function:

$$
\exp (z)=e^{x} \cdot e^{i y}=e^{x}(\cos (y)+i \sin (y))
$$

Determine the image of the coordinate grid

It holds (as above)

$$
\left|e^{z}\right|=e^{\operatorname{Re}(z)}, \quad \arg \left(e^{z}\right)=\operatorname{Im}(z) \quad(+2 k \pi)
$$

Case 1: $z=x_{0}+i y$ with x_{0} fixed and $y \in \mathbb{R}$

$$
e^{x_{0}+i y}=e^{x_{0}} \cdot e^{i y}: \text { Magnitude fixed, Argument varies }
$$

Image: Circle traversed infinitely many times with radius $R_{x_{0}}=e^{x_{0}}$ Stripes parallel to the y-axis \rightarrow Ring

Figure: Exponential function

Case 2

Case 2: $z=x+i y_{0}$ with y_{0} fixed and $x \in \mathbb{R}$

$$
e^{x+i y_{0}}=e^{x} \cdot e^{i y_{0}}: \text { Magnitude varies, Argument fixed }
$$

Image: Ray with angle $\alpha=y_{0}$
Stripes parallel to the x-axis \rightarrow Sector

Figure: Exponential function

Example G:

Find the solutions of

$$
\begin{aligned}
& e^{z}=-2 \\
& \left(e^{z}\right)^{2}=-25 i
\end{aligned}
$$

Solution:

(a) $e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}=-2$

$$
\begin{gathered}
e^{x}=2 \Longleftrightarrow x=\ln (2) \\
e^{i y}=e^{i \pi} \Longleftrightarrow y=\pi+2 k \pi \\
z=x+i y=\ln (2)+i(\pi+2 k \pi)
\end{gathered}
$$

(b) $\left(\mathrm{e}^{z}\right)^{2}=e^{2 z}=e^{2 x+2 i y}=e^{2 x} \cdot e^{i 2 y}=-25 i$
$\left|\left(e^{z}\right)^{2}\right|=e^{2 x} \stackrel{!}{=} 25 \Longleftrightarrow e^{x}=5 \Longleftrightarrow x=\ln (5)$.
$e^{i 2 y}=-i=e^{-i \frac{\pi}{2}} \Longleftrightarrow 2 y=2 k \pi-\frac{\pi}{2} \Longleftrightarrow y=k \pi-\frac{\pi}{4}$
These are infinitely many solutions!

Example H: Image of
$D:=\left\{z \in \mathbb{C}: z=x+i y,|x| \in[\ln (2), \ln (3)],|y| \leq \frac{\pi}{4}\right\}$
under the mapping

$$
f(z):=2 \cdot e^{i \frac{3 \pi}{4}} e^{z}
$$

Sketch:

THANK YOU

目

