Complex functions for Engineering Students

Homework 6

Exercise 1:

Compute directly and with the help of a primitive function

a)
$$\int_{c} 2z - 3 dz$$
 along the segment from $-1 - i$ to $-i$,
b) $\int_{c} z \cosh z dz$ for $c(t) = it$ with $0 \le t \le 1$,
c) $\int_{-i}^{1} \frac{z+1}{z} dz$ for $c(\varphi) = e^{i\varphi}$ (positively oriented),
d) $\int_{-i}^{i} \sin z dz$ for $c(t) = it$, $-1 \le t \le 1$.

Exercise 2:

- a) Compute the Taylor series of $f(z) = \int_0^z \frac{d\xi}{4+\xi^2}$ at development point $z_0 = 0$ and determine the convergence radius.
- b) Determine the convergence radii of the following Taylor series functions at the given development points z_0 and without computing the series itself:

(i)
$$f(z) = \frac{3}{z^2 + 2z + 5}$$
, $z_0 = i$ and $z_0 = 0$,
(ii) $f(z) = \frac{2}{e^z - 1}$, $z_0 = 2\pi(1 + i)$,
(iii) $f(z) = \frac{z}{\ln(3 - 2z)}$, $z_0 = 0$ and $z_0 = \frac{11}{8}$.

Hand in until: 23.6.