Complex functions for engineering study programs

Ingenuin Gasser

Department of Mathematics
Universität Hamburg
Technische Universität Hamburg-Harburg Sommersemester 2022
based on slides of Prof. Jens Struckmeier from Sommersemester 2021

Content of the lecture on complex functions.

(1) Complex functions of a single variable.
(2) Möbius-transformation.
(3) Complex differentiation.
(4) Conformal mappings.
(5) Complex integration.
(0) Cauchy's intergal formula and applicatons.
(7) Taylor- and Laurent-series.
(8) Isolated singularities and residue.
(9) Residue.
(10) Fourier-transform and partial differential equations.

Chapter 1. Complex numbers

Starting point: consider the cubic equation

$$
x^{3}=3 p x+2 q
$$

and the solution formula (by Gerolamo Cardano, 16th century)

$$
x=\sqrt[3]{q+\sqrt{q^{2}-p^{3}}}+\sqrt[3]{q-\sqrt{q^{2}-p^{3}}}
$$

Rafael Bombelli (also 16th century) considers the equation

$$
x^{3}=15 x+4
$$

and obtains the solution formula

$$
x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}
$$

Bombelli defines the imagnary unit i via $i^{2}=-1$, the complex numbers and their summation and multiplication.

First ideas to introduce the complex numbers.

Starting point: Use the symbolic solution i for the equation $x^{2}+1=0$, such that

$$
i^{2}=-1
$$

The "number" i is called imaginary unit.
Next step: With the imaginary unit we build the set of numbers

$$
\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}
$$

Then we introduce the following rules on \mathbb{C} :

- Addition

$$
\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) \quad \text { for } a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}
$$

- Multiplication

$$
\left(a_{1}+i b_{1}\right) \cdot\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) \quad \text { for } a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}
$$

With this \mathbb{C} obtaines an algebraic structure.

Fundamental question about the complex numbers.

- What exactely is i?
- With the above rules can we "calculate" without contradictions?
- Are the above rules consistent with the related rules in \mathbb{R} ?
- Can we order the complex numbers?
- Is there alternative representations of the complex numbers?
- Is there a geometric interpretation of the operations in \mathbb{C} ?
- ...
- Why do we introduce the complex numbers?
- ... and later complex functions?
- Is there interesting applications of the complex numbers in eingineering?

On the contruction of the complex numbers.

Starting point: consider the set $\mathbb{R}^{2}=\{(a, b) \mid a, b \in \mathbb{R}$ with addition

$$
\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) \quad \text { for } a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}
$$

and multiplication

$$
\left(a_{1}+i b_{1}\right) \cdot\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) \quad \text { for } a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}
$$

Observation: The multiplication is associative and commutative; in addition we have

$$
(a, b) \cdot(1,0)=(a, b) \quad \text { for }(a, b) \in \mathbb{R}^{2},
$$

i.e. $(1,0) \in \mathbb{C}$ is neutral element of the multiplication. The equation

$$
(a, b) \cdot(x, y)=(1,0) \quad \text { for }(a, b) \neq(0,0)
$$

has the unique solution, the multiplicative inverse to (a, b),

$$
(x, y)=\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)
$$

On the structure of the complex numbers.

Remark: The set \mathbb{R}^{2} forms together with the addition and the multiplication a field, the field of complex numbers which we denote by \mathbb{C}.

Observation: the map $\varphi: \mathbb{R} \rightarrow \mathbb{C}$, defined by $\varphi(a)=(a, 0)$ is injectiv. For all $a_{1}, a_{2} \in \mathbb{R}$ we have

$$
\begin{aligned}
\varphi\left(a_{1}+a_{2}\right) & =\left(a_{1}+a_{2}, 0\right)=\left(a_{1}, 0\right)+\left(a_{2}, 0\right)=\varphi\left(a_{1}\right)+\varphi\left(a_{2}\right) \\
\varphi\left(a_{1} a_{2}\right) & =\left(a_{1} a_{2}, 0\right)=\left(a_{1}, 0\right) \cdot\left(a_{2}, 0\right)=\varphi\left(a_{1}\right) \cdot \varphi\left(a_{2}\right)
\end{aligned}
$$

Conclusion:

- We can identify the real numbers as complex numbers of the form $(a, 0)$;
- The real numbers form a subfield of \mathbb{C};
- The rules for calculation in \mathbb{C} are consistent with the rules in \mathbb{R}.

The field of real numbers is ordered.

Remark: The real numbers form a ordered filed; the following order axioms hold.

- For every $x \in \mathbb{R}$ it is $x>0$ or $x=0$ or $x<0$;
- For $x>0$ and $y>0$ it is $x+y>0$;
- For $x>0$ and $y>0$ it is $x y>0$.

Question: Is the field of complex numbers \mathbb{C} ordered?
Answer: NO!
In an ordered field nonzero square numbers are positiv. If \mathbb{C} would be ordered then

$$
0<1^{2}=1 \quad \text { and } \quad 0<i^{2}=-1
$$

the contradiction $0<1+(-1)=0$.

A simpler notation for the complex numbers.

Simplification of the notation:

- For $a \in \mathbb{R}$ we write a instead of $(a, 0)$;
- We denote the complex unit $(0,1)$ by i;
- With this every complex number (a, b) can be written

$$
(a, b)=(a, 0)+(0, b) \cdot(0,1)=a+b \cdot i=a+i b
$$

and is is

$$
i^{2}=i \cdot i=(0,1) \cdot(0,1)=(-1,0)=-1 .
$$

Conclusion: We have constructed a field \mathbb{C} which includes \mathbb{R}. The equation

$$
x^{2}+1=0
$$

is solvable in \mathbb{C}. The only two solutions are $\pm i$.

Real and imaginary part.

From now on we denote complex numbers by z or w. For

$$
z=x+i y \in \mathbb{C} \quad \text { for } x, y \in \mathbb{R}
$$

x is called the real part and y is called the imaginary part of z, shortly

$$
x=\operatorname{Re}(z) \quad \text { and } \quad y=\operatorname{Im}(z)
$$

We have the following rules

$$
\begin{aligned}
\operatorname{Re}(z+w) & =\operatorname{Re}(z)+\operatorname{Re}(w) & & \text { for } z, w \in \mathbb{C} \\
\operatorname{Im}(z+w) & =\operatorname{lm}(z)+\operatorname{Im}(w) & & \text { for } z, w \in \mathbb{C} \\
\operatorname{Re}(a z) & =a \operatorname{Re}(z) & & \text { for } z \in \mathbb{C}, a \in \mathbb{R} \\
\operatorname{Im}(a z) & =a \operatorname{lm}(z) & & \text { for } z \in \mathbb{C}, a \in \mathbb{R}
\end{aligned}
$$

and

$$
\frac{1}{z}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \quad \text { for } z \neq 0 .
$$

The complex plane.

Geometric rappresentation:

We identify $z=(x, y) \in \mathbb{C}$ as point in the complex plane (Gauß plane)
given by the cartesian coordinate system of the \mathbb{R}^{2}, with a real axis, \mathbb{R}, and an imaginary axis, $i \cdot \mathbb{R}$.

Geometric rappresentation of the addition:

The usual addition of vectors according to the parallelogram rule.

Rappresentation of the addition of two complex numbers on slide.

Conjugation of complex numbers.

We obtain for every complex number $z=x+i y$ by mirrowing along the real axis a complex number

$$
\bar{z}=x-i y \in \mathbb{C}
$$

the conjugate complex number.
We have the following rules

$$
\begin{aligned}
\overline{z+w} & =\bar{z}+\bar{w} & & \text { for } z, w \in \mathbb{C} \\
\overline{z w} & =\bar{z} \cdot \bar{w} & & \text { for } z, w \in \mathbb{C} \\
\overline{(\bar{z})} & =z & & \text { for } z \in \mathbb{C} \\
z \bar{z} & =x^{2}+y^{2} & & \text { for } z=x+i y \in \mathbb{C} \\
\operatorname{Re}(z) & =(z+\bar{z}) / 2 & & \text { for } z \in \mathbb{C} \\
\operatorname{Im}(z) & =(z-\bar{z}) / 2 i & & \text { for } z \in \mathbb{C}
\end{aligned}
$$

In particular it holds $z=\bar{z}$ if an only if $z \in \mathbb{R}$.

The absolute value.

We set

$$
|z|=\sqrt{z \bar{z}}=\sqrt{x^{2}+y^{2}} \quad \text { for } z=x+i y \in \mathbb{C}
$$

for the absolute value of z and $|z-w|$ for the distance of two numbers $z, w \in \mathbb{C}$ in the complex plane.

- Then $|z|=|z-0|$ represents the Eucledian distance of z to the origin.
- For $z \in \mathbb{R}$ the absolute value $|z|$ coincides with the usual absolute value for real numbers.
- We have the following estimates.

$$
-|z| \leq \operatorname{Re}(z) \leq|z| \quad \text { and } \quad-|z| \leq \operatorname{lm}(z) \leq|z| \quad \text { for } z \in \mathbb{C}
$$

Theorem: The absolute value defines a norm on \mathbb{C}, since we have the relations
(1) $|z| \geq 0$ for all $z \in \mathbb{C}$ and $|z|=0$ if and only if $z=0$;
(2) $|z+w| \leq|z|+|w|$ for all $z, w \in \mathbb{C}$ (triangle inequality);
(3) $|z w|=|z| \cdot|w|$ for all $z, w \in \mathbb{C}$.

The Euler's formula.

In the complex plane we have for $z=x+i y$ using polar coordinates

$$
(x, y)=|z|(\cos (\varphi), \sin (\varphi))
$$

the Euler's formula

$$
z=|z| \exp (i \varphi)=|z|(\cos (\varphi)+i \sin (\varphi))
$$

where $\varphi \in[0,2 \pi)$ for $z \neq 0$ represents the (unique) angle between the positive real axis and the ray from 0 through $z=(x, y)$.

The angle $\varphi \in[0,2 \pi$) is called polar angle (azimuth, argument) of $z \neq 0$, shortly

$$
\varphi=\arg (z) \in[0,2 \pi)
$$

Example: $i=(0,1)=\exp (i \pi / 2),-1=i^{2}=\exp (i \pi)$, thus $e^{i \pi}+1=0$.

The geometry of multiplikation and division.

