Complex functions for Engineering Students

Exercise class 5

Exercise 1:

For $f: \mathbb{C} \to \mathbb{C}$ mit $f(z) = z^3$ compute

a)
$$A := \frac{1}{2} \left(f_x(z_0) - i f_y(z_0) \right)$$
 and

b)
$$B := \frac{1}{2} \left(f_x(z_0) + i f_y(z_0) \right).$$

Compare the results with partial derivatives of f with respect to the independent variables z und \overline{z} , that is with

$$\frac{\partial f}{\partial z}$$
, $\frac{\partial f}{\partial \bar{z}}$.

For this apply formally the usual rules of derivation on the real field.

Exercise 2:

- a) Decide (with justifications) whether
 - (i) $f(z) = z^2 + \overline{z}^2 + 4i \cdot \operatorname{Re}(z)\operatorname{Im}(z) + i$ is holomorphic,
 - (ii) $g(z) = \operatorname{Re}(e^z)$ is holomorphic,
 - (iii) $\operatorname{Re}(z^{10} + \sin^7 z)$ is harmonic.
- b) Let the function

$$v(x,y) = 2xy - 6y + e^x \sin y$$

be given.

- (i) Show that v is harmonic.
- (ii) For v(x, y) determine a function u(x, y) such that the function f(z) = u(x, y) + iv(x, y) with z = x + iy is holomorphic.

Exercise 3:

Let the curves $c_1(t) = it$ and $c_2(t) = e^{it}$ be given, in each case for $0 < t < \pi$.

- a) Draw the curves c_1 and c_2 in the z-plane and determine their intersection point with intersection angle.
- b) Into which image curves of the w-plane are c_1 and c_2 mapped into by the principal value of $w = \ln z$? Check whether the intersection angle of the curves and the local length ratio are preserved.

Dates of classes: 5.6. - 9.6.