Complex Functions: Auditorium Exercise-01 For Engineering Students

Md Tanvir Hassan
University of Hamburg

April 05, 2024

A Complex Number is a combination of a 'Real Number' and an 'Imaginary Number'.

$$
\begin{aligned}
& \underset{\rightarrow \text { Real Part }}{z=x+i y} \\
& \rightarrow \text { complex number }
\end{aligned}
$$

$x=: \operatorname{Re}(z)$ and $y=: \operatorname{Im}(z)$
Squaring a real number will give us either a + ve number or 0 .

$$
?^{2}=-1
$$

$z \in \mathbb{C}: z:=x+i y, \quad x, y \in \mathbb{R}, \quad i=$ imaginary unit \mathbb{C} is the field of complex numbers.

Example of a Complex number: $z=1+2 i$

Figure: Complex Plane (Gauß Plane)

We can identify $z=(1,2) \in \mathbb{C}$ as a point in the Complex Plane.

Addition and Multiplication in $\mathbb{R}^{2} \longleftrightarrow \mathbb{C}$

Addition: $z_{1}+z_{2}=\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$
Example: $(1+2 i)+2 i$
Geometric Interpretation:
$f: D \rightarrow \mathbb{C}, \quad f: z \mapsto z+c, \quad c \in \mathbb{C}$ fixed.
For example, $D:=\{z \in \mathbb{C}, 0 \leq \operatorname{Re}(z) \leq 1,0 \leq \operatorname{Im}(z) \leq 1\}$ and $c=2+i$

Multiplication:

In \mathbb{R}^{2} there is no multiplication $v, w \in \mathbb{R}^{2}, v * w \in \mathbb{R}^{2}$, only

$$
w \cdot v:=<w, v>\in \mathbb{R}, \quad A v \in \mathbb{R}^{2}, \quad A \in \mathbb{R}^{2 \times 2}
$$

In the complex plane define:
$(a+i b)(x+i y):=(a x-b y)+i(a y+b x) \quad \in \mathbb{C}$
Alternatively, using the usual properties of multiplication/addition:
$(a+i b)(x+i y)=a x+i a y+i b x+i^{2} b y \quad$ and $\quad i^{2}=-1$

Complex conjugate: $\bar{z}:=\overline{(x+i y)}=(x-i y)$

Figure: complex conjugate
For every complex number $z=x+i y$ we can generate its mirror image along the real axis. And we get the Conjugate of the complex number.

Division in the complex plane $: \frac{z_{1}}{z_{2}}:=\frac{z_{1} \cdot \overline{z_{2}}}{z_{2} \cdot \overline{z_{2}}}$

Magnitude or Modulus: Distance from the origin $(0+i \cdot 0)$ on the complex plane

$$
=\text { Length of the position vector }=\sqrt{x^{2}+y^{2}}
$$

$|z|^{2}=x^{2}+y^{2}=(x+i y)(x-i y)=z \cdot \bar{z}$.
$\left|z_{1}-z_{2}\right|=$ Distance between z_{1} and z_{2}
Examples: What geometric objects are described by

$$
\begin{aligned}
& |z+2+i|=3 \\
& (z-5)(\bar{z}-5)=4 \\
& |z+2-2 i|=|z-4-3 i|
\end{aligned}
$$

Polar Coordinates: as in $\mathbb{R}^{2}: \quad r=\sqrt{x^{2}+y^{2}}$
$x=r \cos (\varphi), \quad y=r \sin (\varphi)$,
$z=r(\cos (\varphi)+i \sin (\varphi))$
$r=|z|=$ Distance from z to Zero
$\varphi=$ Angle between position vector and positive x-axis in the mathematically positive direction
$=\arg (z)=$ Argument of z.
$z=x+i y$ given \Longrightarrow Argument determined only up to multiples of $2 \pi!$

Given $z=x+i y \neq 0$, the following argument can be chosen:

$$
\varphi= \begin{cases}\arctan \left(\frac{y}{x}\right) & x>0 \\ -\pi+\arctan \left(\frac{y}{x}\right) & x<0 \\ \frac{\pi}{2} & x=0 \wedge y>0 \\ -\frac{\pi}{2} & x=0 \wedge y<0\end{cases}
$$

Examples: Arguments and magnitudes of
$z_{1}=4+i 4 \sqrt{3}, \quad z_{2}=-i, \quad z_{3}=-4 \sqrt{3}+4 i$.

Exponential Form or Euler Form :

For $\phi \in \mathbb{R}, \quad \cos (\phi)+i \cdot \sin (\phi)=e^{i \phi}$
Due to $i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$, we have

$$
i^{4 k}=1, \quad i^{4 k+1}=i, \quad i^{4 k+2}=-1 \quad i^{4 k+3}=-i
$$

One can define exp, cos, sin using series:
$\exp (y)=\sum_{l=0}^{\infty} \frac{(y)^{l}}{l!}, \quad \cos (y)=\sum_{m=0}^{\infty}(-1)^{k} \frac{y^{2 m}}{(2 m)!}$
$\sin (y)=\sum_{m=0}^{\infty}(-1)^{k} \frac{y^{2 m+1}}{(2 m+1)!}$