Using polar coordinates the multiplication of two complex numbers $z, w \in \mathbb{C}$ can be interpreted as rotational dilation in the complex plane, since for

$$
z=|z|(\cos (\varphi), \sin (\varphi)) \quad \text { and } \quad w=|w|(\cos (\psi), \sin (\psi))
$$

we have

$$
\begin{aligned}
z \cdot w & =|z| \cdot|w|(\cos (\varphi)+i \sin (\varphi)(\cos (\psi)+i \sin (\psi)) \\
& =|z| \cdot|w|(\cos (\varphi+\psi)+i \sin (\varphi+\psi))=|z| \cdot|w| \exp (i(\varphi+\psi))
\end{aligned}
$$

and with the Euler's formula

$$
z \cdot w=|z| \cdot|w| \exp (i \varphi) \exp (i \psi)=|z| \cdot|w| \exp (i(\varphi+\psi))
$$

For the division of two complex numbers $z, w \in \mathbb{C}$ with $z \neq 0$ we have in analogy

$$
\frac{z}{w}=\frac{|z|}{|w|} \exp (i(\varphi-\psi))=\frac{|z|}{|w|}(\cos (\varphi-\psi)+i \sin (\varphi-\psi))
$$

Powers and roots of unity.

For the n-th power z^{n} of $z \in \mathbb{C}$ we have

$$
z^{n}=(|z| \exp (i \varphi))^{n}=|z|^{n} \exp (i n \varphi)=|z|^{n}(\cos (n \varphi)+i \sin (n \varphi))
$$

The equation

$$
z^{n}=1
$$

has n pairwise different solutions

$$
z_{k}=\exp \left(i \frac{2 \pi k}{n}\right) \quad \text { for } k=0, \ldots, n-1
$$

These solutions are called n-th roots of unity.

Chapter 2. Complex valued functions of a single variable

A complex function $w=f(z)$ is a map $f: D \rightarrow \mathbb{C}$ with $D \subset \mathbb{C}$, i.e. for every $z \in D$ there is a unique $w=f(z) \in \mathbb{C}$.
The set D is the domain (of defintion) of f. The set

$$
W=f(D)=\{f(z) \mid z \in D\}
$$

is called the codomain.

Notation:

$$
\begin{aligned}
z & =x+i y \\
w & =u+i v \\
u & =u(x, y)=\operatorname{Re}(w) \\
v & =v(x, y)=\operatorname{lm}(w)
\end{aligned}
$$

For a geometric representation of complex functions often images of coordinate nets are used.

Chapter 2. Complex valued functions of a single variable

2.1 Linear functions

Definition: A complex function f is called linear, if f for fixed complex constants $a, b \in \mathbb{C}, a \neq 0$, has a representation of the following form

$$
f(z)=a z+b \quad \text { for } z \in \mathbb{C} .
$$

Question: Can we interpet linear functions geometrically?
Special case 1: The choice $a=1$ leads to a translation of b,

$$
f(z)=z+b \quad \text { for } z \in \mathbb{C}
$$

Special case 2: The choice $a \in(0, \infty)$ and $b=0$ leads to a dilation or contraction,

$$
f(z)=a z \quad \text { for } z \in \mathbb{C},
$$

i.e. the absolute value of z is dilated $(a>1)$ or contracted $(0<a<1)$. In general we talk about a scaling with scaling factor $a>0$.

Other special cases of linear functions.

Special case 3: The choice $a \in \mathbb{C}$ with $|a|=1$ and $b=0$ leads to a rotation,

$$
f(z)=a z \quad \text { for } z \in \mathbb{C},
$$

More precisely: a rotation with angle $\alpha \in[0,2 \pi)$, where $\alpha=\arg (a)$ and $a=\exp (i \alpha)$.

Special case 4: The choice $a \in \mathbb{C}, a \neq 0$ and $b=0$ leads to a rotational dilation

$$
f(z)=a z \quad \text { for } z \in \mathbb{C},
$$

which we understand as a combination of a rotation and a scaling.
More precisely: For

$$
a=|a| \exp (i \alpha) \quad \text { with } \alpha=\arg (a)
$$

we have a rotation with angle $\alpha \in[0,2 \pi)$ and a scaling with factor $|a|$.

The general case of linear functions.

For $a, b \in \mathbb{C}$, $a \neq 0$, every linear function

$$
f(z)=a z+b=|a| \exp (i \alpha) z+b
$$

can be written as composition

$$
f=f_{3} \circ f_{2} \circ f_{1}
$$

of three maps,
(1) $f_{1}(z)=\exp (i \alpha) z$ a rotation with angle $\alpha=[0,2 \pi)$;
(2) $f_{2}(z)=|a| z$ a dilation with scaling factor $|a|>0$;
(3) $f_{3}(z)=z+b$ a shift with a vector b.

Remark: rotation f_{1} and dilation f_{2} commute, i.e. can be exchanged since

$$
f_{2} \circ f_{1}=f_{1} \circ f_{2}
$$

and thus

$$
f=f_{3} \circ f_{2} \circ f_{1}=f_{3} \circ f_{1} \circ f_{2}
$$

Chapter 2. Complex valued functions of a single variable

2.2 Quadratic functions

Definition: A complex function f is called quadratic, if f for fixed constants $a, b, c \in \mathbb{C}, a \neq 0$, has the following form.

$$
f(z)=a z^{2}+b z+c \quad \text { for } z \in \mathbb{C}
$$

First we consider the geometric behaviour of the function

$$
f(z)=z^{2} \quad \text { for } \quad z \in \mathbb{C}
$$

To do so we consider the image under f of straight lines parallel to the coordinate axes.

Set $w=z^{2}$. Then with $z=x+i y$ and $w=u+i v$ we obtain the representation

$$
w=u+i v=z^{2}=(x+i y)^{2}=x^{2}-y^{2}+2 i x y
$$

and thus

$$
u=x^{2}-y^{2} \quad \text { and } \quad v=2 x y
$$

Images of straight lines parallel to the axes under $z \mapsto z^{2}$.

For the image of a straight line $y=y_{0}$ parallel to the x-axis we obtain

$$
u=x^{2}-y_{0}^{2} \quad \text { and } \quad v=2 x y_{0}
$$

For $y_{0}=0$ (the x-axis) we obtain $u=x^{2}$ and $v=0$.
For $y_{0} \neq 0$ we can eliminate x with $x=v /\left(2 y_{0}\right)$ and obtain

$$
u=\frac{v^{2}}{4 y_{0}^{2}}-y_{0}^{2}
$$

a parabola open to the right, symmetric with respect to the u-axes with focus in zero, intersecting the u-axis in $u=-y_{0}^{2}$ and the v-axis in $v= \pm 2 y_{0}^{2}$.

Conclusion: The family of straight lines parallel to the x-axis by the quadratic function $f(z)=z^{2}$ is mapped on a family of confocal (i.e. same symmetry axis, same focus) parabolas, open to the right.
The lines $y=y_{0}$ and $y=-y_{0}$ are mapped onto the same parabola.

Images of straight lines parallel to the axes under $z \mapsto z^{2}$.

For the image of a straight line $x=x_{0}$ parallel to the y-axis we obtain

$$
u=x_{0}^{2}-y^{2} \quad \text { und } \quad v=2 x_{0} y
$$

For $x_{0}=0$ (the y-axis) we obtain $u=-y^{2}$ and $v=0$.
For $x_{0} \neq 0$ we can eliminate y with $y=v /\left(2 x_{0}\right)$ and obtain

$$
u=x_{0}^{2}-\frac{v^{2}}{4 x_{0}^{2}}
$$

a parabola open to the left, symmetric to the u-axis with focus zero, intersecting the u-axis in $u=x_{0}^{2}$ and the v-axis in $v= \pm 2 x_{0}^{2}$.

Conclusion: The family of straight lines parallel to the y-axis by the quadratic function $f(z)=z^{2}$ is mapped on a family of confocal parabolas, open to the left.
The lines $x=x_{0}$ and $x=-x_{0}$ are mapped onto the same parabola.

Images of straight lines parallel to the axes under $z \mapsto z^{2}$.

Domain.

Codomain of $f(z)=z^{2}$.

General quadratic functions.

For $a, b, c \in \mathbb{C}, a, b \neq 0$, and the representation

$$
f(z)=a z^{2}+b z+c=a\left(z+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c
$$

every quadratic function can be written as a composition of 4 maps

$$
f=f_{4} \circ f_{3} \circ f_{2} \circ f_{1}
$$

consisting in:
(1) a shift $f_{1}(z)=z+\frac{b}{2 a}$;
(2) a quadratic function $f_{2}(z)=z^{2}$;
(3) a rotational dilation $f_{3}(z)=a z$;
(9) a shift $f_{4}(z)=z-\frac{b^{2}}{4 a}+c$.

Chapter 2. Complex valued functions of a single variable

2.3 The exponential function

Definition: The complex exponential function $\exp : \mathbb{C} \rightarrow \mathbb{C}$ is defined as

$$
\exp (z)=e^{z}=e^{x+i y}=e^{x}(\cos (y)+i \sin (y)) \quad \text { for } z=x+i y .
$$

We observe: The rule for the addition holds

$$
e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}} \quad \text { for } z_{1}, z_{2} \in \mathbb{C} .
$$

Question: How does the complex exponential function $z \rightarrow \exp (z)$ look like?
For $w=\exp (z), z=x+i y$ and $w=u+i v$ we obtain

$$
w=u+i v=e^{z}=e^{x}(\cos (y)+i \sin (y))
$$

and thus

$$
u=e^{x} \cos (y) \quad \text { and } \quad v=e^{x} \sin (y)
$$

Images of straight lines parallel to the axes under $z \mapsto \exp (z)$.

For the image of a straight line $y=y_{0}$ parallel to the x-axis we obtain

$$
u=e^{x} \cos \left(y_{0}\right) \quad \text { and } \quad v=e^{x} \sin \left(y_{0}\right)
$$

- For fixed y_{0} this gives a ray starting from the origin with angle y_{0} with respect to the the x-axis.
- For angles y_{0} and y_{1}, which differ by a multiple of 2π, i.e.

$$
y_{1}=y_{0}+2 \pi k \quad \text { for a } k \in \mathbb{Z}
$$

we obtain the same ray.

- More precisely: Due to the periodicity of $\exp (z)$ we have

$$
e^{z+2 \pi i k}=e^{z} e^{2 \pi i k}=e^{z}(\cos (2 \pi k)+i \sin (2 \pi k))=e^{z} \cdot 1=e^{z}
$$

i.e. two points with identical real part, which imaginary parts only differ by a multiple of 2π, are mapped onto the same point.

