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3 Complex differentiation.
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Chapter 1. Complex numbers

Starting point: consider the cubic equation

x3 = 3px + 2q

and the solution formula (by Gerolamo Cardano, 16th century)

x =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3

Rafael Bombelli (also 16th century) considers the equation

x3 = 15x + 4

and obtains the solution formula

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121

Bombelli defines the imagnary unit i via i2 = −1, the complex numbers and their
summation and multiplication.
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First ideas to introduce the complex numbers.

Starting point: Use the symbolic solution i for the equation x2 + 1 = 0, such that

i2 = −1

The ”number” i is called imaginary unit.
Next step: With the imaginary unit we build the set of numbers

C = {a + ib | a, b ∈ R}

Then we introduce the following rules on C:

Addition

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) for a1, a2, b1, b2 ∈ R

Multiplication

(a1 + ib1) ·(a2 + ib2) = (a1a2−b1b2)+ i(a1b2 +a2b1) for a1, a2, b1, b2 ∈ R

With this C obtaines an algebraic structure.
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Fundamental question about the complex numbers.

What exactely is i?

With the above rules can we ”calculate” without contradictions?

Are the above rules consistent with the related rules in R?

Can we order the complex numbers?

Is there alternative representations of the complex numbers?

Is there a geometric interpretation of the operations in C?

...

Why do we introduce the complex numbers?

... and later complex functions?

Is there interesting applications of the complex numbers in eingineering?

Ingenuin Gasser (Mathematik, UniHH) Complex functions for students in engineering 5 / 176



On the contruction of the complex numbers.

Starting point: consider the set R2 = {(a, b) | a, b ∈ R with addition

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) for a1, a2, b1, b2 ∈ R

and multiplication

(a1 + ib1) · (a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1) for a1, a2, b1, b2 ∈ R

Observation: The multiplication is associative and commutative; in addition we
have

(a, b) · (1, 0) = (a, b) for (a, b) ∈ R2,

i.e. (1, 0) ∈ C is neutral element of the multiplication. The equation

(a, b) · (x , y) = (1, 0) for (a, b) 6= (0, 0)

has the unique solution, the multiplicative inverse to (a, b),

(x , y) =

(
a

a2 + b2
,
−b

a2 + b2

)
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On the structure of the complex numbers.

Remark: The set R2 forms together with the addition and the multiplication a
field, the field of complex numbers which we denote by C.

Observation: the map ϕ : R→ C, defined by ϕ(a) = (a, 0) is injectiv. For all
a1, a2 ∈ R we have

ϕ(a1 + a2) = (a1 + a2, 0) = (a1, 0) + (a2, 0) = ϕ(a1) + ϕ(a2)

ϕ(a1a2) = (a1a2, 0) = (a1, 0) · (a2, 0) = ϕ(a1) · ϕ(a2)

Conclusion:

We can identify the real numbers as complex numbers of the form (a, 0);

The real numbers form a subfield of C;

The rules for calculation in C are consistent with the rules in R.
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The field of real numbers is ordered.

Remark: The real numbers form a ordered filed; the following order axioms hold.

For every x ∈ R it is x > 0 or x = 0 or x < 0;

For x > 0 and y > 0 it is x + y > 0;

For x > 0 and y > 0 it is xy > 0.

Question: Is the field of complex numbers C ordered?

Answer: NO!

In an ordered field nonzero square numbers are positiv. If C would be ordered then

0 < 12 = 1 and 0 < i2 = −1

the contradiction 0 < 1 + (−1) = 0.
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A simpler notation for the complex numbers.

Simplification of the notation:

For a ∈ R we write a instead of (a, 0);

We denote the complex unit (0, 1) by i ;

With this every complex number (a, b) can be written

(a, b) = (a, 0) + (0, b) · (0, 1) = a + b · i = a + ib

and is is
i2 = i · i = (0, 1) · (0, 1) = (−1, 0) = −1.

Conclusion: We have constructed a field C which includes R. The equation

x2 + 1 = 0

is solvable in C. The only two solutions are ±i .

Ingenuin Gasser (Mathematik, UniHH) Complex functions for students in engineering 9 / 176



Real and imaginary part.

From now on we denote complex numbers by z or w . For

z = x + iy ∈ C for x , y ∈ R

x is called the real part and y is called the imaginary part of z , shortly

x = Re(z) and y = Im(z)

We have the following rules

Re(z + w) = Re(z) + Re(w) for z ,w ∈ C

Im(z + w) = Im(z) + Im(w) for z ,w ∈ C

Re (az) = aRe(z) for z ∈ C, a ∈ R

Im (az) = a Im(z) for z ∈ C, a ∈ R

and
1

z
=

x

x2 + y2
− i

y

x2 + y2
for z 6= 0.
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The complex plane.

Geometric rappresentation:

We identify z = (x , y) ∈ C as point in the

complex plane (Gauß plane)

given by the cartesian coordinate system of the R2, with a real axis, R, and an
imaginary axis, i · R.

Geometric rappresentation of the addition:

The usual addition of vectors according to the parallelogram rule.

Rappresentation of the addition of two complex numbers on slide.
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Conjugation of complex numbers.

We obtain for every complex number z = x + iy by mirrowing along the real axis
a complex number

z̄ = x − iy ∈ C

the conjugate complex number.

We have the following rules

z + w = z̄ + w̄ for z ,w ∈ C

zw = z̄ · w̄ for z ,w ∈ C

(z̄) = z for z ∈ C

zz̄ = x2 + y2 for z = x + iy ∈ C

Re(z) = (z + z̄)/2 for z ∈ C

Im(z) = (z − z̄)/2i for z ∈ C

In particular it holds z = z̄ if an only if z ∈ R.
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The absolute value.

We set
|z | =

√
zz̄ =

√
x2 + y2 for z = x + iy ∈ C

for the absolute value of z and |z − w | for the distance of two numbers z ,w ∈ C
in the complex plane.

Then |z | = |z − 0| represents the Eucledian distance of z to the origin.

For z ∈ R the absolute value |z | coincides with the usual absolute value for
real numbers.

We have the following estimates.

−|z | ≤ Re(z) ≤ |z | and − |z | ≤ Im(z) ≤ |z | for z ∈ C

Theorem: The absolute value defines a norm on C, since we have the relations

1 |z | ≥ 0 for all z ∈ C and |z | = 0 if and only if z = 0;

2 |z + w | ≤ |z |+ |w | for all z ,w ∈ C (triangle inequality);

3 |zw | = |z | · |w | for all z ,w ∈ C.
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The Euler’s formula.

In the complex plane we have for z = x + iy using polar coordinates

(x , y) = |z |(cos(ϕ), sin(ϕ))

the Euler’s formula

z = |z | exp(iϕ) = |z |(cos(ϕ) + i sin(ϕ))

where ϕ ∈ [0, 2π) for z 6= 0 represents the (unique) angle between the positive
real axis and the ray from 0 through z = (x , y).

The angle ϕ ∈ [0, 2π) is called polar angle (azimuth, argument) of z 6= 0, shortly

ϕ = arg(z) ∈ [0, 2π)

Example: i = (0, 1) = exp(iπ/2), −1 = i2 = exp(iπ), thus e iπ + 1 = 0.
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The geometry of multiplikation and division.

