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Task 1) [5 points]

Let i be the imaginary unit and R the rectangle

R :=
{

z ∈ C | z = x + iy, x, y ∈ R, |x| ≤ ln(2)
π

, |y| ≤ 1
2

}
.

Determine the image of R under the mapping

f : C → C, f(z) := 2ei π
4 · eπz.

Make a sketch of the image or describe the image in words.

Solution to Task 1) [5 points]

Let f̃(z) := eπz = eπx+iπy = eπx · eiπy =: ρ̃ · eiα̃

ρ̃ =
∣∣∣f̃(z)

∣∣∣ = eπx ∈
[
e−π

ln(2)
π , eπ

ln(2)
π

]
=

[ 1
eln 2 , eln 2

]
=

[1
2 , 2

]
.

α̃ = arg
(
f̃(z)

)
= πy ∈

[
−π

2 ,
π

2

]
.

[2 points]

f(z) = 2ei π
4 f̃(z)

=⇒ |f(z)| = 2 · |f̃(z)| ∈ [1, 4] and arg (f(z)) = π

4 + arg (f̃(z)) ∈
[
−π

4 ,
3π

4

]
.

Therefore,
f(R) =

{
w ∈ C : 1 ≤ |w| ≤ 4, −π

4 ≤ arg (w) ≤ 3π

4

}
.

[2 points]

Sketch or Description:

f(R) is an annular sector around the origin with an inner radius of 1 and an outer radius of
4, spanning from the bisector of the fourth quadrant to the bisector of the second quadrant.

[1 point]
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Task 2) [6 points]

a) Determine a Möbius transform

T : C∗ → C∗, T (z) := az + b

cz + d

that satisfies
T (3) = 0, T (0) = −6, T (−1) = ∞.

b) Which generalized circles in C are mapped onto straight lines by T?

c) Determine the images of the following generalized circles under T from part a):

(i) K := real axis,
(ii) K̂ := {z ∈ C | |z − 1| = 2},
(iii) K̃ := imaginary axis.

Solution for 2) [6 points]

a)

T (3) = 0, T (−1) = ∞ ⇐⇒ T (z) = a(z − 3)
z + 1 .

T (0) = −6 =⇒ T (z) = 2z − 6
z + 1 .

[1 point]

b) A generalized circle is mapped onto a straight line if and only if the point −1 is located
on that generalized circle.
[1 point]

c) (i) K = R
Due to the real coefficients and the given images of −1, 0, 3, we have T (R) = R.
Alternative solution:

−1 ∈ R ⇐⇒ T (R) is a straight line.

T (0) = −6, T (3) = 0 ⇐⇒ T (R) = R.

[1 point]
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(ii) K̂ := {z ∈ C | |z − 1| = 2}

−1 ∈ K̂ ⇐⇒ T (K̂) = ĝ is a straight line.

Due to the symmetry of R and K̂, we have ĝ⊥T (R) = R.

3 ∈ K̂ =⇒ T (3) = 0 ∈ ĝ.

Therefore, ĝ = iR, the imaginary axis.
[1 point]

(iii) K̃ := imaginary axis.

−1 /∈ iR ⇐⇒ T (iR) is a genuine circle KiR.

iR symmetric to R =⇒ T (iR) is symmetric to T (R) = R. The center of the
image circle thus lies on the real axis.
Since T (0) = −6 and T (∞) = 2, the center of the image circle is M = −2 and
the radius R = 4.
[2 points]
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Task 3) [6 points]

Given
f(z) = z + 1

z3 + 3z2 .

a) Determine and classify all isolated singularities of f .

b) Compute the residues of f at all isolated singularities.

c) How many different Laurent series of f exist for the expansion point z0 = 1? Specify
the rings in which the Laurent series converge to f .

d) Compute
∮

Ck
f(z) dz for k = 1, 2.

(i) C1 : [0, 2π] → C, C1(t) = 3 + 2eit,
(ii) C2 : [0, 2π] → C, C2(t) = 2eit.

Solution to Task 3)

a) z3 + 3z2 = 0 ⇐⇒ z ∈ {0, −3}.
There is a double zero of the denominator at z1 = 0 and a simple zero of the denomi-
nator at z2 = −3. The numerator does not vanish at any of these points. Thus, there
is a pole of order 2 at z1 = 0 and a pole of order 1 at z2 = −3.
[1 point]

b) [2 points]

Res(f, −3) = z + 1
z2

∣∣∣∣
z=−3

= −2
9 .

Res(f, 0) =
(

z + 1
z + 3

)′

z=0
= z + 3 − z − 1

(z + 3)2

∣∣∣∣∣
z=0

= 2
9 .

c) [1 point]
There are three Laurent series, in the rings:

R1 : |z − 1| < 1, R2 : 1 < |z − 1| < 4, R3 : 4 < |z − 1|.

d) (i)
∮

C1
f(z) dz = 0 (Cauchy’s Integral Theorem) [1 point]

(ii)
∮

C2
f(z) dz = 2πi Res(f, 0) = 4πi

9 . [1 point]
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Task 4) [3 points]

Given the function
f : C \ {1} → C, f(z) := z

1 − z̄

and the curve
c : [0,

π

2 ] → C, c(t) = 1 + 2eit.

Compute the curve integral
IC :=

∫
c
f(z) dz.

Solution to Task 4) [3 points]

ċ(t) = 2ieit, f(c(t)) = 1+2eit

1−1−2e−it = −1
2(eit + 2e2it).

IC =
∫ π

2

0
(−1

2(eit + 2e2it)) · 2ieitdt = −
∫ π

2

0
i(e2it + 2e3it))dt

= −
[1
2e2it + 2

3e3it
] π

2

0
= −1

2(eiπ − e0) + 2
3(ei 3π

2 − e0)

= 1 − 2
3(−i − 1) = 5

3 + i
2
3 .