Images of straight lines parallel to the axes under

 $z \mapsto \exp (z)$.For the image of a straight line $x=x_{0}$ parallel to the y-axis we obtain

$$
u=e^{x_{0}} \cos (y) \quad \text { und } \quad v=e^{x_{0}} \sin (y)
$$

- For fixed x_{0} this gives a circle around the origin with radius $e^{x_{0}}$.
- Observe: The origin does not lie in the codomain of the exponential function, i.e. there is no $z \in \mathbb{C}$ with $\exp (z)=0$. Therefore $e^{z} \neq 0$ for all $z \in \mathbb{C}$.
- Observation: The exponential function maps rectangular lattices in the cartesian coordinate system onto lattices of curves which intersect orthogonally.
- More precisely: Curves which intersect orthogonally in the cartesian coordinate system, are mapped by the exponential function exp onto curves, which intersect orthogonally (in the images of the interesction point)
- Even more general: The exponential function is isogonal or conformal in $\mathbb{C} \backslash\{0\}$. More details later.

Images of straight lines parallel to the axes under $z \mapsto \exp (z)$.

Domain.

Codomain of $f(z)=\exp (z)$.

Chapter 2. Complex valued functions of a single variable

2.4 The inverse function

Definition: A complex function $f=f(z)$ is called injective, if for every point $w \in \mathbb{C}$ in the domain there is exactely one point $z \in \mathbb{C}$ in the codomain with $f(z)=w$.

Remark: A non-injective function might become injective if the domain is appropriately restricted.

Examples.

(1) the linear function $f(z)=a z+b, a \neq 0$ is injective.
(2) the quadratic function $f(z)=z^{2}$ is not injective, since we have $f(z)=f(-z)$ for all $z \in \mathbb{C}$.
(3) the complex exponential function $\exp (z)$ is not injective, since we have $\exp (z)=\exp (z+2 \pi i k)$ for all $k \in \mathbb{Z}$ and all $z \in \mathbb{C}$.

Restriction of the domain.

Remark: A non-injective function might become injective if the domain is appropriately restricted.

Example: Consider the quadratic function

$$
f(z)=z^{2} \quad \text { for } z \in \mathbb{C} \text { with } \operatorname{Re}(z)>0
$$

on the right halfplane $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$. There f is injective.
In this case the codomain is given by the "partly cutted" complex plane

$$
\begin{aligned}
\mathbb{C}^{-} & =\{z \in \mathbb{C} \mid \operatorname{lm}(z) \neq 0 \text { or } \operatorname{Re}(z)>0\} \\
& =\mathbb{C} \backslash\{z \in \mathbb{R} \mid z \leq 0\}
\end{aligned}
$$

Graphical representation of the domain and codomain on a slight.

The inverse function.

Definition: Let f be an injective function with domain $D(f)$ and codomain $W(f)$. Then the inverse function $f^{-1}: W(f) \rightarrow D(f)$ to f is the function, which maps every point $w \in W(f)$ onto the (unique) point $z \in D(f)$ with $f(z)=w$, i.e. it is $f^{-1}(w)=z$ and

$$
\begin{aligned}
\left(f^{-1} \circ f\right)(z) & =z & \text { for all } z \in D(f) \\
\left(f \circ f^{-1}\right)(w) & =w & \text { for all } w \in W(f)
\end{aligned}
$$

Example: For the domain

$$
D(f)=\left\{z=r e^{i \varphi} \in \mathbb{C} \mid r>0 \text { and }-\pi / 2<\varphi<\pi / 2\right\}
$$

the exists an inverse function f^{-1} of $f(z)=z^{2}$ with codomain $W(f)=\mathbb{C}^{-}$.
For the main value uf the root $f^{-1}: W(f) \rightarrow D(f)$ it is

$$
w=f^{-1}(z)=\sqrt{r} e^{i \varphi / 2} \quad \text { for } z=r e^{i \varphi} \text { with } \varphi=\arg (z) \in(-\pi, \pi) .
$$

Chapter 2. Complex valued functions of a single variable

2.5 The complex logarithm

Aim: To inverte the complex exponential function

$$
f(z)=\exp (z) .
$$

Observe: The exponential function $\exp (z)$ is defined for all $z \in \mathbb{C}$ and we have

$$
D(\exp)=\mathbb{C} \quad \text { and } \quad W(f)=\mathbb{C} \backslash\{0\}
$$

for the domain and the codomain.
But: The exponential function is not injective on \mathbb{C}.
Also: For the construction of the inverse function $\exp ^{-1}$ of exp we need to restrict the domain of exp appropriately.

Question: Let $z=x+i y \in W(\exp)$. Which values $w=u+i v$ are possible such that

$$
e^{w}=z ?
$$

Construction of the complex logarithm.

Starting point: For $z=x+i y \in W(\exp)$ it should be

$$
e^{w}=z \quad \text { for a } w=u+i v \in \mathbb{C}
$$

Then

$$
\left|e^{w}\right|=\left|e^{u}\right|=|z|
$$

and thus $u=\ln (|z|)$, where $\ln :(0, \infty) \rightarrow \mathbb{R}$ denotes the real logarithm.
In addition we have

$$
\arg \left(e^{w}\right)=\arg \left(e^{u+i v}\right)=\arg \left(e^{u} e^{i v}\right)=v
$$

and thus $v=\arg (z)+2 \pi k$ for a $k \in \mathbb{Z}$.
Therefore the set of solutions of $e^{w}=z$ consists of complex numbers

$$
w=\ln (|z|)+i(\arg (z)+2 \pi k) \quad \text { with a } k \in \mathbb{Z}
$$

The set of solutions of $e^{w}=z$ is called complex logarithm of z.

Examples.

The function $\log (z)$ denotes the complex logarithm of z.
Example 1: How does the set $\log (-1)$ look like? We have $\ln (|-1|)=\ln (1)=0$ and the argument of -1 is $\arg (-1)=\pi$. Thus

$$
\log (-1)=\{i(2 k+1) \pi \mid k \in \mathbb{Z}\}
$$

for the values of the logarithm of -1 .
Example 2: How does the set $\log (-1+i)$ look like? We have $|-1+i|=\sqrt{2}$ and it is $\arg (-1+i)=\frac{3 \pi}{4}$ the argument of $-1+i$. Thus

$$
\log (-1+i)=\left\{\left.\ln (\sqrt{2})+i\left(\frac{3 \pi}{4}+2 \pi k\right) \right\rvert\, k \in \mathbb{Z}\right\}
$$

for the values of the logarithm of $-1+i$.
Example 3: For $x>0$ it is $\log (x)=\{\ln (x)+2 \pi i k \mid k \in \mathbb{Z}\}$.

The principal value of the logarithm.

The previous consoderations for the equation

$$
z=e^{w}
$$

show that the exponantial function is injective on the strip

$$
S=\{w \in \mathbb{C} \mid-\pi<\operatorname{Im}(w)<\pi\} .
$$

The related codomain is \mathbb{C}^{-}.
The unique value of $\log (z)$ being element in the strip S is

$$
w=\log (|z|)+i \arg (z) \quad \text { with }-\pi<\arg (z)<\pi
$$

This value is called principal value of the logarithm of z, shortly $\ln (z)$.
Remark: The principal value is only defined in the "opened" complex plane \mathbb{C}^{-}. On the negative real axis and at $z=0$ the $\ln (z)$ is not defined. On the positive real axis $\ln (z)$ coincides with the real logarithm $\ln (x)$.

Chapter 2. Complex valued functions of a single variable

2.6 The Joukowski-function

The Joukowski-function is defined as

$$
f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \quad \text { for } z \neq 0
$$

and has an interesting connection to fluid mechanics.
Observation: We have the symmetry

$$
f(z)=f(1 / z) \quad \text { for } z \neq 0
$$

Aim: Analyse the geometric behaviour of the Joukowski-function.
To do so determine for

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

the images of the circles $|z|=$ const. and the rays $\arg (z)=$ const..

Geometric behaviour of the Joukowski-function.

For $z=r e^{i \varphi}$ and $w=u+i v$ we obtain

$$
u+i v=\frac{1}{2}\left(r e^{i \varphi}+\frac{1}{r} e^{-i \varphi}\right)
$$

and thus

$$
u=\frac{1}{2}\left(r+\frac{1}{r}\right) \cos (\varphi) \quad \text { and } \quad v=\frac{1}{2}\left(r-\frac{1}{r}\right) \sin (\varphi) .
$$

For the images of the circles $r \equiv r_{0}>0$ we obtain the parameterized form

$$
\left.\begin{array}{l}
u=\frac{1}{2}\left(r_{0}+\frac{1}{r_{0}}\right) \cos (\varphi) \\
v=\frac{1}{2}\left(r_{0}-\frac{1}{r_{0}}\right) \sin (\varphi)
\end{array}\right\} \quad 0 \leq \varphi<2 \pi .
$$

For the unit circle $r_{0} \equiv 1$ we have $u=\cos (\varphi)$, for $0 \leq \varphi<2 \pi$, and $v \equiv 0$, i.e. the line between -1 and 1 , which is reached twice.

Geometric behaviour of the Joukowski-function.

For $r_{0} \neq 1$ we can eliminate φ and we obtain the ellipse

$$
\frac{u^{2}}{\frac{1}{4}\left(r_{0}+\frac{1}{r_{0}}\right)^{2}}+\frac{v^{2}}{\frac{1}{4}\left(r_{0}-\frac{1}{r_{0}}\right)^{2}}=1
$$

with the semi axes

$$
a=\frac{1}{2}\left(r_{0}+\frac{1}{r_{0}}\right) \quad \text { and } \quad b=\frac{1}{2}\left|r_{0}-\frac{1}{r_{0}}\right|
$$

and the foci ± 1.

Conclusion: The Joukowski-function maps a collection of circles $r \equiv$ const. onto a collection of kofocal ellipses. The two circles $r \equiv r_{0}$ and $r \equiv 1 / r_{0}$ are mapped onto the same ellipse.

Geometric behaviour of the Joukowski-function.

For the image of the ray $\varphi \equiv \varphi_{0}$ we obtain

$$
\left.\begin{array}{l}
u=\frac{1}{2}\left(r+\frac{1}{r}\right) \cos \left(\varphi_{0}\right) \\
v=\frac{1}{2}\left(r-\frac{1}{r}\right) \sin \left(\varphi_{0}\right)
\end{array}\right\} \quad 0<r<\infty,
$$

and therefore for the positive x-axis $\varphi_{0}=0$

$$
\left.\begin{array}{l}
u=\frac{1}{2}\left(r+\frac{1}{r}\right) \\
v=0
\end{array}\right\} \quad 0<r<\infty
$$

the subset $\{(u, 0) \mid 1 \leq u<\infty\}$ of the u-axes.
In analogy we obtain for the negative x-axis $\varphi_{0}=\pi$ the piece $-\infty<u<-1$.
The rays $\varphi_{0}=\pi / 2$ (positive y-axis) and $\varphi_{0}=3 \pi / 2$ (negative y-axis) are mapped onto the (complete) v-axis.

Geometric behaviour of the Joukowski-function.

