Prof. Dr. J. Struckmeier

Dr. K. Rothe

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Hausaufgabenblatt 6

Aufgabe 1:

Man berechne direkt und mit Hilfe einer Stammfunktion

a)
$$\int_{c} 2z - 3 dz$$
 entlang des geradlinigen Weges von $-1 - i$ nach $-i$,

b)
$$\int_{c} z \cosh z \, dz$$
 für $c(t) = it$ mit $0 \le t \le 1$,

c)
$$\int_{-i}^{1} \frac{z+1}{z} dz$$
 für $c(\varphi) = e^{i\varphi}$ (positiv orientiert),

d)
$$\int_{a}^{b} \sin z \, dz \quad \text{für} \quad c(t) = it \,, \ -1 \le t \le 1 \,.$$

Aufgabe 2:

- a) Man berechne die Taylorreihe von $f(z)=\int_0^z\frac{d\xi}{4+\xi^2}$ zum Entwicklungspunkt $z_0=0$ und bestimme den Konvergenzradius.
- b) Man bestimme die Konvergenzradien der Taylor-Reihen folgender Funktionen zu den angegebenen Entwicklungspunkten z_0 , ohne die Reihen selbst zu berechnen:

(i)
$$f(z) = \frac{3}{z^2 + 2z + 5}$$
, $z_0 = i$ und $z_0 = 0$,

(ii)
$$f(z) = \frac{2}{e^z - 1}$$
, $z_0 = 2\pi(1 + i)$,

(iii)
$$f(z) = \frac{z}{\ln(3-2z)}$$
, $z_0 = 0$ und $z_0 = \frac{11}{8}$.

Abgabetermin: 23.6.