Complex functions for Engineering Students

Homework 5

Exercise 1:

a) Draw the line $G=\{z \in \mathbb{C} \mid z=-1+i t, t \in \mathbb{R}\}$ and the circumference $K=\{z \in \mathbb{C}| | z-2 \mid=\sqrt{5}\}$ and compute the two points z_{1} and z_{2} which lie symmetrically to G and K.
b) Determine all conformal functions

$$
T(z)=\frac{a z+b}{c z+d}
$$

with $T\left(z_{1}\right)=0$ and $T\left(z_{2}\right)=\infty$.
c) Draw the images of G and K under T, in case it holds still $T(-1)=-1$.

Exercise 2:

Consider the half-plane E lying to the right of the line $G=\{z \in \mathbb{C} \mid z=-1+i t, t \in \mathbb{R}\}$ and outside the circular disc $K=\{z \in \mathbb{C}| | z-2 \mid \leq \sqrt{5}\}$.

Compute a function harmonic in E and such that it has value 1 on the boundary of K and 0 on G.

Hint: Transform the problem as given in Exercise 1, solve the conformal transformed problem in polar coordinates and then transform back.

