Complex functions for Engineering Students

Solutions of Exercise class 5

Exercise 1:

For $f: \mathbb{C} \to \mathbb{C}$ mit $f(z) = z^3$ compute

a)
$$A := \frac{1}{2} (f_x(z_0) - if_y(z_0))$$
 and
b) $B := \frac{1}{2} (f_x(z_0) + if_y(z_0)).$

Compare the results with partial derivatives of f with respect to the independent variables z und \overline{z} , that is with

$$\frac{\partial f}{\partial z}$$
, $\frac{\partial f}{\partial \bar{z}}$.

For this apply formally the usual rules of derivation on the real field.

Solution:

f has the following decomposition into real and imaginary part

$$f(z_0) = z_0^3 = (x_0 + iy_0)^3 = x_0^3 - 3x_0y_0^2 + i(3x_0^2y_0 - y_0^3) = f(x_0, y_0)$$

One gets

$$\begin{split} f_x(z_0) &= f_x(x_0, y_0) = 3x_0^2 - 3y_0^2 + i6x_0y_0, \quad f_y(z_0) = f_y(x_0, y_0) = -6x_0y_0 + i(3x_0^2 - 3y_0^2) \\ \text{a)} \quad A &= \frac{1}{2} \left(f_x(z_0) - if_y(z_0) \right) = \frac{1}{2} \left(3x_0^2 - 3y_0^2 + i6x_0y_0 - i(-6x_0y_0 + i(3x_0^2 - 3y_0^2)) \right) \\ &= \frac{1}{2} \left(6x_0^2 - 6y_0^2 + i12x_0y_0 \right) = 3 \left(x_0^2 - y_0^2 + i2x_0y_0 \right) = 3(x_0 + iy_0)^2 = 3z_0^2 \\ \text{By purely formal differentiation as in the real numbers, one obtains:} \\ \frac{\partial f}{\partial z}(z_0) &= 3z_0^2 \,. \end{split}$$

b)
$$B &= \frac{1}{2} \left(f_x(z_0) + if_y(z_0) \right) \\ &= \frac{1}{2} \left(3x_0^2 - 3y_0^2 + i6x_0y_0 + i(-6x_0y_0 + i(3x_0^2 - 3y_0^2)) \right) = 0 \\ \text{By purely formal differentiation as in the real numbers, one obtains:} \\ \frac{\partial f}{\partial \bar{z}}(z_0) &= 0 \,. \end{split}$$

Exercise 2:

- a) Decide (with justifications) whether
 - (i) $f(z) = z^2 + \overline{z}^2 + 4i \cdot \operatorname{Re}(z)\operatorname{Im}(z) + i$ is holomorphic,
 - (ii) $g(z) = \operatorname{Re}(e^z)$ is holomorphic,
 - (iii) $\operatorname{Re}(z^{10} + \sin^7 z)$ is harmonic.
- b) Let the function

$$v(x,y) = 2xy - 6y + e^x \sin y$$

be given.

- (i) Show that v is harmonic.
- (ii) For v(x, y) determine a function u(x, y) such that the function f(z) = u(x, y) + iv(x, y) with z = x + iy is holomorphic.

Solution:

a) (i) f is holomorphic since for z = x + iy it holds

$$f(z) = z^{2} + \bar{z}^{2} + 4i \cdot \operatorname{Re}(z)\operatorname{Im}(z) + i$$

= $x^{2} - y^{2} + i2xy + x^{2} - y^{2} - i2xy + i4xy + i$
= $\underbrace{2(x^{2} - y^{2})}_{=u(x,y)} + i\underbrace{(4xy + 1)}_{=v(x,y)}$.

Thus u, v are continuously partially differentiable and the Cauchy-Riemann differential equations

$$u_x = 4x = v_y , \quad v_x = 4y = -u_y$$

hold.

- (ii) $g(z) = \operatorname{Re}(e^z) = e^x \cos y$ is real-valued and non-constant, therefore it is not holomorphic.
- (iii) $\operatorname{Re}(z^{10} + \sin^7 z)$ is harmonic since $z^{10} + \sin^7 z$ is holomorphic.

b) (i)
$$\Delta v = (2xy - 6y + e^x \sin y)_{xx} + (2xy - 6y + e^x \sin y)_{yy}$$

= $e^x \sin y + (-e^x \sin y) = 0$

(ii) In order for f(z) = u(x, y) + iv(x, y) to be holomorphic in \mathbb{C} , the Cauchy-Riemann differential equations must be satisfied:

$$\begin{aligned} u_x &= v_y = (2xy - 6y + e^x \sin y)_y = 2x - 6 + e^x \cos y \\ \Rightarrow & u = x^2 - 6x + e^x \cos y + c(y) \\ u_y &= -e^x \sin y + c'(y) = -v_x = -(2xy - 6y + e^x \sin y)_x = -2y - e^x \sin y \\ \Rightarrow & c'(y) = -2y \Rightarrow c(y) = -y^2 + c \in \mathbb{R} \\ \text{Being } u(x, y) &= x^2 - y^2 - 6x + e^x \cos y + c \text{ and } v \text{ continuously partially} \\ \text{differentiable, } f \text{ is holomorphic in } \mathbb{C} \text{ .} \\ \text{Remark:} \\ \text{For } f(z) &= (z - 3)^2 + e^z \text{ and } c = 9 \text{ it results } u(x, y) = \text{Re}f \text{ and} \\ v(x, y) &= \text{Im}f \text{ .} \end{aligned}$$