Using polar coordinates the multiplication of two complex numbers z ,w ∈ C can
be interpreted as rotational dilation in the complex plane, since for

z = |z | (cos(ϕ), sin(ϕ)) and w = |w | (cos(ψ), sin(ψ))

we have

z · w = |z | · |w | (cos(ϕ) + i sin(ϕ)(cos(ψ) + i sin(ψ))

= |z | · |w | (cos(ϕ+ ψ) + i sin(ϕ+ ψ)) = |z | · |w | exp(i(ϕ+ ψ))

and with the Euler’s formula

z · w = |z | · |w | exp(iϕ) exp(iψ) = |z | · |w | exp(i(ϕ+ ψ))

For the division of two complex numbers z ,w ∈ C with z 6= 0 we have in analogy

z

w
=
|z |
|w |

exp(i(ϕ− ψ)) =
|z |
|w |

(cos(ϕ− ψ) + i sin(ϕ− ψ))
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Powers and roots of unity.

For the n–th power zn of z ∈ C we have

zn = (|z | exp(iϕ))n = |z |n exp(inϕ) = |z |n (cos(nϕ) + i sin(nϕ))

The equation
zn = 1

has n pairwise different solutions

zk = exp

(
i

2πk

n

)
for k = 0, . . . , n − 1.

These solutions are called n–th roots of unity.
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Chapter 2. Complex valued functions of a single variable

A complex function w = f (z) is a map f : D → C with D ⊂ C, i.e. for every
z ∈ D there is a unique w = f (z) ∈ C.

The set D is the domain (of defintion) of f . The set

W = f (D) = {f (z) | z ∈ D}

is called the codomain.

Notation:

z = x + iy

w = u + iv

u = u(x , y) = Re(w)

v = v(x , y) = Im(w)

For a geometric representation of complex functions often images of coordinate
nets are used.
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Chapter 2. Complex valued functions of a single variable

2.1 Linear functions

Definition: A complex function f is called linear, if f for fixed complex constants
a, b ∈ C, a 6= 0, has a representation of the following form

f (z) = az + b for z ∈ C.

Question: Can we interpet linear functions geometrically?

Special case 1: The choice a = 1 leads to a translation of b,

f (z) = z + b for z ∈ C

Special case 2: The choice a ∈ (0,∞) and b = 0 leads to a dilation or
contraction,

f (z) = az for z ∈ C,

i.e. the absolute value of z is dilated (a > 1) or contracted (0 < a < 1). In
general we talk about a scaling with scaling factor a > 0.
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Other special cases of linear functions.

Special case 3: The choice a ∈ C with |a| = 1 and b = 0 leads to a rotation,

f (z) = az for z ∈ C,

More precisely: a rotation with angle α ∈ [0, 2π), where α = arg(a) and
a = exp(iα).

Special case 4: The choice a ∈ C, a 6= 0 and b = 0 leads to a rotational dilation

f (z) = az for z ∈ C,

which we understand as a combination of a rotation and a scaling.

More precisely: For

a = |a| exp(iα) with α = arg(a)

we have a rotation with angle α ∈ [0, 2π) and a scaling with factor |a|.
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The general case of linear functions.

For a, b ∈ C, a 6= 0, every linear function

f (z) = az + b = |a| exp(iα)z + b

can be written as composition

f = f3 ◦ f2 ◦ f1

of three maps,

1 f1(z) = exp(iα)z a rotation with angle α = [0, 2π);

2 f2(z) = |a|z a dilation with scaling factor |a| > 0;

3 f3(z) = z + b a shift with a vector b.

Remark: rotation f1 and dilation f2 commute, i.e. can be exchanged since

f2 ◦ f1 = f1 ◦ f2

and thus
f = f3 ◦ f2 ◦ f1 = f3 ◦ f1 ◦ f2
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Chapter 2. Complex valued functions of a single variable

2.2 Quadratic functions

Definition: A complex function f is called quadratic, if f for fixed constants
a, b, c ∈ C, a 6= 0, has the following form.

f (z) = az2 + bz + c for z ∈ C

First we consider the geometric behaviour of the function

f (z) = z2 for z ∈ C

To do so we consider the image under f of straight lines parallel to the coordinate
axes.

Set w = z2. Then with z = x + iy and w = u + iv we obtain the representation

w = u + iv = z2 = (x + iy)2 = x2 − y2 + 2ixy

and thus
u = x2 − y2 and v = 2xy .
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Images of straight lines parallel to the axes under z 7→ z2.

For the image of a straight line y = y0 parallel to the x-axis we obtain

u = x2 − y2
0 and v = 2xy0

For y0 = 0 (the x-axis) we obtain u = x2 and v = 0.

For y0 6= 0 we can eliminate x with x = v/(2y0) and obtain

u =
v2

4y2
0

− y2
0 ,

a parabola open to the right, symmetric with respect to the u-axes with focus in
zero, intersecting the u-axis in u = −y2

0 and the v -axis in v = ±2y2
0 .

Conclusion: The family of straight lines parallel to the x-axis by the quadratic
function f (z) = z2 is mapped on a family of confocal (i.e. same symmetry axis,
same focus) parabolas, open to the right.

The lines y = y0 and y = −y0 are mapped onto the same parabola.
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Images of straight lines parallel to the axes under z 7→ z2.

For the image of a straight line x = x0 parallel to the y -axis we obtain

u = x2
0 − y2 und v = 2x0y

For x0 = 0 (the y -axis) we obtain u = −y2 and v = 0.

For x0 6= 0 we can eliminate y with y = v/(2x0) and obtain

u = x2
0 −

v2

4x2
0

a parabola open to the left, symmetric to the u-axis with focus zero, intersecting
the u-axis in u = x2

0 and the v -axis in v = ±2x2
0 .

Conclusion: The family of straight lines parallel to the y -axis by the quadratic
function f (z) = z2 is mapped on a family of confocal parabolas, open to the left.

The lines x = x0 and x = −x0 are mapped onto the same parabola.
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Images of straight lines parallel to the axes under z 7→ z2.
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General quadratic functions.

For a, b, c ∈ C, a, b 6= 0, and the representation

f (z) = az2 + bz + c = a

(
z +

b

2a

)2

− b2

4a
+ c

every quadratic function can be written as a composition of 4 maps

f = f4 ◦ f3 ◦ f2 ◦ f1

consisting in:

1 a shift f1(z) = z + b
2a ;

2 a quadratic function f2(z) = z2;

3 a rotational dilation f3(z) = az ;

4 a shift f4(z) = z − b2

4a + c .
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Chapter 2. Complex valued functions of a single variable

2.3 The exponential function

Definition: The complex exponential function exp : C→ C is defined as

exp(z) = ez = ex+iy = ex(cos(y) + i sin(y)) for z = x + iy .

We observe: The rule for the addition holds

ez1+z2 = ez1ez2 for z1, z2 ∈ C.

Question: How does the complex exponential function z → exp(z) look like?

For w = exp(z), z = x + iy and w = u + iv we obtain

w = u + iv = ez = ex(cos(y) + i sin(y))

and thus
u = ex cos(y) and v = ex sin(y)
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Images of straight lines parallel to the axes under
z 7→ exp(z).

For the image of a straight line y = y0 parallel to the x-axis we obtain

u = ex cos(y0) and v = ex sin(y0)

For fixed y0 this gives a ray starting from the origin with angle y0 with
respect to the the x-axis.

For angles y0 and y1, which differ by a multiple of 2π, i.e.

y1 = y0 + 2πk for a k ∈ Z,

we obtain the same ray.

More precisely: Due to the periodicity of exp(z) we have

ez+2πik = eze2πik = ez(cos(2πk) + i sin(2πk)) = ez · 1 = ez .

i.e. two points with identical real part, which imaginary parts only differ by a
multiple of 2π, are mapped onto the same point.
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Images of straight lines parallel to the axes under
z 7→ exp(z).

