Complex functions for Engineering Students

 Solutions of Exercise class 5

 Solutions of Exercise class 5}

Exercise 1:

For $f: \mathbb{C} \rightarrow \mathbb{C}$ mit $f(z)=z^{3}$ compute
a) $A:=\frac{1}{2}\left(f_{x}\left(z_{0}\right)-i f_{y}\left(z_{0}\right)\right)$ and
b) $B:=\frac{1}{2}\left(f_{x}\left(z_{0}\right)+i f_{y}\left(z_{0}\right)\right)$.

Compare the results with partial derivatives of f with respect to the independent variables z und \bar{z}, that is with

$$
\frac{\partial f}{\partial z}, \quad \frac{\partial f}{\partial \bar{z}} .
$$

For this apply formally the usual rules of derivation on the real field.

Solution:

f has the following decomposition into real and imaginary part

$$
f\left(z_{0}\right)=z_{0}^{3}=\left(x_{0}+i y_{0}\right)^{3}=x_{0}^{3}-3 x_{0} y_{0}^{2}+i\left(3 x_{0}^{2} y_{0}-y_{0}^{3}\right)=f\left(x_{0}, y_{0}\right) .
$$

One gets
$f_{x}\left(z_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=3 x_{0}^{2}-3 y_{0}^{2}+i 6 x_{0} y_{0}, \quad f_{y}\left(z_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=-6 x_{0} y_{0}+i\left(3 x_{0}^{2}-3 y_{0}^{2}\right)$
a) $A=\frac{1}{2}\left(f_{x}\left(z_{0}\right)-i f_{y}\left(z_{0}\right)\right)=\frac{1}{2}\left(3 x_{0}^{2}-3 y_{0}^{2}+i 6 x_{0} y_{0}-i\left(-6 x_{0} y_{0}+i\left(3 x_{0}^{2}-3 y_{0}^{2}\right)\right)\right)$

$$
=\frac{1}{2}\left(6 x_{0}^{2}-6 y_{0}^{2}+i 12 x_{0} y_{0}\right)=3\left(x_{0}^{2}-y_{0}^{2}+i 2 x_{0} y_{0}\right)=3\left(x_{0}+i y_{0}\right)^{2}=3 z_{0}^{2}
$$

By purely formal differentiation as in the real numbers, one obtains:

$$
\frac{\partial f}{\partial z}\left(z_{0}\right)=3 z_{0}^{2} .
$$

b) $B=\frac{1}{2}\left(f_{x}\left(z_{0}\right)+i f_{y}\left(z_{0}\right)\right)$
$=\frac{1}{2}\left(3 x_{0}^{2}-3 y_{0}^{2}+i 6 x_{0} y_{0}+i\left(-6 x_{0} y_{0}+i\left(3 x_{0}^{2}-3 y_{0}^{2}\right)\right)\right)=0$
By purely formal differentiation as in the real numbers, one obtains: $\frac{\partial f}{\partial \bar{z}}\left(z_{0}\right)=0$.

Exercise 2:

a) Decide (with justifications) whether
(i) $f(z)=z^{2}+\bar{z}^{2}+4 i \cdot \operatorname{Re}(z) \operatorname{Im}(z)+i \quad$ is holomorphic,
(ii) $g(z)=\operatorname{Re}\left(e^{z}\right)$ is holomorphic,
(iii) $\operatorname{Re}\left(z^{10}+\sin ^{7} z\right)$ is harmonic.
b) Let the function

$$
v(x, y)=2 x y-6 y+e^{x} \sin y
$$

be given.
(i) Show that v is harmonic.
(ii) For $v(x, y)$ determine a function $u(x, y)$ such that the function $f(z)=u(x, y)+i v(x, y)$ with $z=x+i y$ is holomorphic.

Solution:

a) (i) f is holomorphic since for $z=x+i y$ it holds

$$
\begin{aligned}
f(z) & =z^{2}+\bar{z}^{2}+4 i \cdot \operatorname{Re}(z) \operatorname{Im}(z)+i \\
& =x^{2}-y^{2}+i 2 x y+x^{2}-y^{2}-i 2 x y+i 4 x y+i \\
& =\underbrace{2\left(x^{2}-y^{2}\right)}_{=u(x, y)}+i(\underbrace{4 x y+1}_{=v(x, y)}) .
\end{aligned}
$$

Thus u, v are continuously partially differentiable and the Cauchy-Riemann differential equations

$$
u_{x}=4 x=v_{y}, \quad v_{x}=4 y=-u_{y}
$$

hold.
(ii) $g(z)=\operatorname{Re}\left(e^{z}\right)=e^{x} \cos y$ is real-valued and non-constant, therefore it is not holomorphic.
(iii) $\operatorname{Re}\left(z^{10}+\sin ^{7} z\right)$ is harmonic since $z^{10}+\sin ^{7} z$ is holomorphic.
b) (i) $\Delta v=\left(2 x y-6 y+e^{x} \sin y\right)_{x x}+\left(2 x y-6 y+e^{x} \sin y\right)_{y y}$

$$
=e^{x} \sin y+\left(-e^{x} \sin y\right)=0
$$

(ii) In order for $f(z)=u(x, y)+i v(x, y)$ to be holomorphic in \mathbb{C}, the CauchyRiemann differential equations must be satisfied:

$$
\begin{aligned}
& u_{x}=v_{y}=\left(2 x y-6 y+e^{x} \sin y\right)_{y}=2 x-6+e^{x} \cos y \\
& \Rightarrow \quad u=x^{2}-6 x+e^{x} \cos y+c(y) \\
& u_{y}=-e^{x} \sin y+c^{\prime}(y)=-v_{x}=-\left(2 x y-6 y+e^{x} \sin y\right)_{x}=-2 y-e^{x} \sin y \\
& \Rightarrow \quad c^{\prime}(y)=-2 y \quad \Rightarrow \quad c(y)=-y^{2}+c \in \mathbb{R}
\end{aligned}
$$

