Complex functions for Engineering Students

Work sheet 5

Exercise 1:

Calculate the following line integrals and sketch the corresponding curves.

a)
$$\int_{C_1+C_2} |z| dz := \int_{C_1} |z| dz + \int_{C_2} |z| dz,$$

 C_1 : straight path from -1 to 1, C_2 : half circle with radius 1 around the origin, from 1 to -1 traversed mathematically positive.

b)
$$\int_{C} (1+z) dz,$$

c)
$$\int_{c} (\bar{z})^{2} dz,$$

d)
$$\int_{C} e^{3z} dz,$$

$$C(t) := \cos t + 3i \sin t, \ t \in [-\pi, 0] \text{ (half ellipse)}$$

$$c(t) = 2e^{(-1+i)t}, \ t \in [0, \pi/4],$$

$$C : \text{piece of the parabola Im}(z) = \pi (\text{Re}(z))^{2}$$

that connects the points zero and $1 + i\pi$.

Exercise 2:

- a) In which area is the Möbius transform $T(z) = \frac{az+b}{cz+d}$ angle preserving?
- b) Is it possible to map the area

$$M_1 := \{ z \in \mathbb{C} : |z| > 1, \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0 \}$$

onto the interior of a real triangle via Möbius transform? Here, a real triangle means a triangle whose corners are finite.

c) The mapping $f: z \to e^{\frac{i\pi}{4}\bar{z}}$ describes a rotary reflection. Obviously, it does not cause length distortions. The size of the angles is also preserved. f as a transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable. Where is f complex differentiable? How does the result compare to the theorem from page 75 from the lecture notes?

Theorem: If w = f(z) is a conformal mapping and continuously differentiable as function $f : \mathbb{R}^2 \to \mathbb{R}^2$, it follows that f(z) is complex differentiable and $f'(z) \neq 0$.

d) The area $G := \{ z \in \mathbb{C} : z = r e^{i\varphi}, -\frac{\pi}{8} < \varphi < \frac{\pi}{8}, 0 < r < 2 \}$

is to be transformed onto the interior of the unit circle (bijective and conformal). Why does $z \mapsto \left(\frac{z}{2}\right)^8$ not do that?

Additional exercise: Give a bijective, conformal mapping that achieves this task.