Exercise 3:

Let the curves $c_1(t) = it$ and $c_2(t) = e^{it}$ be given, in each case for $0 < t < \pi$.

- a) Draw the curves c_1 and c_2 in the z-plane and determine their intersection point with intersection angle.
- b) Into which image curves of the w-plane are c_1 and c_2 mapped into by the principal value of $w = \ln z$? Check whether the intersection angle of the curves and the local length ratio are preserved.

Solution:

$$w = \ln z = \ln |z| + i \arg z$$
 with $-\pi < \arg z < \pi$ (principal value)

a) $c_1(t) = it$ with $0 < t < \pi$: segment between 0 and $i\pi$ without endpoints. $c_2(t) = e^{it}$ with $0 < t < \pi$:

upper unit circle without endpoints 1 and -1.

Intersection point: $c_1(1) = i = c_2\left(\frac{\pi}{2}\right)$

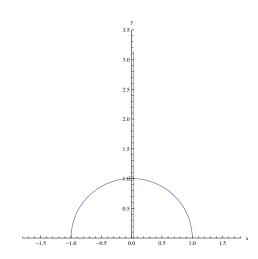


Figure 3 a): $c_1(t)$, $c_2(t)$ and intersection point $z_s = i$ in the z-plane Derivatives of the curves at the intersections: $\dot{c}_1(t) = i \Rightarrow \dot{c}_1(1) = i$ and $\dot{c}_2(t) = ie^{it} \Rightarrow \dot{c}_2\left(\frac{\pi}{2}\right) = i^2 = -1$

Intersection angle:

$$\gamma = \angle \left(\dot{c}_2\left(\frac{\pi}{2}\right), \dot{c}_1(1) \right) = \arg \dot{c}_2\left(\frac{\pi}{2}\right) - \arg \dot{c}_1(1)$$
$$= \arg(-1) - \arg i = \pi - \frac{\pi}{2} = \frac{\pi}{2}$$

b) The image curves are denoted by d_1 and d_2 . $d_1(t) = \ln(c_1(t)) = \ln|it| + i \arg(it) = \ln t + \frac{i\pi}{2}$ with $0 < t < \pi$ (Parallel half-line in the real axis without endpoints) $d_2(t) = \ln(c_2(t)) = \ln|e^{it}| + i \arg(e^{it}) = \ln 1 + it = it$ with $0 < t < \pi$ (Segment between 0 and $i\pi$ without endpoints) Intersection point: $d_1(1) = \frac{i\pi}{2} = d_2\left(\frac{\pi}{2}\right)$

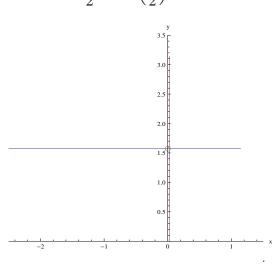


Figure 3 b): $d_1(t)$, $d_2(t)$ and intersection $w_s = \ln z_s = \frac{i\pi}{2}$ in the *w*-plane Derivatives of the curves at the intersections:

$$\dot{d}_1(t) = \frac{1}{t} \Rightarrow \dot{d}_1(1) = 1 \text{ and } \dot{d}_2(t) = i \Rightarrow \dot{d}_2\left(\frac{\pi}{2}\right) = i$$

Intersection angle:

$$\tilde{\gamma} = \angle \left(\dot{d}_2 \left(\frac{\pi}{2} \right), \dot{d}_1(1) \right) = \arg \dot{d}_2 \left(\frac{\pi}{2} \right) - \arg \dot{d}_1(1)$$
$$= \arg i - \arg 1 = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

local length ratio:

$$\frac{|\dot{c}_2\left(\frac{\pi}{2}\right)|}{|\dot{c}_1(1)|} = \frac{|-1|}{|i|} = 1 = \frac{|i|}{|1|} = \frac{|\dot{d}_2\left(\frac{\pi}{2}\right)|}{|\dot{d}_1(1)|}$$

Remark:

The stretch factor f'(c(t)) in

$$\dot{d}(t) = \frac{d}{dt} \left(f(c(t)) \right) = f'(c(t))\dot{c}(t)$$

is shortened at the intersection point.

The intersection angle and the local length ratio are preserved because the curves run in the holomorphic domain of $\ln z$.

Dates of classes: 5.6. - 9.6.