Complex functions for Engineering Students

Work sheet 5

Exercise 1:

Calculate the following line integrals and sketch the corresponding curves.
a) $\int_{C_{1}+C_{2}}|z| d z:=\int_{C_{1}}|z| d z+\int_{C_{2}}|z| d z$, C_{1} : straight path from -1 to 1, C_{2} : half circle with radius 1 around the origin, from 1 to - 1 traversed mathematically positive.
b) $\int_{C}(1+z) d z$,
$C(t):=\cos t+3 i \sin t, t \in[-\pi, 0] \quad$ (half ellipse)
c) $\int_{c}(\bar{z})^{2} d z$,

$$
c(t)=2 e^{(-1+i) t}, t \in[0, \pi / 4]
$$

d) $\int_{C} e^{3 z} d z$,
C : piece of the parabola $\operatorname{Im}(z)=\pi(\operatorname{Re}(z))^{2}$ that connects the points zero and $1+i \pi$.

Exercise 2:

a) In which area is the Möbius transform $T(z)=\frac{a z+b}{c z+d}$ angle preserving?
b) Is it possible to map the area

$$
M_{1}:=\{z \in \mathbb{C}:|z|>1, \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}
$$

onto the interior of a real triangle via Möbius transform? Here, a real triangle means a triangle whose corners are finite.
c) The mapping $f: z \rightarrow e^{\frac{i \pi}{4}} \bar{z}$ describes a rotary reflection. Obviously, it does not cause length distortions. The size of the angles is also preserved. f as a transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is continuously differentiable. Where is f complex differentiable? How does the result compare to the theorem from page 75 from the lecture notes?

Theorem: If $w=f(z)$ is a conformal mapping and continuously differentiable as function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, it follows that $f(z)$ is complex differentiable and $f^{\prime}(z) \neq 0$.
d) The area $G:=\left\{z \in \mathbb{C}: z=r e^{i \varphi},-\frac{\pi}{8}<\varphi<\frac{\pi}{8}, 0<r<2\right\}$
is to be transformed onto the interior of the unit circle (bijective and conformal). Why does $z \mapsto\left(\frac{z}{2}\right)^{8}$ not do that?
Additional exercise: Give a bijective, conformal mapping that achieves this task.

