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Task 1) [4 points]

Let 7 be the imaginary unit. Determine all complex solutions of the following equation
(ei% -2)4 = —167.

Provide a sketch of their positions in the complex plane.

Solution for task 1)

With z = re'® one obtainds

w = ('8 ~z)4 = €5 .2 = il .yt e Z 16e7i5 [Ansatz: 1 point]
w| = rt< 16 < r = 2. [1 point]
e = e = 4¢p = —7 + 2km

—¢="T+5  k=-1012 [1 point]

Sketch: [1 point]
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Task 2) [4 points]

Let ¢ be the imaginary unit, 2z = x + 1y, x,y € R and let u denote the function
u:R? — R, u(x,y) = 4x? — 4y? + 2€3* sin(3y).

a) Show that the function u is harmonic.

b) Determine all conjugate harmonic functions v to u, that is, all functions v for which
f =wu+iv is complex differentiable everywhere in C.

Solution for 2:

a) 1) Upe = (82 + 663 sin(3y)), = 8 + 183 sin(3y).
Uyy = (—8y + 6e* COS(3y))y = —8 — 18¢% sin(3y).
50 Au = Ugy + Uy, = 0.

ii) f(z) = u(z) + iv(z) with
uw(x +1y) = Re (f(z +1iy)) = 42 — 4y* + 263 sin(3y).
vy, = u, = 8z + 63 sin(3y) <= v(x,y) = 8zy — 2€* cos(3y) + c(z),

—u, = 8y — 663 cos(3y) = v, = 8y — 663 cos(3y) + ¢ (x)

< d(z) = 0 = v(z,y) = 8xy — 23 cos(3y) + C, C e R.
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1

Given f(z) = EEDHErE

a) determine and classify all isolated singularties of f.

b) calculate the residues of all isolated singularities of f.

d

)
)
¢) provide the complex partial fraction representation of f.
) find the number of different Laurent expansions for f about z; = 2.
)

e) determine the Laurent expansion for f about zy = 2 which converges to f(—2) at the
point z* = —2.

1
G-22(+1)

Solution for task 3) f(z) =

a) Roots of the denominator: z; = —1 and 25 = 2.

There is a simple pole in z; and a pole of order 2 in z; . [1 point]

b) Residues [2 points]

v (2] [l

¢) f(z) = hp(22) + hy(z;—1):

Res(f; 1) 1 ,
sz —1) 1 90z 1) [1 point]
1
_ 1 A - 1 / _
1) = = S+l 27 (9(2) +¢'(2)(z = 2) +---. [1 point]
—
9(2)

So: f(z) = g(zlﬂ) + 3(;2)2 - 9(;2) (1 point)

d) Two series. One for 0 < |z — 2| < 3 and another for |z — 2| > 3. . [1 point]
e) Since | =2 — 2| = | —2—2| = 4 > 3 we want to determine the Laurent series for
|z — 2| > 3 (approximated at zy = 2). In this ring it holds that
1 1 1 1
2) = . — .
/) (z —2)? \z\—t}/ (=22 (2—2)+3
S T 1 S
(2—2)?2 22 1—(—25) B 2_231::0 2—2

-3

=Y s S -2

k=0 k=—o00
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[3 points]
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Task 4: (2 points)

> 1
Calculat dx.
alcula e/_OO (2 1 25)(2® + ) x
Solution:
1
f(z) = has two singularities (simple poles) in the upper half plane (z; =

(22 +25)(22 4+ 4)
2i and z = 5i). It holds that

/_OO @+ 25§(x2 vy dr = 2mi(Resy(5i) + Resf(2i))

= 2mi ({ o 52,)1<22 - 4)} T {(2 + 2z’)(1z2 + 25)} z:m)

— i dm} + {m})

_7r_1+1 3
21\ (10) 4/ 210

\)



