Complex functions for Engineering Students

Exercise class 2

Exercise 1:

Draw the following sets of points in the complex plane:
a) $\{z \in \mathbb{C}:|3 z+6-i|=9\}$,
b) $\{z \in \mathbb{C}: \operatorname{Re}(z) \leq \operatorname{Im}(z)\}$,
c) $\{z \in \mathbb{C}: \operatorname{Re}((1-i) z)=2\}$,
d) $\{z \in \mathbb{C}: \pi \leq \arg (z) \leq 3 \pi / 2,4 \leq|z| \leq 5\}$.

Exercise 2:

a) For $z \in \mathbb{C}$ consider the polynomial $p(z):=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ with real coefficients $a_{0}, \ldots a_{n}$.
Show that if $z_{0} \in \mathbb{C}$ is a root of p, then also \bar{z}_{0} is a root of p.
b) Prove that the circle $\left|z-z_{0}\right|=r$ in the complex plane has the following representation

$$
z \bar{z}-z \bar{z}_{0}-z_{0} \bar{z}+z_{0} \bar{z}_{0}=r^{2} \quad \text { with } \quad z, z_{0} \in \mathbb{C} .
$$

c) Determine the curve described by

$$
z \bar{z}=(4-3 i) \bar{z}+(4+3 i) z+144 .
$$

Exercise 3:

Analyze the convergence of the sequence

$$
z_{0}=3, \quad z_{n+1}=\frac{3-2 i}{4}\left(1+2 i+z_{n}\right)
$$

and if possible determine its limit value.