If $\varphi_{0} \notin\{0, \pi / 2, \pi, 3 \pi / 2\}$ we can eliminate r. Thus we obtain the hyperbola

$$
\frac{u^{2}}{\cos ^{2}\left(\varphi_{0}\right)}-\frac{v^{2}}{\sin ^{2}\left(\varphi_{0}\right)}=1
$$

with the semiaxes

$$
a=\left|\cos \left(\varphi_{0}\right)\right| \quad \text { and } \quad b=\left|\sin \left(\varphi_{0}\right)\right| .
$$

The distance of the foci from the origin is

$$
\sqrt{a^{2}+b^{2}}=\sqrt{\cos ^{2}\left(\varphi_{0}\right)+\sin ^{2}\left(\varphi_{0}\right)}=1 .
$$

Therefore the two foci are in ± 1.

Images of the Joukowski-function.

Domain. Joukowski-function.

Image under the

Additional remarks to the Joukowski-function.

(1) The Joukowski-function maps the net of polar coordinates onto a net of ellipses and hyperbolas which intersect orthogonally. Thus the Joukowski-function is isogonal.
(2) The Joukowski-function is not injective on its domain $\mathbb{C} \backslash\{0\}$ since for every $z \in \mathbb{C} \backslash\{ \pm 1,0\}$ it is $z \neq 1 / z$, but $f(z)=f(1 / z)$.
(3) On the following two restrictions of the domain the Joukowski-function becomes injectiv.

- On the complement of the unit circle $D(f)=\{z \in \mathbb{C}| | z \mid>1\}$.
- On the upper half plane $D(f)=\{z \in \mathbb{C} \mid \operatorname{lm}(z)>0\}$.
(9) The inverse function $w=f^{-1}(z)$ of the Joukowski-function $f(w)$ is obtained by solving the related quadratic equation

$$
w^{2}-2 z w+1=0
$$

w.r.t. w in the related domain $D(f)$, thus $w=z+\sqrt{z^{2}-1}$.

Chapter 3. The Möbius-transform

3.1 The stereographic projection

Preliminaries: In analysing rational functions

$$
R(z)=\frac{p(z)}{q(z)} \quad \text { with polynomials } p, q: \mathbb{C} \rightarrow \mathbb{C}
$$

it is reasonable to close the gaps in the domain (i.e. the zero's of $q(z)$) by attributing to $R(z)$ in theese points the "value" ∞ if at such point not at the same time the nominator $p(z)$ vanishes.

Notation: If $z^{*} \in \mathbb{C}$ is a zero of q, i.e. $q\left(z^{*}\right)=0$, and $p\left(z^{*}\right) \neq 0$, then $R\left(z^{*}\right)=\infty$, i.e. the codomain of R is enlarged by adding the "number" ∞.

Definition: In the extension $\mathbb{C}^{*}=\mathbb{C} \cup\{\infty\}$ of the complex plane ∞ is denoted as infinitely far point.

Extension of the rules of calculus for \mathbb{C}^{*}.

In the extended complex plane \mathbb{C}^{*} in addition to the usual rules in \mathbb{C} we define the following rules.

$$
\begin{array}{rll}
a+\infty & :=\infty & \text { for } a \in \mathbb{C} \\
a \cdot \infty & :=\infty & \text { for } a \in \mathbb{C} \backslash\{0\} \\
a / \infty & :=0 & \text { for } a \in \mathbb{C}
\end{array}
$$

Warning: The combintions $0 \cdot \infty$ and $\infty \pm \infty$ cannot be defined reasonably (i.e. without contradictions).
Topological meaning: The extended complex plane \mathbb{C}^{*} is a topological space. For a complex sequence $\left\{z_{n}\right\}_{n}, z_{n} \neq 0$, we have

$$
z_{n} \rightarrow \infty \quad \text { for } n \rightarrow \infty \quad \Longleftrightarrow \quad 1 / z_{n} \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

The space \mathbb{C}^{*} is sequentially compact, i.e. every sequence in \mathbb{C}^{*} as (at least) one limit point. Thus \mathbb{C}^{*} is denoted as compactification of \mathbb{C}.

The stereographic projection.

Definition: The stereographic projection is the map $P: \mathbb{S}^{2} \rightarrow \mathbb{C}^{*}$ which maps the Riemann sphere

$$
\mathbb{S}^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}
$$

on the extended complex plan \mathbb{C}^{*}, in particular it maps a point $x \in \mathbb{S}^{2}$, $x \neq N=(0,0,1)^{T}$, onto the point in the $x_{1}-x_{2}$-plane (considered to lie below the sphere) which lies on a straight line from the north pole N of the sphere through the point x on the sphere. And N is mapped to $P(N):=\infty$.
The stereographic projection has the following analytical representation

$$
z=P(x)=\frac{x_{1}+i x_{2}}{1-x_{3}} \in \mathbb{C}^{*} \quad \text { for }=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{S}^{2}
$$

Remark:

(1) The stereographic projection $P: \mathbb{S}^{2} \rightarrow \mathbb{C}^{*}$ is bijective.
(2) The inverse map P^{-1} of P is given by

$$
x=P^{-1}(z)=\left(\frac{z+\bar{z}}{1+z \bar{z}}, \frac{z-\bar{z}}{i(1+z \bar{z})}, \frac{z \bar{z}-1}{1+z \bar{z}}\right)^{T} \in \mathbb{S}^{2} \quad \text { for } z \in \mathbb{C}^{*} .
$$

The geometry of the stereographic projection.

By a sperical image U of a set $B \subset \mathbb{C}^{*}$ in the following we unterstand the (original) domain which under the stereographic projection is mapped on B, i.e. $P(U)=B$.

Theorem: The stereographic projection has the following properties.
a) The spherical image of a straight line in \mathbb{C}^{*} is a circle on \mathbb{S}^{2} containing N.
b) A circle on \mathbb{S}^{2}, passing through N, is mapped under the stereographic projection on a straight line in \mathbb{C}^{*}.
c) The spherical image of a circle in \mathbb{C} is a circle in \mathbb{S}^{2}, NOT passing through N.
d) A circle on \mathbb{S}^{2}, NOT passing through N, is mapped under the stereographic projection on a circle in \mathbb{C}.
e) The stereographic projection is conformal.

Chapter 3. The Möbius-transform

3.2 Möbius-transforms

Definition: A rational map of the form

$$
w=T(z)=\frac{a z+b}{c z+d} \quad \text { with } \quad a d \neq b c
$$

is called Möbius-transform.
Remark: For the Möbius-transform $T: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ it holds:
(1) Nominator and denominator have no common zero.
(2) It is $T(-d / c)=\infty$ and $T(\infty)=a / c$.
(3) The map $T(z)$ is bijective with inverse map $T^{-1}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$

$$
T^{-1}(w)=\frac{d w-b}{-c w+a} .
$$

(9) Analogy to the inverse of a (2×2)-matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Composition of Möbius-transforms.

Theorem: The composition of two Möbius-transforms is again a Möbius-transform. More precisely

$$
\begin{array}{rlr}
w=T_{1}(z) & =\frac{a z+b}{c z+d} \quad \text { for } a d \neq b c \\
u=\left(T_{2} \circ T_{1}\right)(z)=T_{2}(w) & =\frac{\alpha w+\beta}{\gamma w+\delta} & \text { for } \alpha \delta \neq \beta \gamma \\
& =\frac{A z+B}{C z+D} &
\end{array}
$$

The coefficients A, B, C and D can be obtained from the matrix product

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Due to $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$ we have

$$
A D-B C=(a d-b c) \cdot(\alpha \delta-\beta \gamma) \neq 0
$$

Conformality of Möbius-transforms.

Theorem: Möbius-transforms are conformal, i.e. (generalized) circles in \mathbb{C}^{*} are mapped by Möbius-transforms in (generalized) circles.

Proof: Use an appropriate decomposition for $c \neq 0$

$$
\frac{a z+b}{c z+d}=\frac{\frac{a}{c}(c z+d)-\frac{a d}{c}+b}{c z+d}=\frac{a}{c}-\frac{a d-b c}{c} \cdot \frac{1}{c z+d}
$$

Now we set

$$
\begin{aligned}
& w_{1}=c z+d \\
& w_{2}=\frac{1}{w_{1}} \\
& w_{3}=\frac{a}{c}-\frac{a d-b c}{c} \cdot w_{2}
\end{aligned}
$$

The maps w_{1} and w_{3} are linear and thus conformal.

Continuation of the proof.

It remains to show:

The inversion $w=f(z)=1 / z$ is a conformal map.
We use the detour via the stereographic projection, i.e. instead of $z \rightarrow 1 / z$ we consider the three of maps

$$
z \rightarrow x:=P^{-1}(z) \rightarrow \tilde{x} \rightarrow P(\tilde{x})=\frac{1}{z}
$$

Then we have

$$
\mathrm{x}=P^{-1}(z)=\left(\frac{z+\bar{z}}{z \bar{z}+1}, \frac{z-\bar{z}}{i(z \bar{z}+1)}, \frac{z \bar{z}-1}{z \bar{z}+1}\right)^{T}
$$

and

$$
\begin{aligned}
\tilde{\mathrm{x}} & :=P^{-1}\left(\frac{1}{z}\right) \\
& =\left(\frac{\frac{1}{z}+\frac{1}{\bar{z}}}{\frac{1}{z} \frac{1}{\bar{z}}+1}, \frac{\frac{1}{z}-\frac{1}{\bar{z}}}{i\left(\frac{1}{z} \frac{1}{\bar{z}}+1\right)}, \frac{\frac{1}{z} \frac{1}{\bar{z}}-1}{\frac{1}{z} \frac{1}{\bar{z}}+1}\right)^{T}
\end{aligned}
$$

Completion of the proof.

A simplification gives

$$
\begin{aligned}
\tilde{x} & =\left(\frac{z+\bar{z}}{z \bar{z}+1},-\frac{z-\bar{z}}{i(z \bar{z}+1)},-\frac{z \bar{z}-1}{z \bar{z}+1}\right) \\
& =\left(x_{1},-x_{2},-x_{3}\right)^{T}
\end{aligned}
$$

Thus we obtain a map $F: S^{2} \rightarrow S^{2}$ with

$$
F(x)=\left(x_{1},-x_{2},-x_{3}\right)^{T}
$$

This map is a rotation of the sphere arount the x_{1}-axis by 180° and apparentely confromal.
Therefore we have proofed that the three maps

$$
z \rightarrow x:=P^{-1}(z) \rightarrow \tilde{x} \rightarrow P(\bar{x})=\frac{1}{z}
$$

are conformal. With this the inversion $z \rightarrow 1 / z$ is conformal.

Remarks on the Möbius-transform.

