Exercise 1: (2 points)

Determine the image of

$$K := \left\{ z \in \mathbb{C} \mid -\frac{\pi}{4} \le \arg(z) \le \frac{\pi}{4}, \ |z| \le 1 \right\}$$

under the mapping defined by $f(z) = z^2 + 1$ and draw it.

Solution:

(2 points)

With $f_1(z) = z^2 = (re^{i\varphi})^2 = r^2e^{i2\varphi}$ and $f_2(w) = f_1(z) + 1$ one obtains the right semicircle around zero of radius r = 1

$$f_1(K) = K_1 := \left\{ z \in \mathbb{C} \mid -\frac{\pi}{2} \le \arg(z) \le \frac{\pi}{2}, |z| \le 1 \right\}$$

and hence the right semicircle of radius r = 1 around $w_0 = 1$.

$$f(K) = f_2(K_1) = \left\{ w = z + 1 \in \mathbb{C} \mid -\frac{\pi}{2} \le \arg(w - 1) \le \frac{\pi}{2}, |w - 1| \le 1 \right\}$$

Figure 1 Sets K, $f_1(K)$, f(K)

Exercise 2: (2+1+2 points)

Let a Möbius transformation w = T(z) be given with

$$T(-2i) = 0$$
 and $T(0) = -3$.

a) Determine T such that the lower half plane $\mathrm{Im}(z) \leq 0$ is mapped onto the circular disk

$$K := \{ w \in \mathbb{C} \mid |w| \le R \}.$$

(Hint: $z_1 = -2i$ and $z_2 = 2i$ lie symmetrically with respect to the real axis.)

- b) Compute the radius R of the disk K.
- c) Calculate T.

Solution:

a) (2 points)

 $z_1 = -2i$ and $z_2 = 2i$ lie symmetrically to \mathbb{R} . Thus $w_1 = T(z_1)$ and $w_2 = T(z_2)$ are symmetric respect to the image of the real axis. From the choice of $w_2 = T(z_2) = \infty$ the real axis is mapped onto a circle around $w_1 = T(-2i) = 0$.

Since $z_1 = -2i$ lies in the lower half plane, this will be mapped by T onto the circular disk

$$K:=\{w\in\mathbb{C}\:|\:|w|\leq R\}.$$

b) (1 point)

Since it holds $0 \in \mathbb{R}$, T(0) = -3 lies on the image circle. Thus it is R = |T(0)| = 3.

c) (2 points)

The conditions T(-2i) = 0 and $T(2i) = \infty$ are satisfied by

$$T(z) = k \frac{z + 2i}{z - 2i}.$$

With T(0) = -3 we get

$$T(0) = k \frac{2i}{-2i} = -3 \quad \Rightarrow \quad k = 3 \quad \Rightarrow \quad w = T(z) = \frac{3(z+2i)}{z-2i}.$$

Alternatively, from the three-points formula with $z_1 = -2i$, $z_2 = 2i$ and $z_3 = 0$ as well as $w_1 = 0$, $w_2 = \infty$ and $w_3 = -3$ one obtains

$$\frac{z+2i}{z-2i}:\frac{2i}{-2i}=\frac{z-z_1}{z-z_2}:\frac{z_3-z_1}{z_3-z_2}=\frac{w-w_1}{w-w_2}:\frac{w_3-w_1}{w_3-w_2}=\frac{w-0}{-3-0}\Rightarrow w=\frac{3(z+2i)}{z-2i}.$$

Exercise 3: (1+2 points)

Let the function defined by $u(x,y) = y^2 + 3x - x^2 + e^{-x}\cos(y)$.

- a) Show that u is harmonic.
- b) Construct a function v(x, y) such that the function f(z) = u(x, y) + iv(x, y) with z = x + iy is holomorphic.

Solution:

a) (1 point)

$$\Delta u = (y^2 + 3x - x^2 + e^{-x}\cos(y))_{xx} + (y^2 + 3x - x^2 + e^{-x}\cos(y))_{yy}$$

$$= -2 + e^{-x}\cos(y) + 2 - e^{-x}\cos(y) = 0$$

b) (2 points)

For the holomorphism of f(z) = u(x,y) + iv(x,y) in $\mathbb C$ the Cauchy-Riemann differential equations must be fulfilled:

$$v_{y} \stackrel{!}{=} u_{x} = (y^{2} + 3x - x^{2} + e^{-x}\cos(y))_{x} = 3 - 2x - e^{-x}\cos(y)$$

$$\Rightarrow v = 3y - 2xy - e^{-x}\sin(y) + c(x)$$

$$\Rightarrow v_{x} = -2y + e^{-x}\sin(y) + c'(x)$$

$$\stackrel{!}{=} -u_{y} = -(y^{2} + 3x - x^{2} + e^{-x}\cos(y))_{y} = -2y + e^{-x}\sin(y)$$

$$\Rightarrow c'(x) = 0 \Rightarrow c(x) = K, K \in \mathbb{R}$$

$$\Rightarrow v(x, y) = 3y - 2xy - e^{-x}\sin(y) + K$$

Exercise 4: (1+1 points)

Compute the line integrals

a)
$$\int_{c} \frac{1}{z} dz$$
 for $c(\varphi) = e^{i\varphi}$ with $0 \le \varphi \le \frac{\pi}{2}$,

b)
$$\oint_{|z-1|=1} \frac{\sin(z)}{\left(z-\frac{\pi}{2}\right)^3} dz$$
 with positively oriented path of $|z-1|=1$.

