Exercise 1: (2 points)
For the exponential function exp compute the image of the set D with drawing

$$
D=\left\{z \in \mathbb{C} \mid 0 \leq \operatorname{Re}(z) \leq \ln (2), 0 \leq \operatorname{Im}(z) \leq \frac{\pi}{2}\right\} .
$$

Solution:

(2 points)
With $z=x+i y$ one gets $\exp (z)=e^{z}=e^{x}(\cos (y)+i \sin (y))$ and from this

$$
\exp (D)=\left\{z=r e^{i \varphi} \in \mathbb{C} \mid 1 \leq r \leq 2,0 \leq \varphi \leq \frac{\pi}{2}\right\}
$$

Figure $1 \quad$ Sets $\quad D$ and $\exp (D)$

Exercise 2: ($2+1+2$ points)
a) Determine the two points z_{1} and z_{2} lying symmetrically with respect to the imaginary axis and to the circumference $K=\{z \in \mathbb{C}| | z+5 \mid=3\}$.
(Hint: z_{1} and z_{2} lie on the real axis.)
b) Compute all the Möbius transformations T such that it holds

$$
T\left(z_{1}\right)=0, \quad T\left(z_{2}\right)=\infty .
$$

c) Determine the image of K under T, in case additionally it holds $T(-2)=i$.

Solution:

a) (2 points)

Points symmetrical to G and K lie on the real axis.
From the symmetry respect to G it follows $z_{1}=a$ and $z_{2}=-a$ with $a \in \mathbb{R}$.
The symmetry to $K=\{z \in \mathbb{C}| | z+5 \mid=3\}$ returns

$$
9=\left(z_{1}+5\right)\left(\bar{z}_{2}+5\right)=(a+5)(-a+5)=-a^{2}+25 \Rightarrow a= \pm 4 .
$$

b) (1 point)

All Möbius transformations are $T(z)=k \cdot \frac{z-z_{1}}{z-z_{2}}$.
For $z_{1}=4$ and $z_{2}=-4$ for example one gets

$$
T(z)=k \cdot \frac{z-4}{z+4}, \quad k \in \mathbb{C} \backslash\{0\} .
$$

c) (2 points)

Points z_{1} and z_{2} lie symmetrically with respect to the circumference K and thus they are also symmetric to the image circle. This latter because of $T\left(z_{1}\right)=0$ and $T\left(z_{2}\right)=\infty$ is a circumference around the origin with radius $R=|T(-2)|=|i|=$ 1 , since $z_{3}=-2$ lies on K.

Exercise 3: ($2+1$ points)
For the function f given by

$$
f(z)=z^{2}-\bar{z}^{2}+2 \cdot \operatorname{Re}\left(z^{2}\right)+3
$$

decide (with justification) whether
a) $f(z)$ is holomorphic and
b) $\operatorname{Re}(f(z))$ is harmonic.

Solution:

a) (2 points)
f is holomorphic, because with $z=x+i y$ it holds

$$
\begin{aligned}
f(z) & =z^{2}-\bar{z}^{2}+2 \cdot \operatorname{Re}\left(z^{2}\right)+3 \\
& =x^{2}-y^{2}+i 2 x y-\left(x^{2}-y^{2}-i 2 x y\right)+2\left(x^{2}-y^{2}\right)+3 \\
& =\underbrace{2\left(x^{2}-y^{2}\right)+3}_{=u(x, y)}+i(\underbrace{4 x y}_{=v(x, y)}) .
\end{aligned}
$$

Here u, v are continuously partially differentiable and the Cauchy-Riemann differential equations

$$
u_{x}=4 x=v_{y}, \quad v_{x}=4 y=-u_{y}
$$

hold.
b) (1 point)
$u=\operatorname{Re}(f(z))$ is harmonic, because $f(z)$ is holomorphic.
(alternatively $\Delta u=4-4=0$)

Exercise 4: (1+1 points)
Compute the line integral
a) $\int_{c} \frac{1}{z^{2}} d z$ for $c(\varphi)=e^{i \varphi}$ with $\pi \leq \varphi \leq \frac{3 \pi}{2}$,
b) $\oint_{|z-i|=2} \frac{e^{z}}{(z+1)^{5}} d z$ with positively oriented path of $|z-i|=2$.

