Complex functions for Engineering Students Work sheet 1

Excercise 1:

a) Rewrite these complex numbers into polar representation ($z = re^{i\phi}$) and draw a sketch of them in the complex plane.

$$z_0 = -4$$
, $z_1 = \sqrt{8}(-1-i)$, $z_2 = -4i$, $z_3 = \sqrt{8}(1-i)$, $z_4 = 4$.

b) Rewrite these complex numbers into cartesian representation (z = x + iy).

$$z_5 = 3e^{i\frac{\pi}{3}}, \quad z_6 = 2e^{i\frac{-\pi}{6}}, \quad z_7 = 2e^{i\frac{-13\pi}{6}}.$$

Excercise 2: Compute the cartesian representation for the given complex numbers (using the numbers from excercise 1):

Re
$$(z_1)$$
, Im (z_1) , Re (z_3) , Im (z_3) , $z_1 + z_3$, $z_1 - z_3$,
 $2z_5 + \sqrt{8}z_3$, \bar{z}_1 , $z_1 \cdot \bar{z}_1$, $z_1 \cdot z_2$, $(z_6)^2 \cdot (z_5)^4$, $\frac{z_5}{z_6}$.

Excercise 3: Characterize these subsets of the complex plane by sketch or explanation:

$$M_{1} = \{z \in \mathbb{C} \mid |z + 4 - 3i| \leq 5\},$$

$$M_{2} = \{z \in \mathbb{C} \mid |z - i| = |z - 2 - i|\},$$

$$M_{3} = \{z \in \mathbb{C} \mid z + \overline{z} = 2\},$$

$$M_{4} = \{0\} \cup \{z \in \mathbb{C} \setminus \{0\} \mid \operatorname{Re}\left(\frac{z}{\overline{z}}\right) = 0\}.$$

Excercise 4: Describe the following subsets of the complex plane (similar to excercise 3) by using formulae.

 M_6 : strip parallel to the imaginary axis with a width of 4, symmetric to $z_0 = 1 + i$, including the boundary.

 M_7 : circular disk around the origin with inner radius 1 and outer radius 3, without boundary.

 M_8 : circular disk (punctured disk) around the origin with inner radius 0 and outer radius 3, without boundary.

 M_9 : sector between the lines $\operatorname{Re}(z) = \operatorname{Im}(z)$ and $-\operatorname{Re}(z) = \operatorname{Im}(z)$ in the upper half-space, without boundary.

Class: 04.04.22