For the image of a straight line x = x0 parallel to the y -axis we obtain

u = ex0 cos(y) und v = ex0 sin(y)

For fixed x0 this gives a circle around the origin with radius ex0 .

Observe: The origin does not lie in the codomain of the exponential
function, i.e. there is no z ∈ C with exp(z) = 0. Therefore ez 6= 0 for all
z ∈ C.

Observation: The exponential function maps rectangular lattices in the
cartesian coordinate system onto lattices of curves which intersect
orthogonally.

More precisely: Curves which intersect orthogonally in the cartesian
coordinate system, are mapped by the exponential function exp onto curves,
which intersect orthogonally (in the images of the interesction point)

Even more general: The exponential function is isogonal or conformal in
C \ {0}. More details later.
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Images of straight lines parallel to the axes under
z 7→ exp(z).
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Chapter 2. Complex valued functions of a single variable

2.4 The inverse function

Definition: A complex function f = f (z) is called injective, if for every point
w ∈ C in the domain there is exactely one point z ∈ C in the codomain with
f (z) = w .

Remark: A non-injective function might become injective if the domain is
appropriately restricted.

Examples.

1 the linear function f (z) = az + b, a 6= 0 is injective.

2 the quadratic function f (z) = z2 is not injective, since we have
f (z) = f (−z) for all z ∈ C.

3 the complex exponential function exp(z) is not injective, since we have
exp(z) = exp(z + 2πik) for all k ∈ Z and all z ∈ C.
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Restriction of the domain.

Remark: A non-injective function might become injective if the domain is
appropriately restricted.

Example: Consider the quadratic function

f (z) = z2 for z ∈ C with Re(z) > 0

on the right halfplane {z ∈ C |Re(z) > 0}. There f is injective.

In this case the codomain is given by the ”partly cutted” complex plane

C− = {z ∈ C | Im(z) 6= 0 or Re(z) > 0}

= C \ {z ∈ R | z ≤ 0}

Graphical representation of the domain and codomain on a slight.
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The inverse function.

Definition: Let f be an injective function with domain D(f ) and codomain
W (f ). Then the inverse function f −1 : W (f )→ D(f ) to f is the function, which
maps every point w ∈W (f ) onto the (unique) point z ∈ D(f ) with f (z) = w ,
i.e. it is f −1(w) = z and

(f −1 ◦ f )(z) = z for all z ∈ D(f )

(f ◦ f −1)(w) = w for all w ∈W (f )

Example: For the domain

D(f ) = {z = re iϕ ∈ C | r > 0 and − π/2 < ϕ < π/2}

the exists an inverse function f −1 of f (z) = z2 with codomain W (f ) = C−.

For the main value uf the root f −1 : W (f )→ D(f ) it is

w = f −1(z) =
√
re iϕ/2 for z = re iϕ with ϕ = arg(z) ∈ (−π, π).
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Chapter 2. Complex valued functions of a single variable

2.5 The complex logarithm

Aim: To inverte the complex exponential function

f (z) = exp(z).

Observe: The exponential function exp(z) is defined for all z ∈ C and we have

D(exp) = C and W (f ) = C \ {0}

for the domain and the codomain.

But: The exponential function is not injective on C.

Also: For the construction of the inverse function exp−1 of exp we need to
restrict the domain of exp appropriately.

Question: Let z = x + iy ∈W (exp). Which values w = u + iv are possible such
that

ew = z?
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Construction of the complex logarithm.

Starting point: For z = x + iy ∈W (exp) it should be

ew = z for a w = u + iv ∈ C.

Then
|ew | = |eu| = |z |

and thus u = ln(|z |), where ln : (0,∞)→ R denotes the real logarithm.

In addition we have

arg(ew ) = arg(eu+iv ) = arg(eue iv ) = v

and thus v = arg(z) + 2πk for a k ∈ Z.

Therefore the set of solutions of ew = z consists of complex numbers

w = ln(|z |) + i(arg(z) + 2πk) with a k ∈ Z.

The set of solutions of ew = z is called complex logarithm of z .
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Examples.

The function Log(z) denotes the complex logarithm of z .

Example 1: How does the set Log(−1) look like? We have ln(| − 1|) = ln(1) = 0
and the argument of −1 is arg(−1) = π. Thus

Log(−1) = {i(2k + 1)π | k ∈ Z}

for the values of the logarithm of −1.

Example 2: How does the set Log(−1 + i) look like? We have | − 1 + i | =
√

2
and it is arg(−1 + i) = 3π

4 the argument of −1 + i . Thus

Log(−1 + i) =

{
ln(
√

2) + i

(
3π

4
+ 2πk

) ∣∣∣∣ k ∈ Z
}

for the values of the logarithm of −1 + i .

Example 3: For x > 0 it is Log(x) = {ln(x) + 2πik | k ∈ Z}.

Ingenuin Gasser (Mathematik, UniHH) Complex functions for students in engineering 35 / 176



The principal value of the logarithm.

The previous consoderations for the equation

z = ew

show that the exponantial function is injective on the strip

S = {w ∈ C | − π < Im(w) < π}.

The related codomain is C−.
The unique value of Log(z) being element in the strip S is

w = log(|z |) + i arg(z) with − π < arg(z) < π.

This value is called principal value of the logarithm of z , shortly ln(z).

Remark: The principal value is only defined in the ”opened” complex plane C−.
On the negative real axis and at z = 0 the ln(z) is not defined. On the positive
real axis ln(z) coincides with the real logarithm ln(x).
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Chapter 2. Complex valued functions of a single variable

2.6 The Joukowski–function

The Joukowski–function is defined as

f (z) =
1

2

(
z +

1

z

)
for z 6= 0,

and has an interesting connection to fluid mechanics.

Observation: We have the symmetry

f (z) = f (1/z) for z 6= 0.

Aim: Analyse the geometric behaviour of the Joukowski–function.

To do so determine for

w =
1

2

(
z +

1

z

)
the images of the circles |z | = const. and the rays arg(z) = const..
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Geometric behaviour of the Joukowski–function.

For z = re iϕ and w = u + iv we obtain

u + iv =
1

2

(
re iϕ +

1

r
e−iϕ

)
and thus

u =
1

2

(
r +

1

r

)
cos(ϕ) and v =

1

2

(
r − 1

r

)
sin(ϕ).

For the images of the circles r ≡ r0 > 0 we obtain the parameterized form

u = 1
2

(
r0 + 1

r0

)
cos(ϕ)

v = 1
2

(
r0 − 1

r0

)
sin(ϕ)

 0 ≤ ϕ < 2π.

For the unit circle r0 ≡ 1 we have u = cos(ϕ), for 0 ≤ ϕ < 2π, and v ≡ 0, i.e. the
line between −1 and 1, which is reached twice.
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Geometric behaviour of the Joukowski–function.

For r0 6= 1 we can eliminate ϕ and we obtain the ellipse

u2

1
4

(
r0 + 1

r0

)2 +
v2

1
4

(
r0 − 1

r0

)2 = 1

with the semi axes

a =
1

2

(
r0 +

1

r0

)
and b =

1

2

∣∣∣∣r0 − 1

r0

∣∣∣∣
and the foci ±1.

Conclusion: The Joukowski–function maps a collection of circles r ≡ const. onto
a collection of kofocal ellipses. The two circles r ≡ r0 and r ≡ 1/r0 are mapped
onto the same ellipse.
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Geometric behaviour of the Joukowski–function.

