Complex functions for Engineering Students

sheet 3 (Homework)

Exercise 1:

Give a function that maps the strip

$$
S:=\{z \in \mathbb{C}: \operatorname{Re}(z)-\sqrt{2}<\operatorname{Im}(z)<\operatorname{Re}(z)+\sqrt{2}\}
$$

to the circular ring
$R:=\{z \in \mathbb{C}: 1<|z|<2\}$. The function is supposed to use z directly and not use its imaginary or real part.

Hint: Transform S to a strip parralel to an axis \tilde{S} first.

Exercise 2: Given the set

$$
R=\left\{z \in \mathbb{C}: \frac{1}{4}<|z|<\frac{e^{3}}{4}, \operatorname{Re}(z)>0\right\}
$$

as well as the mapping

$$
f(z)=e^{-i \frac{\pi}{2}} \cdot \ln (4 z),
$$

where \ln is the principal value of the complex logarithm,
a) Sketch the set R in the complexen plane.
b) Determine the image of R obtained with the mapping f.

Exercise 3) (4+3+3 Punkte)

a) For solving two potential problems, the following two transformations are to be executed:
(i) The boundary of the elliptical disk

$$
E:=\left\{z=x+i y \in \mathbb{C}: \frac{16 x^{2}}{25}+\frac{16 y^{2}}{9} \leq 1\right\}
$$

so $\mathbb{C} \backslash E$, is to be mapped to the outside of the unit circle $K_{1}:=\{z \in \mathbb{C}:|z| \leq 1\}$.
(ii) The area between the two hyperbola branches given by $z=x+i y$ with

$$
\frac{4 x^{2}}{3}-4 y^{2}=1 \Longleftrightarrow \frac{x^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{y^{2}}{\left(\frac{1}{2}\right)^{2}}=1
$$

is to be mapped to a sector of the form

$$
S:=\left\{z \in \mathbb{C}: \phi_{1}<\arg (z)<\phi_{2}\right\} .
$$

Give adequate transformations.
b) Does your method for solving part a)i) also work for the ellipse

$$
E:=\left\{z=x+i y \in \mathbb{C}: \frac{x^{2}}{25}+\frac{y^{2}}{9} \leq 1\right\} ?
$$

Hint: Inverse of the Joukowski function.

