Complex functions for Engineering Students

Solutions of Homework 5

Exercise 1:

a) Draw the line $G=\{z \in \mathbb{C} \mid z=-1+i t, t \in \mathbb{R}\}$ and the circumference $K=\{z \in \mathbb{C}| | z-2 \mid=\sqrt{5}\}$ and compute the two points z_{1} and z_{2} which lie symmetrically to G and K.
b) Determine all conformal functions

$$
T(z)=\frac{a z+b}{c z+d}
$$

with $T\left(z_{1}\right)=0$ and $T\left(z_{2}\right)=\infty$.
c) Draw the images of G and K under T, in case it holds still $T(-1)=-1$.

Solution:

a)

Figure 1 a): Line G and circumference K

Since z_{1} and z_{2} lie symmetrically with respect to the line G, the line H running through both points is perpendicular to G. Because of the symmetry of the points respect to K, such line H also runs through the centre $z_{0}=2$ of K. Thus H is the real axis and it holds $z_{1,2} \in \mathbb{R}$.
From the symmetry respect to G it follows $z_{1}=-1+a$ and $z_{2}=-1-a$ with $a \in \mathbb{R}$.
The symmetry to $K=\{z \in \mathbb{C}| | z-2 \mid=\sqrt{5}\}$ returns the constraint

$$
\begin{aligned}
5=(\sqrt{5})^{2} & =\left(z_{1}-z_{0}\right)\left(\bar{z}_{2}-\bar{z}_{0}\right) \\
& =(-1+a-2)(-1-a-2) \\
& =-(a-3)(a+3)=-\left(a^{2}-9\right) \\
\Rightarrow a^{2} & =4 \Rightarrow a= \pm 2 \\
\Rightarrow z_{1}=-1 \pm 2=1 \vee-3 & , \quad z_{2}=-1 \mp 2=-3 \vee 1
\end{aligned}
$$

b) With

$$
T(z)=k \cdot \frac{z-z_{1}}{z-z_{2}}, \quad k \in \mathbb{C} \backslash\{0\}
$$

it is $\quad w_{1}=T\left(z_{1}\right)=0$ and $w_{2}=T_{2}\left(z_{2}\right)=\infty$.
T is a Möbius transformation being $k \neq 0$, thus $a d-b c=k\left(z_{1}-z_{2}\right) \neq 0$.
T is holomorphic for $z \in \mathbb{C} \backslash\left\{z_{2}\right\}$ and therefore also conformal in this domain, since $T^{\prime}(z)=\frac{a d-b c}{\left(z-z_{2}\right)^{2}} \neq 0$ holds.
c) Since z_{1} and z_{2} lie symmetrically to G and K, also $w_{1}=0$ and $w_{2}=\infty$ are symmetrical to the image circles $T(G)$ and $T(K)$. Hence $T(G)$ and $T(K)$ must be circles around the origin, because z_{2} does not lie in G or K and therefore also $T\left(z_{2}\right)=\infty$ does not lie on $T(G)$ or $T(K)$.
Being $z_{3}=-1$ in G, from $T(-1)=-1 \quad G$ is mapped onto the unit circle.
From $T(-1)=-1=k \cdot \frac{-1-z_{1}}{-1-z_{2}}=-k$ it follows $k=1$ and

$$
T(z)=\frac{z-z_{1}}{z-z_{2}}
$$

For $z_{1}=1$ and $z_{2}=-3$ results $\quad T_{1}(z)=\frac{z-1}{z+3}$.
For $z_{1}=-3$ and $z_{2}=1$ results $T_{2}(z)=\frac{z+3}{z-1}$.
As a check, we verify that $T_{1}(G)$ is the unit circle:

$$
\left|T_{1}(-1+i t)\right|=\left|\frac{-1+i t-1}{-1+i t+3}\right|=\frac{\sqrt{4+t^{2}}}{\sqrt{4+t^{2}}}=1
$$

Since $z_{4}=2+\sqrt{5}$ lies on K, the radius R of $T(K)$ can be computed via $R=|T(2+\sqrt{5})|$.

Specifically, for T_{1} it results

$$
R_{1}=\left|\frac{2+\sqrt{5}-1}{2+\sqrt{5}+3}\right|=\left|\frac{1+\sqrt{5}}{5+\sqrt{5}}\right|=\frac{1}{\sqrt{5}} \approx 0.447
$$

Figure 1 c): Circumferences $T_{1}(G)$ and $T_{1}(K)$
Since z_{1} lies in the interior of K, the domain on the right to G and external to the circular disc K is mapped onto the circular ring $\left\{w \in \mathbb{C}\left|R_{1}<|w|<1\right\}\right.$. In the other case, i.e. with T_{2}, one gets $R_{2}=1 / R_{1}=\sqrt{5} \approx 2.236$ and the circular ring $\{w \in \mathbb{C}|1<|w|<\sqrt{5}\}$. From this, the interior of K is mapped onto the external region and the plane lying to the left of G is mapped into the interior of the unit circle.