For the image of the ray ϕ ≡ ϕ0 we obtain

u = 1
2

(
r + 1

r

)
cos(ϕ0)

v = 1
2

(
r − 1

r

)
sin(ϕ0)

}
0 < r <∞,

and therefore for the positive x-axis ϕ0 = 0

u = 1
2

(
r + 1

r

)
v = 0

}
0 < r <∞,

the subset {(u, 0) | 1 ≤ u <∞} of the u-axes.

In analogy we obtain for the negative x-axis ϕ0 = π the piece −∞ < u < −1.

The rays ϕ0 = π/2 (positive y -axis) and ϕ0 = 3π/2 (negative y -axis) are mapped
onto the (complete) v -axis.
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Geometric behaviour of the Joukowski–function.

If ϕ0 6∈ {0, π/2, π, 3π/2} we can eliminate r . Thus we obtain the hyperbola

u2

cos2(ϕ0)
− v2

sin2(ϕ0)
= 1

with the semiaxes

a = | cos(ϕ0)| and b = | sin(ϕ0)|.

The distance of the foci from the origin is√
a2 + b2 =

√
cos2(ϕ0) + sin2(ϕ0) = 1.

Therefore the two foci are in ±1.
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Images of the Joukowski–function.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Domain. Image under the
Joukowski–function.
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Additional remarks to the Joukowski–function.

1 The Joukowski–function maps the net of polar coordinates onto a net of
ellipses and hyperbolas which intersect orthogonally. Thus the
Joukowski–function is isogonal.

2 The Joukowski–function is not injective on its domain C \ {0} since for
every z ∈ C \ {±1, 0} it is z 6= 1/z , but f (z) = f (1/z).

3 On the following two restrictions of the domain the Joukowski–function
becomes injectiv.

On the complement of the unit circle D(f ) = {z ∈ C | |z | > 1}.
On the upper half plane D(f ) = {z ∈ C | Im(z) > 0}.

4 The inverse function w = f −1(z) of the Joukowski–function f (w) is
obtained by solving the related quadratic equation

w2 − 2zw + 1 = 0

w.r.t. w in the related domain D(f ), thus w = z +
√
z2 − 1.
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Chapter 3. The Möbius–transform

3.1 The stereographic projection

Preliminaries: In analysing rational functions

R(z) =
p(z)

q(z)
with polynomials p, q : C→ C

it is reasonable to close the gaps in the domain (i.e. the zero’s of q(z)) by
attributing to R(z) in theese points the “value” ∞ if at such point not at the
same time the nominator p(z) vanishes.

Notation: If z∗ ∈ C is a zero of q, i.e. q(z∗) = 0, and p(z∗) 6= 0 , then
R(z∗) =∞, i.e. the codomain of R is enlarged by adding the ”number” ∞.

Definition: In the extension C∗ = C ∪ {∞} of the complex plane ∞ is denoted
as infinitely far point.
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Extension of the rules of calculus for C∗.

In the extended complex plane C∗ in addition to the usual rules in C we define
the following rules.

a +∞ := ∞ for a ∈ C

a · ∞ := ∞ for a ∈ C \ {0}

a/∞ := 0 for a ∈ C

Warning: The combintions 0 · ∞ and ∞±∞ cannot be defined reasonably (i.e.
without contradictions).

Topological meaning: The extended complex plane C∗ is a topological space.
For a complex sequence {zn}n, zn 6= 0, we have

zn →∞ for n→∞ ⇐⇒ 1/zn → 0 for n→∞

The space C∗ is sequentially compact, i.e. every sequence in C∗ as (at least) one
limit point. Thus C∗ is denoted as compactification of C.
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The stereographic projection.

Definition: The stereographic projection is the map P : S2 → C∗ which maps the
Riemann sphere

S2 = {x ∈ R3 | ‖x‖ = 1}
on the extended complex plan C∗, in particular it maps a point x ∈ S2,
x 6= N = (0, 0, 1)T , onto the point in the x1–x2–plane (considered to lie below the
sphere) which lies on a straight line from the north pole N of the sphere through
the point x on the sphere. And N is mapped to P(N) :=∞.

The stereographic projection has the following analytical representation

z = P(x) =
x1 + ix2

1− x3
∈ C∗ for = (x1, x2, x3)T ∈ S2.

Remark:

1 The stereographic projection P : S2 → C∗ is bijective.

2 The inverse map P−1 of P is given by

x = P−1(z) =

(
z + z

1 + zz
,

z − z

i(1 + zz)
,
zz − 1

1 + zz

)T

∈ S2 for z ∈ C∗.
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The geometry of the stereographic projection.

By a sperical image U of a set B ⊂ C∗ in the following we unterstand the
(original) domain which under the stereographic projection is mapped on B, i.e.
P(U) = B.

Theorem: The stereographic projection has the following properties.

a) The spherical image of a straight line in C∗ is a circle on S2 containing N.

b) A circle on S2, passing through N, is mapped under the stereographic
projection on a straight line in C∗.

c) The spherical image of a circle in C is a circle in S2, NOT passing through
N.

d) A circle on S2, NOT passing through N, is mapped under the stereographic
projection on a circle in C.

e) The stereographic projection is conformal.
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Chapter 3. The Möbius–transform

3.2 Möbius–transforms

Definition: A rational map of the form

w = T (z) =
az + b

cz + d
with ad 6= bc

is called Möbius–transform.

Remark: For the Möbius–transform T : C∗ → C∗ it holds:

1 Nominator and denominator have no common zero.

2 It is T (−d/c) =∞ and T (∞) = a/c .

3 The map T (z) is bijective with inverse map T−1 : C∗ → C∗

T−1(w) =
dw − b

−cw + a
.

4 Analogy to the inverse of a (2× 2)–matrix(
a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
.
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Composition of Möbius-transforms.

Theorem: The composition of two Möbius-transforms is again a
Möbius-transform. More precisely

w = T1(z) =
az + b

cz + d
for ad 6= bc

u = (T2 ◦ T1)(z) = T2(w) =
αw + β

γw + δ
for αδ 6= βγ

=
Az + B

Cz + D

The coefficients A,B,C and D can be obtained from the matrix product(
A B
C D

)
=

(
α β
γ δ

)
·
(

a b
c d

)
Due to det(AB) = detA · detB we have

AD − BC = (ad − bc) · (αδ − βγ) 6= 0
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Conformality of Möbius-transforms.

Theorem: Möbius-transforms are conformal, i.e. (generalized) circles in C∗ are
mapped by Möbius-transforms in (generalized) circles.

Proof: Use an appropriate decomposition for c 6= 0

az + b

cz + d
=

a
c (cz + d)− ad

c + b

cz + d
=

a

c
− ad − bc

c
· 1

cz + d

Now we set

w1 = cz + d

w2 =
1

w1

w3 =
a

c
− ad − bc

c
· w2

The maps w1 and w3 are linear and thus conformal.
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Continuation of the proof.

It remains to show:

The inversion w = f (z) = 1/z is a conformal map.

We use the detour via the stereographic projection, i.e. instead of z → 1/z we
consider the three of maps

z → x := P−1(z)→ x̃→ P(x̃) =
1

z

Then we have

x = P−1(z) =

(
z + z̄

z z̄ + 1
,

z − z̄

i(zz̄ + 1)
,
zz̄ − 1

zz̄ + 1

)T

and

x̃ := P−1

(
1

z

)

=

(
1
z + 1

z̄
1
z

1
z̄ + 1

,
1
z −

1
z̄

i( 1
z

1
z̄ + 1)

,
1
z

1
z̄ − 1

1
z

1
z̄ + 1

)T
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Completion of the proof.

