Complex Functions: Auditorium Exercise-01 For Engineering Students

Md Tanvir Hassan University of Hamburg

April 05, 2024

A Complex Number is a combination of a 'Real Number' and an 'Imaginary Number'.

 $x =: \operatorname{Re}(z) \text{ and } y =: \operatorname{Im}(z)$

Squaring a real number will give us either a +ve number or 0.

$$?^2 = -1$$

A Complex number on a Plane

 $z \in \mathbb{C}$: z := x + iy, $x, y \in \mathbb{R}$, i = imaginary unit \mathbb{C} is the field of complex numbers.

Example of a Complex number: z = 1 + 2i

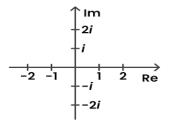


Figure: Complex Plane (Gauß Plane)

We can identify $z = (1, 2) \in \mathbb{C}$ as a point in the Complex Plane.

Addition and Multiplication in $\mathbb{R}^2 \longleftrightarrow \mathbb{C}$

Addition: $z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$

Example: (1 + 2i) + 2i

Geometric Interpretation:

 $f: D \to \mathbb{C}, \qquad f: z \mapsto z + c, \qquad c \in \mathbb{C}$ fixed.

For example, $D := \{z \in \mathbb{C}, 0 \le \operatorname{Re}(z) \le 1, 0 \le \operatorname{Im}(z) \le 1\}$ and c = 2 + i

Multiplication:

In \mathbb{R}^2 there is no multiplication $v, w \in \mathbb{R}^2, v * w \in \mathbb{R}^2$, only

$$w.v := < w, v > \in \mathbb{R}, \qquad Av \in \mathbb{R}^2, \quad A \in \mathbb{R}^{2 \times 2}$$

In the complex plane **define**:

$$(a+ib)(x+iy) := (ax-by) + i(ay+bx) \qquad \in \mathbb{C}$$

Alternatively, using the usual properties of multiplication/addition:

$$(a+ib)(x+iy) = ax + iay + ibx + i^2by \quad and \quad i^2 = -1$$

Conjugate of the complex number and Division

Complex conjugate: $\overline{z} := \overline{(x+iy)} = (x-iy)$

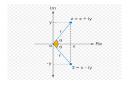


Figure: complex conjugate

For every complex number z = x + iy we can generate its mirror image along the real axis. And we get the Conjugate of the complex number.

Division in the complex plane :
$$\frac{z_1}{z_2} := \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}}$$

Magnitude or Modulus: Distance from the origin $(0 + i \cdot 0)$ on the complex plane

= Length of the position vector $=\sqrt{x^2+y^2}$.

$$|z|^2 = x^2 + y^2 = (x + iy)(x - iy) = z \cdot \bar{z} \,.$$

 $|z_1 - z_2| = \text{Distance between } z_1 \text{ and } z_2$

Examples: What geometric objects are described by

$$\begin{aligned} |z+2+i| &= 3, \\ (z-5)(\bar{z}-5) &= 4, \\ |z+2-2i| &= |z-4-3i| \end{aligned}$$

Polar Coordinates: as in \mathbb{R}^2 : $r = \sqrt{x^2 + y^2}$

$$x = r \cos(\varphi), \qquad y = r \sin(\varphi),$$

 $z = r \left(\cos(\varphi) + i \, \sin(\varphi) \right)$

r = |z| =Distance from z to Zero

 $\varphi =$ Angle between position vector and positive x-axis in the mathematically positive direction

 $= \arg(z) =$ Argument of z.

z = x + iy given \Longrightarrow Argument determined only up to multiples of $2\pi!$

Polar form of Complex number

Given $z = x + iy \neq 0$, the following argument can be chosen:

$$\varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & x > 0\\ -\pi + \arctan\left(\frac{y}{x}\right) & x < 0\\ \frac{\pi}{2} & x = 0 \land y > 0\\ -\frac{\pi}{2} & x = 0 \land y < 0 \end{cases}$$

Examples: Arguments and magnitudes of

$$z_1 = 4 + i4\sqrt{3}, \quad z_2 = -i, \quad z_3 = -4\sqrt{3} + 4i.$$

Exponential Form or Euler Form :

For
$$\phi \in \mathbb{R}$$
, $\cos(\phi) + i \cdot \sin(\phi) = e^{i\phi}$

Due to $i^4 = (i^2)^2 = (-1)^2 = 1$, we have

$$i^{4k} = 1, \quad i^{4k+1} = i, \quad i^{4k+2} = -1 \quad i^{4k+3} = -i.$$

One can define exp, cos, sin using series:

$$\exp(y) = \sum_{l=0}^{\infty} \frac{(y)^l}{l!}, \quad \cos(y) = \sum_{m=0}^{\infty} (-1)^k \frac{y^{2m}}{(2m)!}$$

$$\sin(y) = \sum_{m=0}^{\infty} (-1)^k \frac{y^{2m+1}}{(2m+1)!}$$

Thus, (under uniform convergence of the involved series) for all $y \in \mathbb{R}$, we have