Remark: The Möbius-transform

$$
w=T(z)=\frac{a z+b}{c z+d} \quad \text { with } a d \neq b c
$$

has the follwoing properties.

- (Generalized) circles through the point $-d / c$ are mapped by T on straight lines in the w-plane.
- All straight lines in the z-plane are mapped by T on (generalized) circles in the w-plane containing the point a / c.
- Circles not containing the point $-d / c$ are mapped by T on circles not containing the point a / c.

Cross-ratio's and Möbius-tranforms.

Theorem: Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}^{*}$ and $w_{1}, w_{2}, w_{3} \in \mathbb{C}^{*}$ be pairwise different. Then there exists exactely one Möbius-transform $w=T(z)$ satisfying the interpolations

$$
w_{j}=T\left(z_{j}\right) \quad \text { für } j=1,2,3 .
$$

The interpolating Möbius-transform $T(z)$ is given by the three-point-formula

$$
\frac{w-w_{1}}{w-w_{2}}: \frac{w_{3}-w_{1}}{w_{3}-w_{2}}=\frac{z-z_{1}}{z-z_{2}}: \frac{z_{3}-z_{1}}{z_{3}-z_{2}} .
$$

Definition: The expression

$$
D\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\frac{z_{0}-z_{1}}{z_{0}-z_{2}}: \frac{z_{3}-z_{1}}{z_{3}-z_{2}}
$$

is called cross-ratio of the points $z_{0}, z_{1}, z_{2}, z_{3}$.

Example.

We are looking for the Möbius-transform with interpolation properties

$$
\begin{array}{r|rrr}
z_{i} & 1 & i & 0 \\
\hline w_{i} & i & -i & 0
\end{array}
$$

We obtain a unique Möbius-transform using the Ansatz

$$
\frac{w-i}{w+i}: \frac{0-i}{0+i}=\frac{z-1}{z-i}: \frac{0-1}{0-i}
$$

A simplification gives

$$
-\frac{w-i}{w+i}=i \frac{z-1}{z-i}
$$

or

$$
(z-i)(w-i)=-i(z-1)(w+i)
$$

This finally leads to gives

$$
w=\frac{(1+i) z}{(1+i) z-2 i}
$$

Symmetry w.r.t. the circle.

Definition:

Let C in \mathbb{C} be circle with center $z_{0} \in \mathbb{C}$ and radius R. Two points $z, z^{\prime} \in \mathbb{C}$ are called symmetric w.r.t. the circle C, if

$$
\left(z-z_{0}\right) \overline{\left(z^{\prime}-z_{0}\right)}=R^{2}
$$

The map $z \rightarrow z^{\prime}$ is called circle inversion on C or plane inversion on C.

Graphical representation of the plane inversion in the slide!

Remarks:

- A point z with $\left|z-z_{0}\right| \leq R$ is symmetrric w.r.t. a point z^{\prime} with $\left|z^{\prime}-z_{0}\right| \geq R$.
- If $\left|z-z_{0}\right|=R$, then z is symmetric to itself, i.e. $z^{\prime}=z$.
- The point $z=z_{0}$ is symmetric to $z^{\prime}=\infty$.

Möbius-transforms a circle symmetries.

Definition: Two points z, z^{\prime} are called symmetric with respect to a straight line in \mathbb{C}, if z^{\prime} is obtained from z by reflection across a line.

Theorem:

Möbius-transforms conserve symmetries w.r.t. (generalized) circles.

More precisely:

If C is a (generalized) circle in \mathbb{C}^{*} and if z and z^{\prime} are symmetric w.r.t. C, then the images z, z^{\prime} of a Möbius-transform are symmetric w.r.t the to the (generalized) circle in \mathbb{C}^{*}, which is the image of C.

Example: We look for a Möbius-transform $w=T(z)$, such that the circle $|z|=2$ is mapped on the circle $|w+1|=1$ with $T(-2)=0$ and $T(0)=i$.
A Möbius-transform is uniquely determined if the transformation is given for three points. But we only have

$$
z_{1}=-2, z_{2}=0 \quad \text { and } \quad w_{1}=0, w_{2}=i
$$

Therefore one point is missing!

Continuation of the example.

According to the last theorem Möbius-transforms conserve symmetries w.r.t. generalized circles.

$$
z_{2}=0 \quad \Rightarrow \quad z_{3}=\infty \quad \text { is symmetric to } z_{2} \text { w.r.t. the circle }|z|=2
$$

Thus w_{3} is the point symmetric to $w_{2}=i$ w.r.t the circle $|w+1|=1$ and therefore given by the condition $\left(w_{2}+1\right) \overline{\left(w_{3}+1\right)}=1$, i.e.

$$
w_{3}=\frac{1}{2}(-1+i)
$$

Application of the three point formula gives

$$
\frac{w-0}{w-i}: \frac{w_{3}-0}{w_{3}-i}=\frac{z+2}{z-0}: \frac{z_{3}+2}{z_{3}-0}
$$

What happens to

$$
\frac{z_{3}+2}{z_{3}-0}
$$

as $z_{3} \rightarrow \infty$?

Completion of the example.

What happens to

$$
\frac{z_{3}+2}{z_{3}-0}
$$

as $z_{3} \rightarrow \infty$?
It is

$$
\frac{z_{3}+2}{z_{3}-0}=\frac{1+\frac{2}{z_{3}}}{1+\frac{0}{z_{3}}} \rightarrow 1 \quad \text { for } z_{3} \rightarrow \infty
$$

We obtain

$$
\left(\frac{w}{w-i}\right):\left(\frac{\frac{1}{2}(-1+i)}{\frac{1}{2}(-1+i)-i}\right)=\left(\frac{z+2}{z}\right)
$$

and solving w.r.t w gives

$$
w=T(z)=-\frac{z+2}{(1+i) z+2 i}
$$

Example.

For $b>a>0$ we consider the Möbius-transform

$$
w=T(z)=\frac{z+p}{-z+p} \quad \text { where } p=\sqrt{a b} \in(a, b)
$$

Using T we obtain

$$
\begin{aligned}
& z_{1,2}= \pm p \quad \rightarrow \quad w_{1,2}=\infty, 0 \\
& z_{3,4}=a, b \quad \rightarrow \quad w_{3,4}= \pm \frac{\sqrt{a}+\sqrt{b}}{\sqrt{b}-\sqrt{a}}= \pm \varrho \quad \text { with }|\varrho|>1 \\
& z_{5,6}=-a,-b \quad \rightarrow \quad w_{5,6}= \pm \frac{\sqrt{b}-\sqrt{a}}{\sqrt{a}+\sqrt{b}}= \pm \frac{1}{\varrho} \\
& z_{7,8}=0, \infty \quad \rightarrow \quad z_{7,8}=1,-1 .
\end{aligned}
$$

Continuation of the example.

- The x-axis is mapped by T onto the u-axis.
- Points which are symmetric with respect to the x-axis are mapped onto points which are symmetric w.r.t. the u-axis.
- Circles being symmetric w.r.t the x-axis are mapped onto circles beiing symmetric wi

Important applications: The electrostatic field in the exterior of two parallel conducting lines is mapped on the field of a cylindrical condensator.

Chapter 4. Differential calculus in the complex numbers

4.1 Complex differentiation

Definition: Let $f: D \rightarrow \mathbb{C}, D \subset \mathbb{C}$ be a complex function. $f(z)$ is called complex differentiable in the point $z_{0} \in D^{0}$ with derivative $f^{\prime}\left(z_{0}\right)$, if the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists. If $f(z)$ is complex differentiable in every point in the domain D, we call $f(z)$ holomorphic or analytic on D.

Remark:

(1) The limit process $z \rightarrow z_{0}$ is intended in the complex plane, i.e. the approach $z \rightarrow z_{0}$ is arbitrary.
(2) The division in the limit is a division in complex numbers.

4.1 Complex differentiation

Lemma: If $f(z)$ is real valued, i.e. $f: D \rightarrow \mathbb{R}, D \subset \mathbb{C}$ a domain, and if $f(z)$ is holomorphic on D, then $f(z)$ is a constant function.

Proof: We first consider the sequence $z_{n} \rightarrow z_{0}$ given by

$$
z_{n}=z_{0}+\frac{1}{n}
$$

The the differential quotient is real for all $n \in \mathbb{N}$ since

$$
\frac{f\left(z_{n}\right)-f\left(z_{0}\right)}{z_{n}-z_{0}}=n\left(f\left(z_{n}\right)-f\left(z_{0}\right)\right) \in \mathbb{R}
$$

On the other hand the sequence $z_{n} \rightarrow z_{0}$ with $z_{n}=z_{0}+i / n$ gives a purely imanginary differential quotient

$$
\frac{f\left(z_{n}\right)-f\left(z_{0}\right)}{z_{n}-z_{0}}=\frac{n}{i}\left(f\left(z_{n}\right)-f\left(z_{0}\right)\right) \in \mathbb{C}
$$

Since the function is holomorphic on D it follows

$$
f^{\prime}\left(z_{0}\right)=0 \quad \text { for all } z_{0} \in D
$$

The Cauchy-Riemannschen equations.

Remark: If the function $f(z)$ is complex differentiable in z_{0}, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)}{z-z_{0}}=0
$$

or equivalentely

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+o\left(\left|z-z_{0}\right|\right)
$$

Let $f(z)$ be complex differentiable in z_{0}. We set

$$
\gamma:=f^{\prime}\left(z_{0}\right),
$$

then we obtain the equivalent formulation

$$
f(z)=f\left(z_{0}\right)+\gamma\left(z-z_{0}\right)+\varepsilon(z)\left|z-z_{0}\right|
$$

with $\varepsilon(z) \rightarrow 0$ as $z \rightarrow z_{0}$.

The Cauchy-Riemannschen equations.

We now use with $z=x+i y$ the formulation

$$
f(z)=u(z)+i v(z)=u(x, y)+i v(x, y)
$$

and

$$
\gamma=\alpha+i \beta
$$

Thus we obtain

$$
\begin{aligned}
& u(z)=u\left(z_{0}\right)+\alpha\left(x-x_{0}\right)-\beta\left(y-y_{0}\right)+\operatorname{Re}(\varepsilon(z)) \cdot\left|z-z_{0}\right| \\
& v(z)=v\left(z_{0}\right)+\beta\left(x-x_{0}\right)+\alpha\left(y-y_{0}\right)+\operatorname{Im}(\varepsilon(z)) \cdot\left|z-z_{0}\right|
\end{aligned}
$$

In matrix formulation this reads as

$$
\binom{u(z)}{v(z)}=\binom{u\left(z_{0}\right)}{v\left(z_{0}\right)}+\left(\begin{array}{rr}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}+\varepsilon(z) \cdot\left|z-z_{0}\right|
$$

The Cauchy-Riemannschen equations.