Being $u(x, y)=x^{2}-y^{2}-6 x+e^{x} \cos y+c$ and v continuously partially differentiable, f is holomorphic in \mathbb{C}.
Remark:
For $f(z)=(z-3)^{2}+e^{z}$ and $c=9$ it results $u(x, y)=\operatorname{Re} f$ and $v(x, y)=\operatorname{Im} f$.

Exercise 3:

Let the curves $c_{1}(t)=i t$ and $c_{2}(t)=e^{i t}$ be given, in each case for $0<t<\pi$.
a) Draw the curves c_{1} and c_{2} in the z-plane and determine their intersection point with intersection angle.
b) Into which image curves of the w-plane are c_{1} and c_{2} mapped into by the principal value of $w=\ln z$? Check whether the intersection angle of the curves and the local length ratio are preserved.

Solution:

$w=\ln z=\ln |z|+i \arg z$ with $-\pi<\arg z<\pi \quad$ (principal value)
a) $c_{1}(t)=$ it with $0<t<\pi$:
segment between 0 and $i \pi$ without endpoints.
$c_{2}(t)=e^{i t}$ with $0<t<\pi$:
upper unit circle without endpoints 1 and -1 .
Intersection point: $\quad c_{1}(1)=i=c_{2}\left(\frac{\pi}{2}\right)$

Figure 3 a): $\quad c_{1}(t), c_{2}(t)$ and intersection point $z_{s}=i$ in the z-plane
Derivatives of the curves at the intersections: $\dot{c}_{1}(t)=i \Rightarrow \dot{c}_{1}(1)=i$ and $\dot{c}_{2}(t)=i e^{i t} \Rightarrow \dot{c}_{2}\left(\frac{\pi}{2}\right)=i^{2}=-1$
Intersection angle:

$$
\begin{aligned}
& \gamma=\angle\left(\dot{c}_{2}\left(\frac{\pi}{2}\right), \dot{c}_{1}(1)\right)=\arg \dot{c}_{2}\left(\frac{\pi}{2}\right)-\arg \dot{c}_{1}(1) \\
& =\arg (-1)-\arg i=\pi-\frac{\pi}{2}=\frac{\pi}{2}
\end{aligned}
$$

b) The image curves are denoted by d_{1} and d_{2}.
$d_{1}(t)=\ln \left(c_{1}(t)\right)=\ln |i t|+i \arg (i t)=\ln t+\frac{i \pi}{2}$ with $0<t<\pi$
(Parallel half-line in the real axis without endpoints)
$d_{2}(t)=\ln \left(c_{2}(t)\right)=\ln \left|e^{i t}\right|+i \arg \left(e^{i t}\right)=\ln 1+i t=$ it with $0<t<\pi$
(Segment between 0 and $i \pi$ without endpoints)
Intersection point: $\quad d_{1}(1)=\frac{i \pi}{2}=d_{2}\left(\frac{\pi}{2}\right)$

Figure $3 \mathbf{b}$): $\quad d_{1}(t), d_{2}(t)$ and intersection $w_{s}=\ln z_{s}=\frac{i \pi}{2}$ in the w-plane
Derivatives of the curves at the intersections:
$\dot{d}_{1}(t)=\frac{1}{t} \Rightarrow \dot{d}_{1}(1)=1$ and $\dot{d}_{2}(t)=i \Rightarrow \dot{d}_{2}\left(\frac{\pi}{2}\right)=i$
Intersection angle:
$\tilde{\gamma}=\angle\left(\dot{d}_{2}\left(\frac{\pi}{2}\right), \dot{d}_{1}(1)\right)=\arg \dot{d}_{2}\left(\frac{\pi}{2}\right)-\arg \dot{d}_{1}(1)$
$=\arg i-\arg 1=\frac{\pi}{2}-0=\frac{\pi}{2}$
local length ratio:

$$
\frac{\left|\dot{c}_{2}\left(\frac{\pi}{2}\right)\right|}{\left|\dot{c}_{1}(1)\right|}=\frac{|-1|}{|i|}=1=\frac{|i|}{|1|}=\frac{\left|\dot{d}_{2}\left(\frac{\pi}{2}\right)\right|}{\left|\dot{d}_{1}(1)\right|}
$$

Remark:
The stretch factor $f^{\prime}(c(t))$ in

$$
\dot{d}(t)=\frac{d}{d t}(f(c(t)))=f^{\prime}(c(t)) \dot{c}(t)
$$

is shortened at the intersection point.
The intersection angle and the local length ratio are preserved because the curves run in the holomorphic domain of $\ln z$.