Solution:

a) (1 point)

Since the quarter of circumference c runs in the holomorphic domain of the principal value of $\ln(z)$, by means of the primitive function we get

$$\int_{0}^{1} \frac{1}{z} dz = \int_{0}^{1} \frac{1}{z} dz = \ln(z)|_{1}^{i} = \ln|i| + i\frac{\pi}{2} - (\ln|1| + i \cdot 0) = \frac{\pi i}{2}.$$

Alternatively with $c(\varphi) = e^{i\varphi}$ and $0 \le \varphi \le \frac{\pi}{2}$ one finds

$$\int_{c} \frac{1}{z} dz = \int_{0}^{\pi/2} \frac{ie^{i\varphi}}{e^{i\varphi}} d\varphi = i\varphi|_{0}^{\pi/2} = \frac{\pi i}{2}$$

b) (1 point)

Since the singularity $z_1 = \frac{\pi}{2}$ lies inside the circumference |z - 1| = 1, the generalized Cauchy integral formula returns

$$\oint_{|z-1|=1} \frac{\sin z}{\left(z - \frac{\pi}{2}\right)^3} dz = 2\pi i \frac{(\sin z)''}{2!} \Big|_{z = \frac{\pi}{2}} = -\pi i.$$

Exercise 5: (3+2+1 points)

Let the function f defined by $f(z) = \frac{3}{z-2} + \frac{6}{z-5}$.

- a) For the development point $z_0 = 2$ one compute all the power series expansions of f and draw their convergence domains.
- b) Determine the type of all singularities of f and give the corresponding residues.
- c) Compute $\oint_{|z-3|=3} f(z) dz$ for the simple curve |z-3|=3 running in the positive mathematical orientation.

Solution:

a) (3 points)

$$0 < |z - 2| < 3:$$

$$\frac{6}{z - 5} = -\frac{6}{3 - (z - 2)}$$

$$= -\frac{2}{1 - (z - 2)/3} = -2\sum_{k=0}^{\infty} \frac{(z - 2)^k}{3^k}$$

$$f(z) = \frac{3}{z-2} - 2\sum_{k=0}^{\infty} \frac{(z-2)^k}{3^k}$$

Figure 5: dotted circular disk 0 < |z - 2| < 3 and outer domain 3 < |z - 2|

$$|z-2| > 3$$
:

$$\frac{6}{z-5} = \frac{6}{z-2-3} = \frac{3}{z-2} \cdot \frac{2}{1-3/(z-2)} = 2\sum_{k=0}^{\infty} \frac{3^{k+1}}{(z-2)^{k+1}}$$

$$f(z) = \frac{3}{z-2} + 2\sum_{k=0}^{\infty} \frac{3^{k+1}}{(z-2)^{k+1}} = \frac{9}{z-2} + 2\sum_{k=1}^{\infty} \frac{3^{k+1}}{(z-2)^{k+1}}$$

b) (2 points)

f has poles of the first order in $z_1 = 2$ and $z_2 = 5$

$$\operatorname{Res}(f; 2) = (z - 2) f(z)|_{z=2} = 3,$$

$$\operatorname{Res}(f;5) = (z-5)f(z)|_{z=5} = 6.$$

c) (1 point)

$$\oint_{|z-3|=3} f(z) dz = 2\pi i \cdot (\text{Res}(f; 2) + \text{Res}(f; 5)) = 18\pi i$$

Exercise 6: (2 points)

Let the function f be given with
$$f(z) = (z-2)^3 \exp\left(\frac{1}{z-2}\right)$$
.

For f determine the convergent Laurent series expansion around $z_0 = 2$, classify all the singularities and determine the corresponding residues.

Solution:

(1 point)

$$f(z) = (z-2)^{3} \exp\left(\frac{1}{z-2}\right) = (z-2)^{3} \sum_{k=0}^{\infty} \frac{(z-2)^{-k}}{k!} = \sum_{k=0}^{\infty} \frac{(z-2)^{3-k}}{k!}$$

$$= (z-2)^{3} + (z-2)^{2} + \frac{z-2}{2} + \frac{1}{3!} + \frac{1}{4!(z-2)} + \frac{1}{5!(z-2)^{2}} + \frac{1}{6!(z-2)^{3}} + \cdots$$
(1 point)

 $z_0 = 2$ is an essential singularity with $\operatorname{Res}(f; 2) = \frac{1}{4!}$.