A simplification gives

x̃ =

(
z + z̄

z z̄ + 1
,− z − z̄

i(zz̄ + 1)
,−zz̄ − 1

zz̄ + 1

)
= (x1,−x2,−x3)T

Thus we obtain a map F : S2 → S2 with

F (x) = (x1,−x2,−x3)T

This map is a rotation of the sphere arount the x1–axis by 180◦ and apparentely
confromal.
Therefore we have proofed that the three maps

z → x := P−1(z)→ x̃→ P(x̄) =
1

z

are conformal. With this the inversion z → 1/z is conformal.
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Remarks on the Möbius-transform.

Remark: The Möbius-transform

w = T (z) =
az + b

cz + d
with ad 6= bc

has the follwoing properties.

(Generalized) circles through the point −d/c are mapped by T on straight
lines in the w -plane.

All straight lines in the z-plane are mapped by T on (generalized) circles in
the w -plane containing the point a/c .

Circles not containing the point −d/c are mapped by T on circles not
containing the point a/c .
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Cross-ratio’s and Möbius-tranforms.

Theorem: Let z1, z2, z3 ∈ C∗ and w1,w2,w3 ∈ C∗ be pairwise different. Then
there exists exactely one Möbius-transform w = T (z) satisfying the interpolations

wj = T (zj) für j = 1, 2, 3.

The interpolating Möbius-transform T (z) is given by the three-point-formula

w − w1

w − w2
:
w3 − w1

w3 − w2
=

z − z1

z − z2
:
z3 − z1

z3 − z2
.

Definition: The expression

D(z0, z1, z2, z3) =
z0 − z1

z0 − z2
:
z3 − z1

z3 − z2
.

is called cross-ratio of the points z0, z1, z2, z3.
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Example.

We are looking for the Möbius–transform with interpolation properties

zi 1 i 0
wi i −i 0

We obtain a unique Möbius–transform using the Ansatz

w − i

w + i
:

0− i

0 + i
=

z − 1

z − i
:

0− 1

0− i

A simplification gives

−w − i

w + i
= i

z − 1

z − i
or

(z − i)(w − i) = −i (z − 1)(w + i)

This finally leads to gives

w =
(1 + i)z

(1 + i)z − 2i
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Symmetry w.r.t. the circle.

Definition:
Let C in C be circle with center z0 ∈ C and radius R. Two points z , z ′ ∈ C are
called symmetric w.r.t. the circle C , if

(z − z0)(z ′ − z0) = R2

The map z → z ′ is called circle inversion on C or plane inversion on C .

Graphical representation of the plane inversion in the slide!

Remarks:

A point z with |z − z0| ≤ R is symmetrric w.r.t. a point z ′ with
|z ′ − z0| ≥ R.

If |z − z0| = R, then z is symmetric to itself, i.e. z ′ = z .

The point z = z0 is symmetric to z ′ =∞.
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Möbius-transforms a circle symmetries.

Definition: Two points z , z ′ are called symmetric with respect to a straight line
in C, if z ′ is obtained from z by reflection across a line.

Theorem:
Möbius-transforms conserve symmetries w.r.t. (generalized) circles.

More precisely:
If C is a (generalized) circle in C∗ and if z and z ′ are symmetric w.r.t. C , then
the images z , z ′ of a Möbius-transform are symmetric w.r.t the to the
(generalized) circle in C∗, which is the image of C .

Example: We look for a Möbius-transform w = T (z), such that the circle |z | = 2
is mapped on the circle |w + 1| = 1 with T (−2) = 0 and T (0) = i .
A Möbius–transform is uniquely determined if the transformation is given for
three points. But we only have

z1 = −2, z2 = 0 and w1 = 0, w2 = i

Therefore one point is missing!
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Continuation of the example.

According to the last theorem Möbius–transforms conserve symmetries w.r.t.
generalized circles.

z2 = 0 ⇒ z3 =∞ is symmetric to z2 w.r.t. the circle |z | = 2

Thus w3 is the point symmetric to w2 = i w.r.t the circle |w + 1| = 1 and
therefore given by the condition (w2 + 1)(w3 + 1) = 1, i.e.

w3 =
1

2
(−1 + i)

Application of the three point formula gives

w − 0

w − i
:
w3 − 0

w3 − i
=

z + 2

z − 0
:
z3 + 2

z3 − 0

What happens to

z3 + 2

z3 − 0

as z3 →∞?
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Completion of the example.

What happens to
z3 + 2

z3 − 0

as z3 →∞?

It is
z3 + 2

z3 − 0
=

1 + 2
z3

1 + 0
z3

→ 1 for z3 →∞

We obtain (
w

w − i

)
:

(
1
2 (−1 + i)

1
2 (−1 + i)− i

)
=

(
z + 2

z

)
and solving w.r.t w gives

w = T (z) = − z + 2

(1 + i)z + 2i
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Example.

For b > a > 0 we consider the Möbius-transform

w = T (z) =
z + p

−z + p
where p =

√
ab ∈ (a, b)

Using T we obtain

z1,2 = ±p → w1,2 =∞, 0

z3,4 = a, b → w3,4 = ±
√
a +
√
b√

b −
√
a

= ±% with |%| > 1

z5,6 = −a,−b → w5,6 = ±
√
b −
√
a

√
a +
√
b

= ±1

%

z7,8 = 0,∞ → z7,8 = 1,−1.
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Continuation of the example.

The x-axis is mapped byT onto the u-axis.

Points which are symmetric with respect to the x-axis are mapped onto
points which are symmetric w.r.t. the u-axis.

Circles being symmetric w.r.t the x-axis are mapped onto circles beiing
symmetric with respect to the u-axis.

Important applications: The electrostatic field in the exterior of two parallel
conducting lines is mapped on the field of a cylindrical condensator.
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Chapter 4. Differential calculus in the complex numbers

4.1 Complex differentiation

Definition: Let f : D → C, D ⊂ C be a complex function. f (z) is called complex
differentiable in the point z0 ∈ D0 with derivative f ′(z0), if the limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

exists. If f (z) is complex differentiable in every point in the domain D, we call
f (z) holomorphic or analytic on D.

Remark:

1 The limit process z → z0 is intended in the complex plane, i.e. the approach
z → z0 is arbitrary.

2 The division in the limit is a division in complex numbers.
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4.1 Complex differentiation

Lemma: If f (z) is real valued, i.e. f : D → R, D ⊂ C a domain, and if f (z) is
holomorphic on D, then f (z) is a constant function.

Proof: We first consider the sequence zn → z0 given by

zn = z0 +
1

n

The the differential quotient is real for all n ∈ N since

f (zn)− f (z0)

zn − z0
= n(f (zn)− f (z0)) ∈ R

On the other hand the sequence zn → z0 with zn = z0 + i/n gives a purely
imanginary differential quotient

f (zn)− f (z0)

zn − z0
=

n

i
(f (zn)− f (z0)) ∈ C

Since the function is holomorphic on D it follows

f ′(z0) = 0 for all z0 ∈ D.
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The Cauchy–Riemannschen equations.

Remark: If the function f (z) is complex differentiable in z0, then

lim
z→z0

f (z)− f (z0)− f ′(z0)(z − z0)

z − z0
= 0

or equivalentely

f (z) = f (z0) + f ′(z0)(z − z0) + o(|z − z0|)

Let f (z) be complex differentiable in z0. We set

γ := f ′(z0),

then we obtain the equivalent formulation

f (z) = f (z0) + γ(z − z0) + ε(z)|z − z0|

with ε(z)→ 0 as z → z0.
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The Cauchy–Riemannschen equations.

