Complex functions for Engineering Students

Exercise class 2

Exercise 1:

Draw the following sets of points in the complex plane:

- a) $\{z \in \mathbb{C} : |3z + 6 i| = 9\},\$
- b) $\{z \in \mathbb{C} : \operatorname{Re}(z) \leq \operatorname{Im}(z)\},\$
- c) $\{z \in \mathbb{C} : \operatorname{Re}((1-i)z) = 2\},\$
- d) $\{z \in \mathbb{C} : \pi \le \arg(z) \le 3\pi/2, 4 \le |z| \le 5\}.$

Exercise 2:

a) For $z \in \mathbb{C}$ consider the polynomial $p(z) := a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ with real coefficients $a_0, \dots a_n$.

Show that if $z_0 \in \mathbb{C}$ is a root of p, then also \overline{z}_0 is a root of p.

b) Prove that the circle $|z - z_0| = r$ in the complex plane has the following representation

$$z\bar{z} - z\bar{z}_0 - z_0\bar{z} + z_0\bar{z}_0 = r^2$$
 with $z, z_0 \in \mathbb{C}$.

c) Determine the curve described by

$$z\overline{z} = (4-3i)\overline{z} + (4+3i)z + 144.$$

Exercise 3:

Analyze the convergence of the sequence

$$z_0 = 3$$
, $z_{n+1} = \frac{3-2i}{4} (1+2i+z_n)$

and if possible determine its limit value.

Dates of classes: 17.4. - 21.4.