We interpret $f(z)$ as vector valued, totally differentiable function of two variables, i.e.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

with the Jacobian-matrix

$$
J f\left(x_{0}, y_{0}\right)=\left.\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)\right|_{\left(x_{0}, y_{0}\right)}=\left(\begin{array}{rr}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right)
$$

Theorem: The function $f(z)$ is complex differentiable in $z_{0} \in D$ if and only if $f(z)$ as function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is totally differentiable and if the Cauchy-Riemannschen equations hold

$$
\begin{aligned}
& u_{x}\left(z_{0}\right)=v_{y}\left(z_{0}\right) \\
& u_{y}\left(z_{0}\right)=-v_{x}\left(z_{0}\right)
\end{aligned}
$$

Representation of the complex differentiation.

Corollary: If $f(z)$ is complex differentiable in $z_{0} \in D$, then

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(z_{0}\right)+i v_{x}\left(z_{0}\right)
$$

Proof: Since $f^{\prime}\left(z_{0}\right) \in \mathbb{C}$ we can write

$$
f^{\prime}\left(z_{0}\right)=\tilde{u}\left(z_{0}\right)+i \tilde{v}\left(z_{0}\right)
$$

From this we obtain

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) \cdot\left(z-z_{0}\right) & =\left(\tilde{u}\left(z_{0}\right)+i \tilde{v}\left(z_{0}\right)\right) \cdot\left[\left(x-x_{0}\right)+i\left(y-y_{0}\right)\right] \\
& =\tilde{u} \cdot\left(x-x_{0}\right)-\tilde{v} \cdot\left(y-y_{0}\right)+i\left(\tilde{v} \cdot\left(x-x_{0}\right)+\tilde{u} \cdot\left(y-y_{0}\right)\right)
\end{aligned}
$$

Since f is totally differentiable in z_{0} and since the Cauchy-Riemannschen equations are satisfied we have on the other side

$$
\left(\begin{array}{rr}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right) \cdot\binom{x-x_{0}}{y-y_{0}}=\binom{u_{x} \cdot\left(x-x_{0}\right)-v_{x}\left(y-y_{0}\right)}{v_{x} \cdot\left(x-x_{0}\right)+u_{x}\left(y-y_{0}\right)}
$$

Holomorphic functions and the Laplace's equation.

Theorem: It $f \in \mathcal{C}^{2}$ is holomorphic on D, then

$$
u_{x x}+u_{y y}=v_{x x}+v_{y y}=0
$$

i.e. both real and imaginary part of f satisfy the Laplace's equation.

Proof: If $f(z)$ is holomorphic, then

$$
\begin{aligned}
& \Delta u=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y} \stackrel{C . R .}{=} \frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}=0 \\
& \Delta v=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y} \stackrel{C . R .}{=}-\frac{\partial u_{y}}{\partial x}+\frac{\partial u_{x}}{\partial y}=0
\end{aligned}
$$

Also, the following inversion holds true: If $u=u(x, y)$ satisfies the Laplace's equation $\Delta u=0$ on a connected domain, then there exists a differentiable function $v=v(x, y)$ such that $f(z)=u(z)+i v(z)$ on D is holomorphic.

Proof of the inversion.

Let $u=u(x, y)$ be given with $\Delta u=0$. We are looking for a function $v=v(x, y)$, such that the Cauchy-Riemannschen equations are satisfied. Thus

$$
v_{x}=-u_{y} \quad v_{y}=u_{x}
$$

From the C.R. equations it follows

$$
\operatorname{grad} v=\left(v_{x}, v_{y}\right)=\left(-u_{y}, u_{x}\right)=: V=\left(V_{1}, V_{2}\right)
$$

Therefore we are looking for a potential v with grad $v=V$. If the integrability conditions

$$
\frac{\partial V_{1}}{\partial y}-\frac{\partial V_{2}}{\partial x}=0
$$

are satisfied, the existence of such a potential if guaranteed.
This is true since

$$
\frac{\partial V_{1}}{\partial y}-\frac{\partial V_{2}}{\partial x}=-u_{y y}-u_{x x}=-\Delta u=0
$$

Rules for the differentiation.

- The following rules hold:

$$
\begin{aligned}
(f \pm g)^{\prime}\left(z_{0}\right) & =f^{\prime}\left(z_{0}\right) \pm g^{\prime}\left(z_{0}\right) \\
(f \cdot g)^{\prime}\left(z_{0}\right) & =f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right) \\
\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right) & =\frac{f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{\left(g\left(z_{0}\right)\right)^{2}}
\end{aligned}
$$

- Chain rule: If $f(z)$ is differentiable in z_{0} and if $g(w)$ is differentiable in $w_{0}=f\left(z_{0}\right)$, then

$$
(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) \cdot f^{\prime}\left(z_{0}\right)
$$

- Derivation of the inverse function: If $f(z)$ is holomorphic and if $f^{\prime}\left(z_{0}\right) \neq 0$, then $f\left(z_{0}\right)$ is locally bijective around z_{0} and we have

$$
\left(f^{-1}\right)^{\prime}\left(w_{0}\right)=\frac{1}{f^{\prime}\left(z_{0}\right)}, \quad w_{0}=f\left(z_{0}\right)
$$

The modified chain rule.

Lemma: If $f(z)$ is holomorphic on D and if $c:[a, b] \rightarrow D$ is a \mathcal{C}^{1}-curve in D, then

$$
\frac{d}{d t} f(c(t))=f^{\prime}(c(t)) \cdot \dot{c}(t)
$$

Proof: We have

$$
\begin{aligned}
\frac{d}{d t} f(c(t)) & =\frac{d}{d t} u(c(t))+i \frac{d}{d t} v(c(t)) \\
& =\left(u_{x} \dot{c}_{1}+u_{y} \dot{c}_{2}\right)+i\left(v_{x} \dot{c}_{1}+v_{y} \dot{c}_{2}\right)
\end{aligned}
$$

In addition we have

$$
\begin{aligned}
f^{\prime}(c(t)) \cdot \dot{c}(t) & =\left(u_{x}+i v_{x}\right) \cdot\left(\dot{c}_{1}+i \dot{c}_{2}\right) \\
& =\left(u_{x} \dot{c}_{1}-v_{x} \dot{c}_{2}\right)+i\left(v_{x} \dot{c}_{1}+u_{x} \dot{c}_{2}\right)
\end{aligned}
$$

Both expressions are identical due to the C.R. equations.

Examples.

Example 1:

For $f(z)=z$ we obtain due to $u(x, y)=x$ and $v(x, y)=y$

$$
f^{\prime}(z)=u_{x}(z)+i v_{x}(z)=1
$$

Thus complex polynomials on \mathbb{C} are holomorphic with

$$
\frac{d}{d z}\left(\sum_{k=0}^{n} a_{k} z^{k}\right)=\sum_{k=1}^{n} a_{k} k z^{k-1}
$$

Explicit calculation for $f(z)=z^{2}$: with

$$
f(z)=z^{2}=\left(x^{2}-y^{2}\right)+i 2 x y
$$

we calculate

$$
f^{\prime}(z)=u_{x}(z)+i v_{x}(z)=2 x+i 2 y=2 z
$$

Examples.

Example 2: Rational functions, i.e. functions of the form

$$
f(z)=\frac{p(z)}{q(z)}, \quad p, q \text { complex polynomials }
$$

are complex differentiable at every point with $q(z) \neq 0$.
Example 3: The exponential function $f(z)=e^{z}=e^{x}(\cos y+i \sin y)$ is complex differentiable with $f^{\prime}(z)=e^{z}$, since with

$$
u(x, y)=e^{x} \cos y, \quad v(x, y)=e^{x} \sin y
$$

the C.R. equations are satisfied

$$
u_{x}=v_{y}=e^{x} \cos y, \quad u_{y}=-v_{x}=-e^{x} \sin y
$$

and we have

$$
f^{\prime}(z)=u_{x}+i v_{x}=e^{x} \cos y+i e^{x} \sin y=e^{z}
$$

More examples.

Example 4: The trigonometrc functions

$$
\sin z:=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right), \quad \cos z:=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)
$$

are according to example 3 holomorphic on \mathbb{C} and we have the formulas for the derivatives in analogy to the real valued functions.

Example 5: Functions defined as complex power series,

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

are holomorphic on the domain of convergence $K_{r}\left(z_{0}\right)$ with

$$
f^{\prime}(z)=\sum_{k=1}^{\infty} a_{k} k\left(z-z_{0}\right)^{k-1}
$$

and thus on $K_{r}\left(z_{0}\right)$ at the same time arbitrary many times complex differentiable.

Chapter 4. Differential calculus in the complex numbers

4.2 Conformal mappings

Theorem: Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function on the domain $D \subset \mathbb{C}$ with $f^{\prime}(z) \neq 0$ for all $z \in D$. Then locally in a point $z_{0} \in D$ we have:
a) Angles between curves which intersect in z_{0} are conserved under the transformation $w=f(z)$, including the rotational direction,
b) the expression $\left|f^{\prime}\left(z_{0}\right)\right|$ is for all directions "leaving" z_{0} the common scaling. In particular relations of lenghtes are conserved.

Mappings with these properties are called conformal mappings.
For conformal mappings we have the following inversion of the theorem.
Theorem: If $w=f(z)$ is a conformal mapping and if the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is continuously differentiable, then $f(z)$ is complex differentiable and we have $f^{\prime}(z) \neq 0$.

Proof of the first theorem.

Let c and d be two curves which at $t=0$ go through z_{0}. The two tangential vectors in this point are $\dot{c}(0)$ and $\dot{d}(0)$ and for the angle γ between the tangential vectors we have

$$
\gamma=\measuredangle(\dot{c}(0), \dot{d}(0))=\arg (\dot{d}(0))-\arg (\dot{c}(0))
$$

With f we obtain the two curves $f \circ c$ and $f \circ d$ in the codomain. Th angle $\tilde{\gamma}$ between these two curves in $f\left(z_{0}\right)$ in the codomain is

$$
\begin{aligned}
\tilde{\gamma} & =\measuredangle\left(f^{\prime}\left(z_{0}\right) \dot{c}(0), f^{\prime}\left(z_{0}\right) \dot{d}(0)\right) \\
& =\arg \left(f^{\prime}\left(z_{0}\right) \dot{d}(0)\right)-\arg \left(f^{\prime}\left(z_{0}\right) \dot{c}(0)\right) \\
& =\arg \left(f^{\prime}\left(z_{0}\right)\right)+\arg (\dot{d}(0))-\arg \left(f^{\prime}\left(z_{0}\right)\right)-\arg (\dot{c}(0))=\gamma
\end{aligned}
$$

and w.r.t the scaling of lenghtes we calculate

$$
\left\|\frac{d}{d t}(f \circ c)\right\|=\left|f^{\prime}\left(z_{0}\right) \dot{c}(0)\right|=\left|f^{\prime}\left(z_{0}\right)\right| \cdot|\dot{c}(0)|
$$

Conformal transformations.

