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Task 1) [5 points]

a) For which k ∈ R is the function

f : C → C , f(z) := (Re (z))2 − (Im (z))2 + k · Im (z) + 2i · Re (z) · [Im (z) + 1]

complex differentiable in every point in C?

b) In which points in C does the function

g : C→ C, g(z) := z · ez

preserve angles?

Solution for 1:

a) With the usual notation z = x+ iy it holds that

f(z) := x2 − y2 + k · y︸ ︷︷ ︸
u(x,y)

+ i (2xy + 2x)︸ ︷︷ ︸
v(x,y)

.

The Cauchy-Riemann equations are as follows:

ux = 2x
!

= vy = 2x so arbitrary k ∈ R
and

−uy = 2y − k
!

= vx = 2y + 2 so k = −2 .

For k = −2, f is complex differentiable everywhere in C. (3 points)

b) g(z) := z · ez

g is differentiable everwhere in C since z and ez are differentiable everywhere in C. It
holds

g′(z) = ez + z · ez = (z + 1)ez.

g preserves angles where f ′(z) 6= 0, so for all z 6= −1.

(2 points)
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Task 2) [7 points]

a) Determine a Möbius transform T : C∗ → C∗, T (z) :=
az + b

cz + d
that satisfies

T (i) = 0 , T (∞) = 2 , T (−1) = ∞ .

b) Which generalized circles in C are mapped onto lines by T?

c) Determine the images of the following generalized circles of T from part a).

K := real axis,

K̃ := {z ∈ C : |z| = 1}.

Solution for 2) [7 points]

a) T (i) = 0 , T (−1) = ∞ . ⇐⇒ T (z) =
a(z − i)
z + 1

.

T (∞) = 2 , =⇒ T (z) =
2z − 2i

z + 1
. [2 points]

b) A generalized circle is mapped onto a line if and only if the point −1 is located on
that generalized circle. [1 point]

c) K = R [2 points]

Since −1 ∈ R, the image of the real axis is a line g1.

Since T (∞) = 2, 2 is also located on g1.

We determine the image of another real number, for example

T (0) = −2i.

Consequently, T (R) is the line that passes through 2 and −2i:

T (R) = g1 = {w = u+ iv ∈ C : v = u− 2}.

K̃ := {z ∈ C : |z| = 1. Unit circle. [2 points]

Since −1 ∈ K̃, the image of the unit circle is a line g2.

Since T (i) = 0, g2 passes through the origin.

Since K̃ is symmetric to R (in its domain), g2 is perpendicular to g1, so

g2 = {w = u+ iv ∈ C : v = −u}.
Alternatively, the image can be determined by taking another point on the unit circle,
for example T (1) = 1− i which leads to the same result.
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Task 3: (8 points)

Let Γ := {z(t) = 2i + 5 · eit | t ∈ [0, 2π] } be the circle with radius 5 around 2i which is
traversed once (positively)

Calculate the following path integrals.

a)

∫
Γ

z2

z − 6
dz .

b)

∫
Γ

z2

(z − 2i)(z + i)
dz .

c)

∫
Γ

z2

(z + i)2
dz .

d)

∫
Γ

(z − 2i) dz, where z is the complex conjugate of z.

Solution for 3:

a)

∫
Γ

z2

z − 6
dz = 0 (CIT) [1 point]

b) According to the residue theorem it holds that:∫
Γ

z2

(z + i)(z − 2i)
dz = 2πi

([
z2

z − 2i

]
z=−i

+

[
z2

(z + i)

]
z=2i

)

=2πi

(
−1

−3i
+
−4

3i

)
= 2π

(
1

3
− 4

3

)
= −2π . (3 points)

c) According to the Cauchy integral formular for derivatives we obtain∫
Γ

z2

(z + i)2
dz =

2πi

1!

[
(z2)′

]
z=−i = 2πi · 2(−i) = 4π . (2 points)

d) ∫
Γ

(z − 2i) dz =

∫ 2π

0

2i+ 5eit − 2i · Γ̇(t)dt =

∫ 2π

0

5eit · 5ieitdt

=

∫ 2π

0

25i · e−it · eitdt = 2π · 25i = 50πi. (2 points)