We now use with z = x + iy the formulation

f (z) = u(z) + iv(z) = u(x , y) + iv(x , y)

and
γ = α + iβ

Thus we obtain

u(z) = u(z0) + α(x − x0)− β(y − y0) + Re(ε(z)) · |z − z0|

v(z) = v(z0) + β(x − x0) + α(y − y0) + Im(ε(z)) · |z − z0|

In matrix formulation this reads as(
u(z)
v(z)

)
=

(
u(z0)
v(z0)

)
+

(
α −β
β α

)(
x − x0

y − y0

)
+ ε(z) · |z − z0|
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The Cauchy–Riemannschen equations.

We interpret f (z) as vector valued, totally differentiable function of two
variables, i.e.

f : R2 → R2

with the Jacobian–matrix

Jf (x0, y0) =

(
ux uy
vx vy

)∣∣∣∣
(x0,y0)

=

(
α −β
β α

)

Theorem: The function f (z) is complex differentiable in z0 ∈ D if and only if
f (z) as function f : R2 → R2 is totally differentiable and if the
Cauchy–Riemannschen equations hold

ux(z0) = vy (z0)

uy (z0) = −vx(z0)
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Representation of the complex differentiation.

Corollary: If f (z) is complex differentiable in z0 ∈ D, then

f ′(z0) = ux(z0) + ivx(z0)

Proof: Since f ′(z0) ∈ C we can write

f ′(z0) = ũ(z0) + i ṽ(z0)

From this we obtain

f ′(z0) · (z − z0) = (ũ(z0) + i ṽ(z0)) ·
[
(x − x0) + i(y − y0)

]
= ũ · (x − x0)− ṽ · (y − y0) + i

(
ṽ · (x − x0) + ũ · (y − y0)

)
Since f is totally differentiable in z0 and since the Cauchy–Riemannschen
equations are satisfied we have on the other side(

ux −vx
vx ux

)
·
(

x − x0

y − y0

)
=

(
ux · (x − x0)− vx(y − y0)
vx · (x − x0) + ux(y − y0)

)
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Holomorphic functions and the Laplace’s equation.

Theorem: It f ∈ C2 is holomorphic on D, then

uxx + uyy = vxx + vyy = 0,

i.e. both real and imaginary part of f satisfy the Laplace’s equation.

Proof: If f (z) is holomorphic, then

∆u =
∂ux
∂x

+
∂uy
∂y

C .R.
=

∂vy
∂x
− ∂vx
∂y

= 0

∆v =
∂vx
∂x

+
∂vy
∂y

C .R.
= −∂uy

∂x
+
∂ux
∂y

= 0

Also, the following inversion holds true: If u = u(x , y) satisfies the Laplace’s
equation ∆u = 0 on a connected domain, then there exists a differentiable
function v = v(x , y) such that f (z) = u(z) + iv(z) on D is holomorphic.
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Proof of the inversion.

Let u = u(x , y) be given with ∆u = 0. We are looking for a function v = v(x , y),
such that the Cauchy–Riemannschen equations are satisfied. Thus

vx = −uy vy = ux

From the C.R. equations it follows

grad v = (vx , vy ) = (−uy , ux) =: V = (V1,V2)

Therefore we are looking for a potential v with grad v = V . If the integrability
conditions

∂V1

∂y
− ∂V2

∂x
= 0

are satisfied, the existence of such a potential if guaranteed.

This is true since

∂V1

∂y
− ∂V2

∂x
= −uyy − uxx = −∆u = 0
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Rules for the differentiation.

The following rules hold:

(f ± g)′(z0) = f ′(z0)± g ′(z0)

(f · g)′(z0) = f ′(z0)g(z0) + f (z0)g ′(z0)(
f

g

)′
(z0) =

f ′(z0)g(z0)− f (z0)g ′(z0)

(g(z0))2

Chain rule: If f (z) is differentiable in z0 and if g(w) is differentiable in
w0 = f (z0), then

(g ◦ f )′(z0) = g ′(f (z0)) · f ′(z0)

Derivation of the inverse function: If f (z) is holomorphic and if f ′(z0) 6= 0,
then f (z0) is locally bijective around z0 and we have

(f −1)′(w0) =
1

f ′(z0)
, w0 = f (z0)
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The modified chain rule.

Lemma: If f (z) is holomorphic on D and if c : [a, b]→ D is a C1–curve in D,
then

d

dt
f (c(t)) = f ′(c(t)) · ċ(t)

Proof: We have

d

dt
f (c(t)) =

d

dt
u(c(t)) + i

d

dt
v(c(t))

= (ux ċ1 + uy ċ2) + i (vx ċ1 + vy ċ2)

In addition we have

f ′(c(t)) · ċ(t) = (ux + i vx) · (ċ1 + i ċ2)

= (ux ċ1 − vx ċ2) + i (vx ċ1 + ux ċ2)

Both expressions are identical due to the C.R. equations.
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Examples.

Example 1:

For f (z) = z we obtain due to u(x , y) = x and v(x , y) = y

f ′(z) = ux(z) + i vx(z) = 1

Thus complex polynomials on C are holomorphic with

d

dz

(
n∑

k=0

akz
k

)
=

n∑
k=1

akkz
k−1

Explicit calculation for f (z) = z2: with

f (z) = z2 = (x2 − y2) + i 2xy

we calculate
f ′(z) = ux(z) + i vx(z) = 2x + i 2y = 2z
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Examples.

Example 2: Rational functions, i.e. functions of the form

f (z) =
p(z)

q(z)
, p, q complex polynomials

are complex differentiable at every point with q(z) 6= 0.

Example 3: The exponential function f (z) = ez = ex(cos y + i sin y) is complex
differentiable with f ′(z) = ez , since with

u(x , y) = ex cos y , v(x , y) = ex sin y

the C.R. equations are satisfied

ux = vy = ex cos y , uy = −vx = −ex sin y

and we have
f ′(z) = ux + i vx = ex cos y + i ex sin y = ez
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More examples.

Example 4: The trigonometrc functions

sin z :=
1

2i

(
e iz − e−iz

)
, cos z :=

1

2

(
e iz + e−iz

)
are according to example 3 holomorphic on C and we have the formulas for the
derivatives in analogy to the real valued functions.

Example 5: Functions defined as complex power series,

f (z) =
∞∑
k=0

ak(z − z0)k

are holomorphic on the domain of convergence Kr (z0) with

f ′(z) =
∞∑
k=1

akk(z − z0)k−1

and thus on Kr (z0) at the same time arbitrary many times complex differentiable.
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Chapter 4. Differential calculus in the complex numbers

4.2 Conformal mappings

Theorem: Let f : D → C be a holomorphic function on the domain D ⊂ C with
f ′(z) 6= 0 for all z ∈ D. Then locally in a point z0 ∈ D we have:

a) Angles between curves which intersect in z0 are conserved under the
transformation w = f (z), including the rotational direction,

b) the expression |f ′(z0)| is for all directions ”leaving” z0 the common scaling.
In particular relations of lenghtes are conserved.

Mappings with these properties are called conformal mappings.

For conformal mappings we have the following inversion of the theorem.

Theorem: If w = f (z) is a conformal mapping and if the function f : R2 → R2 is
continuously differentiable, then f (z) is complex differentiable and we have
f ′(z) 6= 0.
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Proof of the first theorem.