Thus, (under uniform convergence of the involved series) for all $y \in \mathbb{R}$, we have

$$
\begin{aligned}
& \exp (i y)=\sum_{l=0}^{\infty} \frac{(i y)^{l}}{l!}=\sum_{l=0}^{\infty} \frac{i^{l} y^{l}}{l!} \\
& \quad=\sum_{k=0}^{\infty}\left(\frac{i^{4 k} y^{4 k}}{(4 k)!}+\frac{i^{4 k+1} y^{4 k+1}}{(4 k+1)!}+\frac{i^{4 k+2} y^{4 k+2}}{(4 k+2)!}+\frac{i^{4 k+3} y^{4 k+3}}{(4 k+3)!}\right) \\
& \quad=\sum_{k=0}^{\infty}\left(\frac{y^{4 k}}{(4 k)!}-\frac{y^{4 k+2}}{(4 k+2)!}\right)+i \cdot \sum_{k=0}^{\infty}\left(\frac{y^{4 k+1}}{(4 k+1)!}-\frac{y^{4 k+3}}{(4 k+3)!}\right) \\
& \quad=\sum_{m=0}^{\infty}\left((-1)^{k} \frac{y^{2 m}}{(2 m)!}\right)+i \cdot \sum_{m=0}^{\infty}\left((-1)^{k} \frac{y^{2 m+1}}{(2 m+1)!}\right)
\end{aligned}
$$

So we obtain for $z=x+i y$
$x=r \cos (\varphi), \quad y=r \sin (\varphi), \quad r=\sqrt{x^{2}+y^{2}}$
$z=r(\cos (\varphi)+i \sin (\varphi))=r e^{i \varphi}=|z| e^{i \varphi}$

Argument of $z=\arg (z)=\arg \left(r e^{i \varphi}\right)$
Attention: Argument determined only up to multiples of 2π, because $e^{i \varphi}$ is 2π periodic!

$$
r e^{i \varphi}=r e^{i(\varphi+2 k \pi)} \quad \forall k \in \mathbb{Z}
$$

$\{\arg z\}$ or $[\arg z]:=$ Set of all arguments of z
$\arg (z):=$ Principal value of $\operatorname{argument} z$, determined by additional condition

$$
\text { usually } \quad \varphi \in]-\pi, \pi] \quad \text { (Principal value) }
$$

$\arg (0)$ is not defined!

A: Polar Coordinates of:

- $z_{1}=4+i 4 \sqrt{3}$
- $z_{2}=-i$
- $z_{3}=-4 \sqrt{3}+4 i$

B: Unit Circle:

$K_{1}:=\left\{z \in \mathbb{C}: z=r e^{i \varphi}, r=1, \varphi \in[0,2 \pi)\right\}$

$$
=\left\{z \in \mathbb{C}: z=e^{i \varphi}, \varphi \in[0,2 \pi)\right\}
$$

or $\quad=\left\{z \in \mathbb{C}: z=e^{i \varphi}, \varphi \in(-\pi, \pi]\right\}$

C: Imaginary Unit: $|i|=|0 \cdot 1+1 \cdot i|=$
How does i look like in polar coordinates?
$i=$
$i^{2}=$

D: Generally, multiplication is simpler in polar form
For example, $z_{1} \cdot z_{3}$ for $z_{1}=4+i 4 \sqrt{3}, \quad z_{3}=-4 \sqrt{3}+4 i$.
$z_{1} \cdot z_{3}=(4+i 4 \sqrt{3})(-4 \sqrt{3}+4 i)=$

Calculated above: $z_{1}=8 e^{i \frac{\pi}{3}} \quad z_{3}=8 e^{i \frac{2 \pi}{3}}=$
$z_{1} \cdot z_{3}=8 e^{i \frac{\pi}{3}} \cdot 8 e^{i \frac{2 \pi}{3}}$

E: Magnitude e^{z} :
$\left|e^{z}\right|=\left|e^{x+i y}\right|=\left|e^{x} \cdot e^{i y}\right|=\left|e^{x}\right| \cdot\left|e^{i y}\right|$
Because $\left|e^{i y}\right|=|\cos (y)+i \sin (y)|=$

$$
\left|e^{z}\right|=e^{x}=e^{\operatorname{Re}(z)}
$$

And, $\arg \left(e^{z}\right)$?

Conjugate Complex Number in Polar Form:
$z=r e^{i \varphi} \Longrightarrow \bar{z}=$

Geometrically: Reflection on the real (x)-axis
For $z=x+i y=r e^{i \varphi}$ and fixed $c=a+i b=\rho e^{i \alpha}$
Addition: $f: z \mapsto c+z$ cartesian: $z+c=(x+i y)+(a+i b)$ polar: $z+c=r e^{i \varphi}+\rho e^{i \alpha}=$ geometric: Translation by c

Multiplication: $f: z \mapsto c \cdot z$ cartesian: $c \cdot z=(x+i y) \cdot(a+i b)$ polar: $c \cdot z=r e^{i \varphi} \cdot \rho e^{i \alpha}$
geometric: Next lesson/homework

To conclude, here are a few examples:
A) Sketch/Describe in words the following subsets of the complex plane
I) $D=\{z \in \mathbb{C}:|z-5 i|=2\}$
II) $D=\{z \in \mathbb{C}:|z-5 i| \leq 2\}$
III) $\tilde{D}:=\{z \in \mathbb{C}: 1<|z-5 i|<2\}$
IV) $\tilde{D}:=\{z \in \mathbb{C}: 0<|z-5 i|<2\}$

Example: B) Describe the following subsets of the complex plane using formulas.
M_{1} : Strip parallel to the imaginary axis with width 6 , symmetric to $z_{0}=-3-2 i$, including boundaries.
M_{2} : Open annulus around $z_{0}=-3-2 i$ with inner radius 2 and outer radius 3 .
M_{3} : Dotted disc around $z_{0}=-3-2 i$ with radius 3 , excluding boundaries.

THANK YOU

目