Exercise 2:

Consider the half-plane E lying to the right of the line $G=\{z \in \mathbb{C} \mid z=-1+i t, t \in \mathbb{R}\}$ and outside the circular disc $K=\{z \in \mathbb{C}| | z-2 \mid \leq \sqrt{5}\}$.

Compute a function harmonic in E and such that it has value 1 on the boundary of K and 0 on G.

Hint: Transform the problem as given in Exercise 1, solve the conformal transformed problem in polar coordinates and then transform back.

Solution:

Figure 2 a): Half-plane E without the circular disc K
We look for the real-valued function $u: E \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ for which with $z=x+i y$ it holds

$$
\begin{aligned}
\Delta u(x, y) & =0 & \text { for all } & (x, y)^{T} \in E \\
u(x, y) & =0 & \text { for all } & (x, y)^{T} \in G \\
u(x, y) & =1 & \text { for all } & (x, y)^{T} \in K .
\end{aligned}
$$

The domain E is now mapped, for example through the conformal Möbius transformation

$$
T_{2}(z)=\frac{z+3}{z-1}
$$

from Exercise 1, into the circular ring

$$
T_{2}(E)=\{w \in \mathbb{C}|1<|w|<\sqrt{5}\} .
$$

The transformed conformal function with $T_{2}(z)=w=\xi+i \eta$ reads

$$
U(\xi, \eta)=U(w):=u\left(T_{2}^{-1}(w)\right)
$$

and in light of the second theorem of conformal transformation $\Delta u=\Delta U \cdot\left|T_{2}^{\prime}(z)\right|^{2}$ and $T_{2}^{\prime}(z) \neq 0$ it satisfies the boundary value problem

$$
\begin{aligned}
& \Delta U(\xi, \eta)=0 \quad \text { for all } \quad(\xi, \eta)^{T} \in T_{2}(E) \\
& U(\xi, \eta)=0 \quad \text { for all } \quad(\xi, \eta)^{T} \in T_{2}(G) \\
& U(\xi, \eta)=1 \quad \text { for all } \quad(\xi, \eta)^{T} \in T_{2}(K) .
\end{aligned}
$$

Such problem in the circular ring $T_{2}(E)$ is better solvable in polar coordinates, thus with $\xi=r \cos \varphi, \eta=r \sin \varphi, 1 \leq r \leq \sqrt{5}$,
$0 \leq \varphi<2 \pi$ and $v(r, \varphi):=U(\xi(r, \varphi), \eta(r, \varphi))$ is transformed and the problem reads now

$$
\begin{aligned}
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\varphi \varphi} & =0 \quad \text { for all } \quad 1 \leq r \leq \sqrt{5}, \quad 0 \leq \varphi<2 \pi \\
v(\sqrt{5}, \varphi) & =1, \quad 0 \leq \varphi<2 \pi \\
v(1, \varphi) & =0
\end{aligned}
$$

Figure 2 b): $\quad T_{2}(E \backslash K)=\{w \in \mathbb{C}|1<|w|<\sqrt{5}\}$
Because of the symmetry of the domain and the rotational symmetry of the boundary data, it is reasonable to assume that such problem possesses a rotation-symmetric solution, meaning $v(r, \varphi)=v(r)$. Thus the problem simplifies into a boundary problem with standard differential equation

$$
\begin{aligned}
v_{r r}+\frac{1}{r} v_{r} & =0 \quad \text { for all } \quad 1<r<\sqrt{5} \\
v(\sqrt{5}) & =1 \\
v(1) & =0
\end{aligned}
$$

whose general solution is $v(r)=c_{1} \ln r+c_{2}$. Inserting the boundary values it returns $0=v(1)=c_{1} \ln 1+c_{2}=c_{2} \quad$ and $\quad 1=v(\sqrt{5})=c_{1} \ln \sqrt{5} \Rightarrow c_{1}=1 / \ln \sqrt{5}$.

Thus the required solution in polar coordinates reads

$$
v(r, \varphi)=v(r)=\frac{\ln r}{\ln \sqrt{5}} .
$$

The inverse transformation in the w-plane gives the solution

$$
U(w)=\frac{\ln |w|}{\ln \sqrt{5}}
$$

The inverse transformation in the z-plane gives the solution

$$
u(z)=\frac{\ln \left|T_{2}(z)\right|}{\ln \sqrt{5}} .
$$

With $z=x+i y$ and

$$
\left|T_{2}(z)\right|=\left|\frac{z+3}{z-1}\right|=\left(\frac{(x+3)^{2}+y^{2}}{(x-1)^{2}+y^{2}}\right)^{1 / 2}=\left(\frac{x^{2}+y^{2}+6 x+9}{x^{2}+y^{2}-2 x+1}\right)^{1 / 2}
$$

it returns the solution representation in the (x, y) - plane

$$
u(x, y)=\frac{1}{2 \ln \sqrt{5}} \ln \left(\frac{x^{2}+y^{2}+6 x+9}{x^{2}+y^{2}-2 x+1}\right) .
$$

Figure $2 \mathbf{c}$): Contour lines of the solution $u(x, y)$

