Prof. Dr. J. Struckmeier

Dr. K. Rothe

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Präsenzblatt 5

Aufgabe 1:

Für $f: \mathbb{C} \to \mathbb{C}$ mit $f(z) = z^3$ berechne man

a)
$$A := \frac{1}{2} (f_x(z_0) - i f_y(z_0))$$
 und

b)
$$B := \frac{1}{2} (f_x(z_0) + i f_y(z_0)).$$

Man vergleiche die Ergebnisse mit den Ableitungen von f nach den unabhängigen Variablen z und \bar{z} , also mit

$$\frac{\partial f}{\partial z}$$
, $\frac{\partial f}{\partial \bar{z}}$.

Dabei sollen die bekannten Ableitungsregeln aus dem Reellen rein formal übertragen werden.

Aufgabe 2:

- a) Man entscheide (mit Begründung), ob
 - (i) $f(z) = z^2 + \bar{z}^2 + 4i \cdot \text{Re}(z)\text{Im}(z) + i$ holomorph ist,
 - (ii) $g(z) = \text{Re}(e^z)$ holomorph ist,
 - (iii) $\operatorname{Re}(z^{10} + \sin^7 z)$ harmonisch ist.
- b) Gegeben sei die Funktion

$$v(x,y) = 2xy - 6y + e^x \sin y.$$

- (i) Man zeige, dass v harmonisch ist.
- (ii) Zu v(x,y) bestimme man eine Funktion u(x,y), so dass die Funktion f(z) = u(x,y) + iv(x,y) mit z = x + iy holomorph wird.

Aufgabe 3:

Gegeben seien die Kurven $c_1(t) = it$ und $c_2(t) = e^{it}$ jeweils für $0 < t < \pi$.

- a) Man skizziere die Kurven c_1 und c_2 in der z-Ebene und bestimme ihren Schnittpunkt mit Schnittwinkel.
- b) In welche Bildkurven der w-Ebene gehen c_1 und c_2 unter dem Hauptwert von $w = \ln z$ über? Man überprüfe, ob im Schnittpunkt der Bildkurven der Winkel und das lokale Längenverhältnis erhalten bleiben.

Bearbeitungstermine: 5.6. - 9.6.