Let c and d be two curves which at t = 0 go through z0. The two tangential
vectors in this point are ċ(0) and ḋ(0) and for the angle γ between the tangential
vectors we have

γ = ] (ċ(0), ḋ(0)) = arg (ḋ(0))− arg (ċ(0))

With f we obtain the two curves f ◦ c and f ◦ d in the codomain.
Th angle γ̃ between these two curves in f (z0) in the codomain is

γ̃ = ] (f ′(z0)ċ(0), f ′(z0)ḋ(0))

= arg (f ′(z0)ḋ(0))− arg (f ′(z0)ċ(0))

= arg (f ′(z0)) + arg (ḋ(0))− arg (f ′(z0))− arg (ċ(0)) = γ

and w.r.t the scaling of lenghtes we calculate

‖ d
dt

(
f ◦ c

)
‖ = |f ′(z0)ċ(0)| = |f ′(z0)| · |ċ(0)|
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Conformal transformations.

Definition: Let f : D → D ′ be a bijective and conformal mapping bewteen the
domains D ⊂ C and D ′ ⊂ C. Let Φ : D → R be a real valued twice continuously
differentiable function on D. Then we call the function Ψ : D ′ → R defined by

Ψ = Φ ◦ f −1

the conformal transformation of Φ with mapping f .

Physical Applications: If Φ(z) is an unknown potential defined in the in the
physical plane D, then Ψ is the related function in the modell plane D ′.
In the following Φ and Ψ are potentials, i.e.

electrostatic potentials;

fluid dynamic potentials;

temperature fields etc.

The vectors (Φx ,Φy ) and (Ψu,Ψv ) are of particular interest.
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The complex gradient.

Definition: For a real valued function Φ : D → R on a domain D ⊂ C we call
with z = x + iy the expression

grad Φ(z) =
∂Φ

∂x
+ i

∂Φ

∂y

the complex gradient of Φ(z).

Theorem: Let Ψ be the conformal transformation of Φ with mapping f . Then
the two relations

gradz Φ(z) = gradw Ψ(f (z)) · f ′(z)

∆zΦ(z) = ∆wΨ(f (z)) · |f ′(z)|2

hold. Proof: By definition the conformal transformation of Φ with mapping f is
given by

Ψ = Φ ◦ f −1
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Continuation of the proof.

We conclude Φ = Ψ ◦ f and with f (x , y) = u(x , y) + i v(x , y)

Φ(x , y) = Ψ(u(x , y), v(x , y))

We calculate

Φx = Ψuux + Ψvvx

Φy = Ψuuy + Ψvvy

For the complex gradient gwe have with f ′(z) = ux + ivx

grad Φ(z) = (Ψuux + Ψvvx) + i (Ψuuy + Ψvvy )

= Ψu(ux + i uy ) + Ψv (vx + i vy )

C .R.
= Ψu(ux − i vx) + i Ψv (ux − i vx)

= grad Ψ(f (z)) · f ′(z)

Ingenuin Gasser (Mathematik, UniHH) Complex functions for students in engineering 79 / 176



Completion of the proof.

Calculating the second derivative gives

Φxx = Ψuuu
2
x + 2Ψuvuxvx + Ψvvv

2
x + Ψuuxx + Ψvvxx

Φyy = Ψuuu
2
y + 2Ψuvuyvy + Ψvvv

2
y + Ψuuyy + Ψvvyy

Thus

∆Φ = Ψuu(u2
x + u2

y ) + 2Ψuv (uxvx + uyvy )

+Ψvv (v2
x + v2

y ) + Ψu∆u + Ψv∆v

We use again the C.R. equations and obtain

u2
x + u2

y = v2
x + v2

y = u2
x + v2

x = |f ′(z)|2

uxvx + uyvy = 0

∆u = ∆v = 0

and therefore the desired result

∆Φ = ∆Ψ · |f ′(z)|2
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Practical applications of conformal transformations.

Corollary: Conformal transformations transform harmonic functions into
harmonic functions.

Applications of conformal transformations: Lets consider the
Dirichlet–problem for the Laplace equation, i.e. the boundary value problem{

∆u = 0 in D
u = g on ∂D

where D ⊂ R2 is a “complicated” two-dimensional domain.

With an appropriate conformal transformation we can solve the problem
explicitely.

1 identify a conformal transformation which maps the physical domain D on a
“simple” model domain D ′;

2 transform the boundary conditions on ∂D to boundary conditions on ∂D ′

and solve the Dirichlet–problem on D ′;

3 Transform the solution back on the physical domain D.
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An application: plain potential flow.

We would like to determine the velocity field of a stationary, curl– and source–free
flow around a cylinder. Let w : R2 → R2 be the velocity field to be determined.

Then we have the equations

rot w =
∂w2

∂x
− ∂w1

∂y
= 0

div w =
∂w1

∂x
+
∂w2

∂y
= 0

If D ⊂ R2 is simply connected we obtain from the first condition

there exists a function u : D → R with ∇u = −w

and from the second condition

there exists a function v : D → R with ∇v = (w2,−w1)T
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The complex flow potential.

We call

the function u the velocity potential;

the function v the stream function.

Related to the stream function we have stream lines which are solutions of the
ordinary differential equations y ′(x) = w2/w1 and given by

v(x , y) = const.

Definition: The complex funktion Φ = Φ(x , y) defined by

Φ(x , y) = u(x , y) + i v(x , y)

is called complex flow potential.

The complex flow potential Φ(z) is a holomorphic function, since we have the
Cauchy–Riemann equations

ux − vy = −w1 − (−w1) = 0

uy + vx = −w2 + w2 = 0
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Continuation: plain potential flow.

The velocity field w can be calculated directly: due to

Φ′(z) = ux + i vx = −w1 + i w2

it follows
w = w1 + i w2 = −Φ′(z)

Our physical domain is diven by D = {z ∈ C : |z | > R} and the related model
domain is

D ′ = {z ∈ C | Im z 6= 0 und |Re z | > 1}

The Joukowski–function f (z) given by

f (z) =
1

2

(
z

R
+

R

z

)
is a conformal transformation from D on D ′.
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Continuation: plain potential flow.

In the model plane we can assume a homogeneous velocity field, i.e. in D ′ we have

W = const. = (V∞, 0)T

since a infinitely flat plate is not interacting with a given homogeneous flow in the
direction of the real axis with velocity V∞.

For the velocity potential U(W ) we have the equation

gradU(W ) = −(V∞, 0)T

and from this follows
U(w) = −V∞W1

Also there is a stream function V (W )

gradV (W ) = (0,−V∞)T ⇒ V (w) = −V∞W2

Ingenuin Gasser (Mathematik, UniHH) Complex functions for students in engineering 85 / 176



Continuation: plain potential flow.

In the physical plane we can assume that

lim
z→∞

grad Φ(z) = −v∞

i.e. at infinity the undisturbed flow does not ”feel” any obstacle.

Because of the relation

grad Φ(z) = grad Ψ(f (z)) · f ′(z)

it follows with

f ′(z) =
1

2

(
1

R
− R

z2

)
the relation V∞ = 2Rv∞.

For the complex flow potential we have

Ψ(W ) = −2Rv∞(ReW + i ImW )
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Continuation: plain potential flow.

Now we consider the back–transformation in the physical plane, i.e.

Φ(z) = (Ψ ◦ f )(z) = −2Rv∞(Re f (z) + i Im f (z))

For the Joukowski–function

f (z) =
1

2

(
z

R
+

R

z

)
it is

Re f (z) =
1

2

(
x

R
+

Rx

x2 + y2

)
Im f (z) =

1

2

(
y

R
− Ry

x2 + y2

)
With this in the physical plane we obtain the velocity potential u(z)

u(z) = u(x , y) = −v∞
(
x +

R2x

x2 + y2

)
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Continuation: plain potential flow.

