Complex functions for Engineering Students

Solutions for work sheet 6

Given the function

$$
g(z)=\frac{2+3 z+z^{2}}{\left(z^{2}+4\right)\left(z^{2}-1\right)}, \quad f(z)=\frac{1+z-z^{2}+i z^{3}}{z^{2}(z+i)}, \quad \tilde{f}(z)=\frac{\cos (z)-2}{z^{2}}:
$$

a) Determine and classify all isolated singularities of g, f and \tilde{f}.
b) Calculate the integrals of f along the circles $K_{m}, m=1,2,3$ which are traversed once in positive direction.

$$
\begin{aligned}
& K_{1}:=\left\{z \in \mathbb{C}:|z-i|=\frac{1}{2}\right\} \\
& K_{2}:=\left\{z \in \mathbb{C}:|z|=\frac{1}{2}\right\} \\
& K_{3}:=\left\{z \in \mathbb{C}:|z+i|=\frac{1}{2}\right\} .
\end{aligned}
$$

c) How many Laurent series are there for g, f or \tilde{f} at $z_{0}=0$?
d) Determine the Laurent series of the functions f and \tilde{f} for the point $z_{0}=0$ that converges to $f(2)$ or $\tilde{f}(2)$ in the neighborhood of $z^{*}=2$.
Hint: polynomial long division should be used!

