WiSe 2023/24

Mathematics IV Exam (Module: complex Funktions)

4. March 2024

Please mark each page with your name and your matriculation number.

Please write your surname, first name and matriculation number in **BLOCK CAPI-TALS** each in the following designated fields. These entries will be stored.

Surn	ame:														
\mathbf{First}	name	:													
Matr	:No.:														
Stg.:	AIW	CS/C	UI []	ET	GES	IIW	M	[B]]	MTB	SB	TN	1			

I was instructed about the fact that the exam performance will only be assessed if the TUHH central examination office verifies my official admission before the exam's beginning.

(Signature)	
-------------	--

Task no.	Points	Examiner
1		
2		
3		
4		
5		
6		

Exercise 1: (2 points)

For the exponential function exp compute the image of the set D with drawing

$$D = \left\{ z \in \mathbb{C} \mid 0 \le \operatorname{Re}(z) \le \ln(2), \ 0 \le \operatorname{Im}(z) \le \frac{\pi}{2} \right\}.$$

Exercise 2: (2+1+2 points)

- a) Determine the two points z_1 and z_2 lying symmetrically with respect to the imaginary axis and to the circumference $K = \{z \in \mathbb{C} \mid |z+5| = 3\}$. (Hint: z_1 and z_2 lie on the real axis.)
- b) Compute all the Möbius transformations T such that it holds

$$T(z_1) = 0, \quad T(z_2) = \infty.$$

c) Determine the image of K under T, in case additionally it holds T(-2) = i.

Exercise 3: (2+1 points)

For the function f given by

$$f(z) = z^2 - \bar{z}^2 + 2 \cdot \operatorname{Re}(z^2) + 3$$

decide (with justification) whether

- a) f(z) is holomorphic and
- b) $\operatorname{Re}(f(z))$ is harmonic.

Exercise 4: (1+1 points)

Compute the line integral

a)
$$\int_{c} \frac{1}{z^{2}} dz \text{ for } c(\varphi) = e^{i\varphi} \text{ with } \pi \leq \varphi \leq \frac{3\pi}{2},$$

b)
$$\oint_{|z-i|=2} \frac{e^{z}}{(z+1)^{5}} dz \text{ with positively oriented path of } |z-i| = 2.$$

Exercise 5: (2+2+1+1 points)

Let the function f defined by $f(z) = \frac{12}{z^2 + 4}$.

- a) Determine the type of all singularities of f and compute the corresponding residues.
- b) Determine and draw the convergence domain of all power series expansions of f around $z_0 = i$.
- c) Provide the complex partial fraction decomposition of f.

d) Compute
$$\int_{-\infty}^{\infty} \frac{12}{x^2 + 4} dx$$
.

12

Exercise 6: (2 points)

Let the function f with $f(z) = \frac{\cos(z) - 1}{z^3}$ be given.

For f indicate the Laurent series development converging around $z_0 = 0$, classify all the singularities and determine the corresponding residues.