Solution:

a) (1 point)

Since the quarter of circumference c runs in the holomorphic domain of $\frac{1}{z^{2}}$, by means of the primitive function we get

$$
\int_{c} \frac{1}{z^{2}} d z=\int_{-1}^{-i} \frac{1}{z^{2}} d z=-\left.\frac{1}{z}\right|_{-1} ^{-i}=\frac{1}{i}+\frac{1}{-1}=-1-i
$$

Alternatively with $c(\varphi)=e^{i \varphi}$ and $\pi \leq \varphi \leq \frac{3 \pi}{2}$ one finds

$$
\int_{c} \frac{1}{z^{2}} d z=\int_{\pi}^{3 \pi / 2} \frac{i e^{i \varphi}}{e^{2 i \varphi}} d \varphi=-\left.e^{-i \varphi}\right|_{\pi} ^{3 \pi / 2}=-(i-(-1))=-1-i
$$

b) (1 point)

Since the singularity $z_{1}=-1$ lies inside the circumference $|z-i|=2$, the generalized Cauchy integral formula returns

$$
\oint_{|z-i|=2} \frac{e^{z}}{(z+1)^{5}} d z=\left.2 \pi i \frac{\left(e^{z}\right)^{\prime \prime \prime \prime}}{4!}\right|_{z=-1}=\frac{\pi i}{12 e}
$$

Exercise 5: $\quad(2+2+1+1$ points $)$
Let the function f defined by $f(z)=\frac{12}{z^{2}+4}$.
a) Determine the type of all singularities of f and compute the corresponding residues.
b) Determine and draw the convergence domain of all power series expansions of f around $z_{0}=i$.
c) Provide the complex partial fraction decomposition of f.
d) Compute $\int_{-\infty}^{\infty} \frac{12}{x^{2}+4} d x$.

Solution:

a) (2 points)

$$
f(z)=\frac{12}{z^{2}+4}=\frac{12}{(z-2 i)(z+2 i)}
$$

Thus f has poles of the first order in $z_{1}=2 i$ and $z_{2}=-2 i$.
$\operatorname{Res}(f ; 2 i)=\left.\frac{12}{z+2 i}\right|_{z=2 i}=\frac{12}{2 i+2 i}=\frac{3}{i}=-3 i$,
$\operatorname{Res}(f ;-2 i)=\left.\frac{12}{z-2 i}\right|_{z=-2 i}=\frac{12}{-2 i-2 i}=-\frac{3}{i}=3 i$
b) (2 points)

The radii of the convergence domains are given by the distances of $z_{0}=i$ from the singularities $\pm 2 i$ of f

Taylor series in $|z-i|<1$, Laurent series for $1<|z-i|<3$, Laurent series for $3<|z-i|$.

c) (1 point)

$$
\begin{aligned}
f(z) & =h(z, 2 i)+h(z,-2 i)=\frac{\operatorname{Res}(f ; 2 i)}{z-2 i}+\frac{\operatorname{Res}(f ;-2 i)}{z+2 i} \\
& =-\frac{3 i}{z-2 i}+\frac{3 i}{z+2 i}
\end{aligned}
$$

d) (1 point)

$$
\int_{-\infty}^{\infty} \frac{12}{x^{2}+4} d x=2 \pi i \cdot \operatorname{Res}(f ; 2 i)=6 \pi
$$

Exercise 6: (2 points)
Let the function f with $f(z)=\frac{\cos (z)-1}{z^{3}}$ be given.
For f indicate the Laurent series development converging around $z_{0}=0$, classify all the singularities and determine the corresponding residues.

Solution:

(1 point)

$$
\begin{aligned}
f(z) & =\frac{\cos (z)-1}{z^{3}}=\frac{1}{z^{3}}\left(1-\frac{z^{2}}{2}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\frac{z^{8}}{8!} \mp \cdots-1\right) \\
& =-\frac{1}{2 z}+\frac{z}{4!}-\frac{z^{3}}{6!}+\frac{z^{5}}{8!} \mp \cdots=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k)!} z^{2 k-3}
\end{aligned}
$$

(1 point)
The only singularity $z_{0}=0$ is a pole of the first order with $\operatorname{Res}(f ; 0)=-\frac{1}{2}$.