We obtain for the stream function

v(z) = v(x , y) = −v∞
(
y − R2y

x2 + y2

)
The velocity field w around the cylinder is given by

w = −∇u = −v∞
(

(x2 + y2)2 − R2(x2 − y2)

(x2 + y2)2
,− 2R2xy

(x2 + y2)2

)
In particular we have:

In the two points (−R, 0) and (R, 0) the velocity is zero,

w(−R, 0) = w(R, 0) = (0, 0)T

The velocity is maximal in the two points (0,−R) and (0,R) with

wmax = 2v∞
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Chapter 5. Complex integration

5.1 Examples for complex integration

Definition: A complex valued function f : [a, b]→ C of a real variable is
integrable, if real– and imaginary part of f are integrable, and we have:∫ b

a

f (t) dt :=

∫ b

a

Re(f (t)) dt + i

∫ b

a

Im(f (t)) dt = Re iϕ

The following properties in analogy to the intergration in the real numbers are
valid Linearity. In addition we have∣∣∣∣∣

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
∫ b

a

|f (t)| dt

Proof: We calculate∣∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣∣ = R = e−iϕ
∫ b

a

f (t) dt =

∫ b

a

e−iϕ f (t) dt =

∫ b

a

Re(e−iϕ f (t)) dt

≤
∫ b

a

|e−iϕ f (t)| dt =

∫ b

a

|f (t)| dt
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Complex integration in analogy to curve integrals.

Real analysis: Let c : [a, b]→ D ⊂ Rn a piecewise C1–curve, f : D → R and
F : D → Rn are given. Then we have defined in Analysis II and III the line
integrals of scalar and vector fileds∫

c

f (x)ds :=

∫ b

a

f (c(t))‖ċ‖ dt

or ∫
c

F(x) dx :=

∫ b

a

〈F(c(t)), ċ(t)〉 dt

Definition: Let D ⊂ C be a domain, f : D → C continuous and c : [a, b]→ D a
piecewise C1–curve. Then∫

c

f (z) dz :=

∫ b

a

f (c(t))ċ(t) dt

is the complex integral of f (z) along the curve c .
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Properties of the complex integral.

The value of the compelx integral is indepnedent of the parameterisation of
the curve.

Changing the orientation we have∫
−c

f (z) dz = −
∫
c

f (z) dz

We denote (−c)(t) := c(b + t(a− b)), 0 ≤ t ≤ 1.

Linearity∫
c

(αf (z) + βg(z)) dz = α

∫
c

f (z) dz + β

∫
c

g(z) dz für α, β ∈ C

Additivity with respect to the path of integration:∫
c1+c2

f (z) dz =

∫
c1

f (z) dz +

∫
c2

f (z) dz
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Additional properties of the complex integral

We have the estimate∣∣∣∣∫
c

f (z) dz

∣∣∣∣ ≤ sup
z∈image(c)

|f (z)| ·
∫ b

a

|ċ(t)| dt︸ ︷︷ ︸
lenghtofthepath L(c)

Proof We calculate directly∣∣∣∣∫
c

f (z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f (c(t))ċ(t) dt

∣∣∣∣∣
≤

∫ b

a

|f (c(t))| |ċ(t)| dt

≤ sup
a≤t≤b

|f (c(t))| ·
∫ b

a

|ċ(t)| dt
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An example of complex integration.

Example 1:

Let f (z) = z and c(t) = re it with 0 ≤ t ≤ 2π. Then we have∮
c

z dz =

∫ 2π

0

re it ·
(
rie it

)
dt

= ir2

∫ 2π

0

e2it dt

= ir2

∫ 2π

0

(cos(2t) + i sin(2t)) dt

= −r2

∫ 2π

0

sin(2t)) dt + i r2

∫ 2π

0

cos(2t)) dt

= 0
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Additional examples of complex integration.

Example 2:

Let f (z) = z̄ and c(t) = re it with 0 ≤ t ≤ 2π. then it is∮
c

z̄ dz =

∫ 2π

0

re−it ·
(
rie it

)
dt = ir2

∫ 2π

0

dt = r2 · 2πi

Example 3:

Let f (z) = 1/z and c(t) = re it with 0 ≤ t ≤ 2π. Then it is∮
c

1

z
dz =

∮
c

z̄

|z |2
dz =

1

r2

∮
c

z̄ dz = 2πi

Example 4: With c(t) = z0 + re it , 0 ≤ t ≤ 2π we have the relation∮
c

(z − z0)n dz =

{
2πi : for n = −1

0 : for n ∈ Z \ {−1}
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Continuation of the last example.

Example 4:∮
c

(z − z0)n dz =

∫ 2π

0

(
re it
)n · (rie it) dt = irn+1

∫ 2π

0

e i(n+1)t dt

= rn+1

(
−
∫ 2π

0

sin((n + 1)t)) dt + i

∫ 2π

0

cos((n + 1)t)) dt

)

=

{
2πi : für n = −1

0 : for n ∈ Z \ {−1}

Only for n = −1 the integral is not vanishing and we have∮
c

1

z − z0
dz = 2πi

Question: Why this?
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Uniform convergence and complex integration.

Theorem: Let f (z) =
∞∑
k=0

fk(z) be a series of continuous functions, which on a

domain D ⊂ C converges uniformly. Let c : [a, b]→ D be a piecewise C1–curve,
then ∫

c

f (z) dz =
∞∑
k=0

∫
c

fk(z) dz

Proof: SInce the series of continuous functions converges uniformly also the limit
function f (z) is continuous and thus integrable∫

c

f (z) dz −
n∑

k=0

∫
c

fk(z) dz =

∫
c

Rn(z) dz

Uniform convergence means

∀ ε > 0 : ∃N(ε) : ∀ n ≥ N, z ∈ D : |Rn(z)| < ε
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Continuation of the proof.

From the uniform convergence we conclude∣∣∣∣∫
c

Rn(z) dz

∣∣∣∣ ≤ ε · L(c)

and thus

lim
n→∞

∫
c

Rn(z) dz = 0

Example: Let
c(t) = re it with 0 ≤ t ≤ 2π

and |z0| > r . Then: ∮
|z|=r

dz

z − z0
dz = 0

Note: The point z0 lies outside the circle c(t).
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Continuation of the example.

We calculate directly using the geometric series∮
|z|=r

dz

z − z0
= − 1

z0

∮
|z|=r

dz

1− z
z0

= − 1

z0

∮
|z|=r

∞∑
k=0

1

zk0
zk dz

since it is ∣∣∣∣ zz0

∣∣∣∣ < 1

Due to the uniform convergence it is

1

z0

∮
|z|=r

∞∑
k=0

1

zk0
zk dz =

∞∑
k=0

1

zk+1
0

∮
|z|=r

zk dz = 0

since we can exchange integration and summation.
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Anticipation of the Laurent–series.

Example: A series of the form

f (z) =
∞∑

k=−∞

ak(z − z0)k =
∞∑
k=0

ak(z − z0)k︸ ︷︷ ︸
in analogy to the Taylor–series

+
−1∑

k=−∞

ak(z − z0)k︸ ︷︷ ︸
negativ powers

is called a Laurent–serie.

It is comverging locally uniformly and absolutely in the ring

0 ≤ R1 < |z − z0| < R2

For R1 < r < R2 and c(t) = z0 + re it , 0 ≤ t ≤ 2π we have∮
|z−z0|=r

f (z) dz =
∞∑

k=−∞

ak

∮
|z−z0|=r

(z − z0)k dz = 2π i a−1
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