$$\exp(iy) = \sum_{l=0}^{\infty} \frac{(iy)^l}{l!} = \sum_{l=0}^{\infty} \frac{i^l y^l}{l!}$$
$$= \sum_{k=0}^{\infty} \left(\frac{i^{4k} y^{4k}}{(4k)!} + \frac{i^{4k+1} y^{4k+1}}{(4k+1)!} + \frac{i^{4k+2} y^{4k+2}}{(4k+2)!} + \frac{i^{4k+3} y^{4k+3}}{(4k+3)!} \right)$$
$$= \sum_{k=0}^{\infty} \left(\frac{y^{4k}}{(4k)!} - \frac{y^{4k+2}}{(4k+2)!} \right) + i \cdot \sum_{k=0}^{\infty} \left(\frac{y^{4k+1}}{(4k+1)!} - \frac{y^{4k+3}}{(4k+3)!} \right)$$
$$= \sum_{m=0}^{\infty} \left((-1)^k \frac{y^{2m}}{(2m)!} \right) + i \cdot \sum_{m=0}^{\infty} \left((-1)^k \frac{y^{2m+1}}{(2m+1)!} \right)$$

So we obtain for z = x + iy

$$x = r \cos(\varphi), \qquad y = r \sin(\varphi), \quad r = \sqrt{x^2 + y^2}$$

$$z = r \left(\cos(\varphi) + i \sin(\varphi) \right) = r e^{i\varphi} = |z| e^{i\varphi}$$

Argument of $z = \arg(z) = \arg(re^{i\varphi})$

Attention: Argument determined only up to multiples of 2π , because $e^{i\varphi}$ is 2π periodic!

$$re^{i\varphi} = re^{i(\varphi + 2k\pi)} \quad \forall k \in \mathbb{Z}$$

 $\{\arg z\}$ or $[\arg z] :=$ Set of all arguments of z

 $\arg(z) :=$ Principal value of argument z, determined by additional condition

usually $\varphi \in]-\pi, \pi]$ (Principal value)

arg(0) is not defined!

A: Polar Coordinates of:

►
$$z_1 = 4 + i4\sqrt{3}$$

► $z_2 = -i$
► $z_3 = -4\sqrt{3} + 4i$

B: Unit Circle: $K_1 := \{ z \in \mathbb{C} : z = re^{i\varphi}, r = 1, \varphi \in [0, 2\pi) \}$

 $= \{ z \in \mathbb{C} : \, z = \, e^{i\varphi}, \, \varphi \in \, [0, \, 2\pi) \}$

or
$$= \{z \in \mathbb{C} : z = e^{i\varphi}, \varphi \in (-\pi, \pi]\}$$

C: Imaginary Unit: $|i| = |0 \cdot 1 + 1 \cdot i| =$

How does i look like in polar coordinates?

i =

 $i^2 =$

D: Generally, multiplication is simpler in polar form

For example, $z_1 \cdot z_3$ for $z_1 = 4 + i4\sqrt{3}$, $z_3 = -4\sqrt{3} + 4i$.

$$z_1 \cdot z_3 = (4 + i4\sqrt{3})(-4\sqrt{3} + 4i) =$$

Calculated above:
$$z_1 = 8e^{i\frac{\pi}{3}}$$
 $z_3 = 8e^{i\frac{2\pi}{3}} =$

 $z_1 \cdot z_3 = 8e^{i\frac{\pi}{3}} \cdot 8e^{i\frac{2\pi}{3}}$

E: Magnitude e^z :

 $|e^{z}| = |e^{x+iy}| = |e^{x} \cdot e^{iy}| = |e^{x}| \cdot |e^{iy}|$

Because $|e^{iy}| = |\cos(y) + i\sin(y)| =$

$$|e^z| = e^x = e^{\operatorname{Re}(z)}$$

And, $\arg(e^z)$?

Conjugate Complex Number in Polar Form:

 $z = r e^{i \varphi} \implies \bar{z} =$

Geometrically: Reflection on the real (x)-axis

For $z = x + iy = re^{i\varphi}$ and fixed $c = a + ib = \rho e^{i\alpha}$

Addition: $f: z \mapsto c + z$ cartesian: z + c = (x + iy) + (a + ib)polar: $z + c = re^{i\varphi} + \rho e^{i\alpha} =$ geometric: Translation by c

Multiplication: $f: z \mapsto c \cdot z$ cartesian: $c \cdot z = (x + iy) \cdot (a + ib)$ polar: $c \cdot z = re^{i\varphi} \cdot \rho e^{i\alpha}$ geometric: Next lesson/homework

To conclude, here are a few examples:

A) Sketch/Describe in words the following subsets of the complex plane

I) $D = \{z \in \mathbb{C} : |z - 5i| = 2\}$

II)
$$D = \{z \in \mathbb{C} : |z - 5i| \le 2\}$$

III) $\tilde{D} := \{z \in \mathbb{C} : 1 < |z - 5i| < 2\}$

IV)
$$\tilde{D} := \{z \in \mathbb{C} : 0 < |z - 5i| < 2\}$$

Example: B) Describe the following subsets of the complex plane using formulas.

- M_1 : Strip parallel to the imaginary axis with width 6, symmetric to $z_0 = -3 2i$, including boundaries.
- M_2 : Open annulus around $z_0 = -3 2i$ with inner radius 2 and outer radius 3.
- M_3 : Dotted disc around $z_0 = -3 2i$ with radius 3, excluding boundaries.

THANK YOU