Definition: Let $f: D \rightarrow D^{\prime}$ be a bijective and conformal mapping bewteen the domains $D \subset \mathbb{C}$ and $D^{\prime} \subset \mathbb{C}$. Let $\Phi: D \rightarrow \mathbb{R}$ be a real valued twice continuously differentiable function on D. Then we call the function $\Psi: D^{\prime} \rightarrow \mathbb{R}$ defined by

$$
\Psi=\Phi \circ f^{-1}
$$

the conformal transformation of Φ with mapping f.
Physical Applications: If $\Phi(z)$ is an unknown potential defined in the in the physical plane D, then Ψ is the related function in the modell plane D^{\prime}.
In the following Φ and Ψ are potentials, i.e.

- electrostatic potentials;
- fluid dynamic potentials;
- temperature fields etc.

The vectors $\left(\Phi_{x}, \Phi_{y}\right)$ and $\left(\Psi_{u}, \Psi_{v}\right)$ are of particular interest.

The complex gradient.

Definition: For a real valued function $\Phi: D \rightarrow \mathbb{R}$ on a domain $D \subset \mathbb{C}$ we call with $z=x+i y$ the expression

$$
\operatorname{grad} \Phi(z)=\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}
$$

the complex gradient of $\Phi(z)$.
Theorem: Let Ψ be the conformal transformation of Φ with mapping f. Then the two relations

$$
\begin{aligned}
\operatorname{grad}_{z} \Phi(z) & =\operatorname{grad}_{w} \Psi(f(z)) \cdot \overline{f^{\prime}(z)} \\
\Delta_{z} \Phi(z) & =\Delta_{w} \Psi(f(z)) \cdot\left|f^{\prime}(z)\right|^{2}
\end{aligned}
$$

hold. Proof: By definition the conformal transformation of Φ with mapping f is given by

$$
\Psi=\Phi \circ f^{-1}
$$

Continuation of the proof.

We conclude $\Phi=\psi \circ f$ and with $f(x, y)=u(x, y)+i v(x, y)$

$$
\Phi(x, y)=\Psi(u(x, y), v(x, y))
$$

We calculate

$$
\begin{aligned}
& \Phi_{x}=\Psi_{u} u_{x}+\Psi_{v} v_{x} \\
& \Phi_{y}=\Psi_{u} u_{y}+\Psi_{v} v_{y}
\end{aligned}
$$

For the complex gradient gwe have with $f^{\prime}(z)=u_{x}+i v_{x}$

$$
\begin{aligned}
& \operatorname{grad} \Phi(z)=\left(\Psi_{u} u_{x}+\Psi_{v} v_{x}\right)+i\left(\Psi_{u} u_{y}+\Psi_{v} v_{y}\right) \\
&=\Psi_{u}\left(u_{x}+i u_{y}\right)+\Psi_{v}\left(v_{x}+i v_{y}\right) \\
& \stackrel{C . R .}{=} \Psi_{u}\left(u_{x}-i v_{x}\right)+i \Psi_{v}\left(u_{x}-i v_{x}\right) \\
&=\operatorname{grad} \Psi(f(z)) \cdot \overline{f^{\prime}(z)}
\end{aligned}
$$

Completion of the proof.

Calculating the second derivative gives

$$
\begin{aligned}
& \Phi_{x x}=\Psi_{u u} u_{x}^{2}+2 \Psi_{u v} u_{x} v_{x}+\Psi_{v v} v_{x}^{2}+\Psi_{u} u_{x x}+\Psi_{v} v_{x x} \\
& \Phi_{y y}=\Psi_{u u} u_{y}^{2}+2 \Psi_{u v} u_{y} v_{y}+\Psi_{v v} v_{y}^{2}+\Psi_{u} u_{y y}+\Psi_{v} v_{y y}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\Delta \Phi= & \Psi_{u u}\left(u_{x}^{2}+u_{y}^{2}\right)+2 \Psi_{u v}\left(u_{x} v_{x}+u_{y} v_{y}\right) \\
& +\Psi_{v v}\left(v_{x}^{2}+v_{y}^{2}\right)+\Psi_{u} \Delta u+\Psi_{v} \Delta v
\end{aligned}
$$

We use again the C.R. equations and obtain

$$
\begin{aligned}
u_{x}^{2}+u_{y}^{2} & =v_{x}^{2}+v_{y}^{2}=u_{x}^{2}+v_{x}^{2}=\left|f^{\prime}(z)\right|^{2} \\
u_{x} v_{x}+u_{y} v_{y} & =0 \\
\Delta u & =\Delta v=0
\end{aligned}
$$

and therefore the desired result

$$
\Delta \Phi=\Delta \Psi \cdot\left|f^{\prime}(z)\right|^{2}
$$

Practical applications of conformal transformations.

Corollary: Conformal transformations transform harmonic functions into harmonic functions.

Applications of conformal transformations: Lets consider the
Dirichlet-problem for the Laplace equation, i.e. the boundary value problem

$$
\left\{\begin{aligned}
\Delta u=0 & \text { in } D \\
u=g & \text { on } \partial D
\end{aligned}\right.
$$

where $D \subset \mathbb{R}^{2}$ is a "complicated" two-dimensional domain.
With an appropriate conformal transformation we can solve the problem explicitely.
(1) identify a conformal transformation which maps the physical domain D on a "simple" model domain D^{\prime};
(2) transform the boundary conditions on ∂D to boundary conditions on ∂D^{\prime} and solve the Dirichlet-problem on D^{\prime};
(3) Transform the solution back on the physical domain D.

An application: plain potential flow.

We would like to determine the velocity field of a stationary, curl- and source-free flow around a cylinder. Let $w: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the velocity field to be determined.

Then we have the equations

$$
\begin{aligned}
& \operatorname{rot} w=\frac{\partial w_{2}}{\partial x}-\frac{\partial w_{1}}{\partial y}=0 \\
& \operatorname{div} w=\frac{\partial w_{1}}{\partial x}+\frac{\partial w_{2}}{\partial y}=0
\end{aligned}
$$

If $D \subset \mathbb{R}^{2}$ is simply connected we obtain from the first condition

$$
\text { there exists a function } u: D \rightarrow \mathbb{R} \text { with } \nabla u=-\mathrm{w}
$$

and from the second condition

$$
\text { there exists a function } v: D \rightarrow \mathbb{R} \text { with } \nabla v=\left(w_{2},-w_{1}\right)^{T}
$$

The complex flow potential.

We call

- the function u the velocity potential;
- the function v the stream function.

Related to the stream function we have stream lines which are solutions of the ordinary differential equations $y^{\prime}(x)=w_{2} / w_{1}$ and given by

$$
v(x, y)=\text { const. }
$$

Definition: The complex funktion $\Phi=\Phi(x, y)$ defined by

$$
\Phi(x, y)=u(x, y)+i v(x, y)
$$

is called complex flow potential.
The complex flow potential $\Phi(z)$ is a holomorphic function, since we have the Cauchy-Riemann equations

$$
\begin{aligned}
& u_{x}-v_{y}=-w_{1}-\left(-w_{1}\right)=0 \\
& u_{y}+v_{x}=-w_{2}+w_{2}=0
\end{aligned}
$$

Continuation: plain potential flow.

The velocity field w can be calculated directly: due to

$$
\Phi^{\prime}(z)=u_{x}+i v_{x}=-w_{1}+i w_{2}
$$

it follows

$$
w=w_{1}+i w_{2}=-\overline{\Phi^{\prime}(z)}
$$

Our physical domain is diven by $D=\{z \in \mathbb{C}:|z|>R\}$ and the related model domain is

$$
D^{\prime}=\{z \in \mathbb{C} \mid \operatorname{Im} z \neq 0 \text { und }|\operatorname{Re} z|>1\}
$$

The Joukowski-function $f(z)$ given by

$$
f(z)=\frac{1}{2}\left(\frac{z}{R}+\frac{R}{z}\right)
$$

is a conformal transformation from D on D^{\prime}.

Continuation: plain potential flow.

In the model plane we can assume a homogeneous velocity field, i.e. in D^{\prime} we have

$$
\mathrm{W}=\text { const. }=\left(V_{\infty}, 0\right)^{T}
$$

since a infinitely flat plate is not interacting with a given homogeneous flow in the direction of the real axis with velocity V_{∞}.

For the velocity potential $U(W)$ we have the equation

$$
\operatorname{grad} U(W)=-\left(V_{\infty}, 0\right)^{T}
$$

and from this follows

$$
U(w)=-V_{\infty} W_{1}
$$

Also there is a stream function $V(W)$

$$
\operatorname{grad} V(W)=\left(0,-V_{\infty}\right)^{T} \quad \Rightarrow \quad V(w)=-V_{\infty} W_{2}
$$

Continuation: plain potential flow.

In the physical plane we can assume that

$$
\lim _{z \rightarrow \infty} \operatorname{grad} \Phi(z)=-v_{\infty}
$$

i.e. at infinity the undisturbed flow does not "feel" any obstacle.

Because of the relation

$$
\operatorname{grad} \Phi(z)=\operatorname{grad} \Psi(f(z)) \cdot \overline{f^{\prime}(z)}
$$

it follows with

$$
f^{\prime}(z)=\frac{1}{2}\left(\frac{1}{R}-\frac{R}{z^{2}}\right)
$$

the relation $V_{\infty}=2 R v_{\infty}$.
For the complex flow potential we have

$$
\Psi(W)=-2 R v_{\infty}(\operatorname{Re} W+i \operatorname{Im} W)
$$

Continuation: plain potential flow.

Now we consider the back-transformation in the physical plane, i.e.

$$
\Phi(z)=(\Psi \circ f)(z)=-2 R v_{\infty}(\operatorname{Re} f(z)+i \operatorname{lm} f(z))
$$

For the Joukowski-function

$$
f(z)=\frac{1}{2}\left(\frac{z}{R}+\frac{R}{z}\right)
$$

it is

$$
\operatorname{Re} f(z)=\frac{1}{2}\left(\frac{x}{R}+\frac{R x}{x^{2}+y^{2}}\right) \quad \operatorname{lm} f(z)=\frac{1}{2}\left(\frac{y}{R}-\frac{R y}{x^{2}+y^{2}}\right)
$$

With this in the physical plane we obtain the velocity potential $u(z)$

$$
u(z)=u(x, y)=-v_{\infty}\left(x+\frac{R^{2} x}{x^{2}+y^{2}}\right)
$$

Continuation: plain potential flow.

We obtain for the stream function

$$
v(z)=v(x, y)=-v_{\infty}\left(y-\frac{R^{2} y}{x^{2}+y^{2}}\right)
$$

The velocity field w around the cylinder is given by

$$
\mathrm{w}=-\nabla u=-v_{\infty}\left(\frac{\left(x^{2}+y^{2}\right)^{2}-R^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}},-\frac{2 R^{2} x y}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

In particular we have:

- In the two points $(-R, 0)$ and $(R, 0)$ the velocity is zero,

$$
\mathrm{w}(-R, 0)=\mathrm{w}(R, 0)=(0,0)^{T}
$$

- The velocity is maximal in the two points $(0,-R)$ and $(0, R)$ with

$$
w_{\max }=2 v_{\infty}
$$

Chapter 5. Complex integration

5.1 Examples for complex integration

Definition: A complex valued function $f:[a, b] \rightarrow \mathbb{C}$ of a real variable is integrable, if real- and imaginary part of f are integrable, and we have:

$$
\int_{a}^{b} f(t) d t:=\int_{a}^{b} \operatorname{Re}(f(t)) d t+i \int_{a}^{b} \operatorname{Im}(f(t)) d t=\operatorname{Re}^{i \varphi}
$$

The following properties in analogy to the intergration in the real numbers are valid Linearity. In addition we have

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Proof: We calculate

$$
\begin{aligned}
\left|\int_{a}^{b} f(t) d t\right| & =R=e^{-i \varphi} \int_{a}^{b} f(t) d t=\int_{a}^{b} e^{-i \varphi} f(t) d t=\int_{a}^{b} \operatorname{Re}\left(e^{-i \varphi} f(t)\right) d t \\
& \leq \int_{a}^{b}\left|e^{-i \varphi} f(t)\right| d t=\int_{a}^{b}|f(t)| d t
\end{aligned}
$$

Complex integration in analogy to curve integrals.

Real analysis: Let $c:[a, b] \rightarrow D \subset \mathbb{R}^{n}$ a piecewise \mathcal{C}^{1}-curve, $f: D \rightarrow \mathbb{R}$ and $\mathrm{F}: D \rightarrow \mathbb{R}^{n}$ are given. Then we have defined in Analysis II and III the line integrals of scalar and vector fileds

$$
\int_{c} f(\mathrm{x}) d s:=\int_{a}^{b} f(c(t))\|\dot{c}\| d t
$$

or

$$
\int_{c} \mathrm{~F}(\mathrm{x}) d \mathrm{x}:=\int_{a}^{b}\langle\mathrm{~F}(c(t)), \dot{c}(t)\rangle d t
$$

Definition: Let $D \subset \mathbb{C}$ be a domain, $f: D \rightarrow \mathbb{C}$ continuous and $c:[a, b] \rightarrow D$ a piecewise \mathcal{C}^{1}-curve. Then

$$
\int_{c} f(z) d z:=\int_{a}^{b} f(c(t)) \dot{c}(t) d t
$$

is the complex integral of $f(z)$ along the curve c.

Properties of the complex integral.

- The value of the compelx integral is indepnedent of the parameterisation of the curve.
- Changing the orientation we have

$$
\int_{-c} f(z) d z=-\int_{c} f(z) d z
$$

We denote $(-c)(t):=c(b+t(a-b)), 0 \leq t \leq 1$.

- Linearity

$$
\int_{c}(\alpha f(z)+\beta g(z)) d z=\alpha \int_{c} f(z) d z+\beta \int_{c} g(z) d z \quad \text { für } \alpha, \beta \in \mathbb{C}
$$

- Additivity with respect to the path of integration:

$$
\int_{c_{1}+c_{2}} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z
$$

Additional properties of the complex integral

We have the estimate

$$
\left|\int_{c} f(z) d z\right| \leq \sup _{z \in \operatorname{image}(c)}|f(z)| \cdot \underbrace{\int_{a}^{b}|\dot{c}(t)| d t}_{\text {lenghtofthepath } L(c)}
$$

Proof We calculate directly

$$
\begin{aligned}
\left|\int_{c} f(z) d z\right| & =\left|\int_{a}^{b} f(c(t)) \dot{c}(t) d t\right| \\
& \leq \int_{a}^{b}|f(c(t))||\dot{c}(t)| d t \\
& \leq \sup _{a \leq t \leq b}|f(c(t))| \cdot \int_{a}^{b}|\dot{c}(t)| d t
\end{aligned}
$$

An example of complex integration.

Example 1:

Let $f(z)=z$ and $c(t)=r e^{i t}$ with $0 \leq t \leq 2 \pi$. Then we have

$$
\begin{aligned}
\oint_{c} z d z & =\int_{0}^{2 \pi} r e^{i t} \cdot\left(r i e^{i t}\right) d t \\
& =i r^{2} \int_{0}^{2 \pi} e^{2 i t} d t \\
& =i r^{2} \int_{0}^{2 \pi}(\cos (2 t)+i \sin (2 t)) d t \\
& \left.\left.=-r^{2} \int_{0}^{2 \pi} \sin (2 t)\right) d t+i r^{2} \int_{0}^{2 \pi} \cos (2 t)\right) d t \\
& =0
\end{aligned}
$$

Additional examples of complex integration.

Example 2:

Let $f(z)=\bar{z}$ and $c(t)=r e^{i t}$ with $0 \leq t \leq 2 \pi$. then it is

$$
\oint_{c} \bar{z} d z=\int_{0}^{2 \pi} r e^{-i t} \cdot\left(r i e^{i t}\right) d t=i r^{2} \int_{0}^{2 \pi} d t=r^{2} \cdot 2 \pi i
$$

Example 3:

Let $f(z)=1 / z$ and $c(t)=r e^{i t}$ with $0 \leq t \leq 2 \pi$. Then it is

$$
\oint_{c} \frac{1}{z} d z=\oint_{c} \frac{\bar{z}}{|z|^{2}} d z=\frac{1}{r^{2}} \oint_{c} \bar{z} d z=2 \pi i
$$

Example 4: With $c(t)=z_{0}+r e^{i t}, 0 \leq t \leq 2 \pi$ we have the relation

$$
\oint_{c}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cl}
2 \pi i & : \\
0 & \text { for } n=-1 \\
0 & :
\end{array} \text { for } n \in \mathbb{Z} \backslash\{-1\}\right.
$$

Continuation of the last example.

Example 4:

$$
\begin{aligned}
\oint_{c}\left(z-z_{0}\right)^{n} d z & =\int_{0}^{2 \pi}\left(r e^{i t}\right)^{n} \cdot\left(r i e^{i t}\right) d t=i r^{n+1} \int_{0}^{2 \pi} e^{i(n+1) t} d t \\
& \left.\left.=r^{n+1}\left(-\int_{0}^{2 \pi} \sin ((n+1) t)\right) d t+i \int_{0}^{2 \pi} \cos ((n+1) t)\right) d t\right) \\
& =\left\{\begin{array}{cll}
2 \pi i & \text { für } n=-1 \\
0 & : & \text { for } n \in \mathbb{Z} \backslash\{-1\}
\end{array}\right.
\end{aligned}
$$

Only for $n=-1$ the integral is not vanishing and we have

$$
\oint_{c} \frac{1}{z-z_{0}} d z=2 \pi i
$$

Question: Why this?

Uniform convergence and complex integration.

Theorem: Let $f(z)=\sum_{k=0}^{\infty} f_{k}(z)$ be a series of continuous functions, which on a domain $D \subset \mathbb{C}$ converges uniformly. Let $c:[a, b] \rightarrow D$ be a piecewise \mathcal{C}^{1}-curve, then

$$
\int_{c} f(z) d z=\sum_{k=0}^{\infty} \int_{c} f_{k}(z) d z
$$

Proof: SInce the series of continuous functions converges uniformly also the limit function $f(z)$ is continuous and thus integrable

$$
\int_{c} f(z) d z-\sum_{k=0}^{n} \int_{c} f_{k}(z) d z=\int_{c} R_{n}(z) d z
$$

Uniform convergence means

$$
\forall \varepsilon>0: \exists N(\varepsilon): \forall n \geq N, z \in D:\left|R_{n}(z)\right|<\varepsilon
$$

Continuation of the proof.

From the uniform convergence we conclude

$$
\left|\int_{c} R_{n}(z) d z\right| \leq \varepsilon \cdot L(c)
$$

and thus

$$
\lim _{n \rightarrow \infty} \int_{c} R_{n}(z) d z=0
$$

Example: Let

$$
c(t)=r e^{i t} \quad \text { with } 0 \leq t \leq 2 \pi
$$

and $\left|z_{0}\right|>r$. Then:

$$
\oint_{|z|=r} \frac{d z}{z-z_{0}} d z=0
$$

Note: The point z_{0} lies outside the circle $c(t)$.

Continuation of the example.

We calculate directly using the geometric series

$$
\oint_{|z|=r} \frac{d z}{z-z_{0}}=-\frac{1}{z_{0}} \oint_{|z|=r} \frac{d z}{1-\frac{z}{z_{0}}}=-\frac{1}{z_{0}} \oint_{|z|=r} \sum_{k=0}^{\infty} \frac{1}{z_{0}^{k}} z^{k} d z
$$

since it is

$$
\left|\frac{z}{z_{0}}\right|<1
$$

Due to the uniform convergence it is

$$
\frac{1}{z_{0}} \oint_{|z|=r} \sum_{k=0}^{\infty} \frac{1}{z_{0}^{k}} z^{k} d z=\sum_{k=0}^{\infty} \frac{1}{z_{0}^{k+1}} \oint_{|z|=r} z^{k} d z=0
$$

since we can exchange integration and summation.

Anticipation of the Laurent-series.

Example: A series of the form

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}=\underbrace{\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}}_{\text {in analogy to the Taylor-series }}+\underbrace{\sum_{k=-\infty}^{-1} a_{k}\left(z-z_{0}\right)^{k}}_{\text {negativ powers }}
$$

is called a Laurent-serie.
It is comverging locally uniformly and absolutely in the ring

$$
0 \leq R_{1}<\left|z-z_{0}\right|<R_{2}
$$

For $R_{1}<r<R_{2}$ and $c(t)=z_{0}+r e^{i t}, 0 \leq t \leq 2 \pi$ we have

$$
\oint_{\left|z-z_{0}\right|=r} f(z) d z=\sum_{k=-\infty}^{\infty} a_{k} \oint_{\left|z-z_{0}\right|=r}\left(z-z_{0}\right)^{k} d z=2 \pi i a_{-1}
$$

